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Objectives: To investigate whether cerebrospinal fluid (CSF) circulation markers 
alter in patients with probable cerebral amyloid angiopathy (pCAA) and whether 
they are associated with brain degeneration and cognitive impairment.

Methods: We screened pCAA patients from the ADNI3 database according to 
the Boston 2.0 Criteria. Fifty-two patients with cognitive impairment (26 pCAA; 
26 age-sex-matched non-pCAA) and 26 age-sex-matched cognitively normal 
control (NC) were included in this study. All participants underwent neurological 
MRI and cognitive assessments. Choroid plexus (ChP) was segmented using a 
deep learning-based method and its volume was extracted. Diffusion tensor 
imaging analysis along the perivascular space (DTI-ALPS) was used to assess 
perivenous fluid mobility. AD pathological markers (Aβ and tau) were assessed 
using positron emission tomography. Brain parenchymal damage markers 
included white matter hyperintensities (WMH) volume and brain atrophy ratio. 
All markers were compared among the three groups. Correlations among the 
ChP volume, DTI-ALPS index, parenchymal damage markers, and cognitive 
scales were analyzed in the pCAA group.

Results: The three groups exhibited significant differences in cognitive scores, 
AD biomarkers, and imaging markers. Post hoc analyses showed that patients 
with pCAA had significantly higher WMH volume, higher Aβ and tau deposition, 
and lower DTI-ALPS compared to NC. However, no difference in ChPs volume 
was found among the groups. Controlling for age, sex, and vascular risk factors, 
partial correlation analyses showed a significant negative correlation between 
the DTI-ALPS and WMH volume fraction (r = −0.606, p = 0.002). ChP volume 
was significantly associated with the Montreal cognitive assessment score 
(r = −0.492, p = 0.028).

Conclusion: CSF circulation markers were associated with elevated WMH 
burden and cognitive impairments in probable CAA.
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Introduction

Cerebral amyloid angiopathy (CAA) is a specific type of small 
vessel disease defined by β-amyloid (Aβ) deposition in cortical and 
leptomeningeal vessels (Charidimou et al., 2022; Beaman et al., 2022; 
Koemans et al., 2023; Greenberg and van Veluw, 2024). Aβ deposition 
may causes various detrimental effects, including vessel wall 
thickening and stiffening, loss of vascular smooth muscle cells, blood–
brain barrier disruption, etc. (Beaudin et al., 2022; Deng et al., 2022; 
Chen et al., 2023; Fotiadis et al., 2016, 2021; Greenberg et al., 2020). 
These pathological factors can further lead to hemorrhagic or ischemic 
events and brain degeneration (Charidimou et al., 2019; Beaman et al., 
2022; Wang et al., 2024; Rabin et al., 2022).

In recent years, the development of the brain waste clearance 
theory has provided new insights into the mechanisms of CAA-related 
brain degeneration (Nedergaard and Goldman, 2020). The choroid 
plexus (ChP) is the primary site of cerebrospinal fluid (CSF) secretion 
(Wichmann et  al., 2021). CSF flows through the ventricles and 
subarachnoid spaces, further entering the perivascular spaces and 
brain parenchyma, where it flushes out metabolic waste (Jessen et al., 
2015). Previous pathological and animal studies have found that Aβ 
may deposit in the ChP (Sasaki et al., 1997), inducing cellular toxicity 
and apoptosis (Vargas et al., 2010). Additionally, since vessel pulsatility 
is considered a major driving factor of CSF flow (Xie et al., 2024), Aβ 
deposition in cortical and leptomeningeal vessels may disrupt vessel 
wall movement and reduce CSF mobility. This can lead to stagnation 
of interstitial fluid (ISF), accumulation of toxic substances in the 
parenchyma, and subsequent neurodegeneration (Durrani et al., 2023; 
Chen et al., 2022; Kim et al., 2020; van Veluw et al., 2024b). This 
theory offers a new perspective for understanding the progression of 
brain degeneration in CAA (van Veluw et al., 2024a). However, as 
most previous studies were conducted in rodent models, there is a 
critical need for clinical translational research.

Magnetic resonance imaging (MRI) provides a clear visualization 
of ChP structure. Previous studies have found that ChP volume 
increases with aging and in various neurodegenerative diseases (Čarna 
et  al., 2023; Jeong et  al., 2023), potentially indicating pathological 
hypertrophy and decreased CSF production. However, no in  vivo 
investigations have been conducted to examine ChP changes in 
CAA. Diffusion tensor imaging analysis along the perivascular space 
(DTI-ALPS) (Taoka et al., 2017) is a method used to evaluate fluid 
motion in the perivenous spaces. Research has demonstrated a strong 
correlation between DTI-ALPS and various neurological disorders 
(Hong et al., 2024; Jiang et al., 2023). Furthermore, DTI-ALPS can 

predict long-term outcomes in patients with Alzheimer’s disease (AD) 
(Huang et al., 2024), Parkinson’s disease (Zhou et al., 2024), and other 
conditions. Utilizing these CSF circulation markers may help elucidate 
the association between waste clearance and brain degeneration in CAA.

The definite diagnosis of CAA relies on histopathological analysis 
from brain autopsy or biopsy samples. Nonetheless, probable diagnosis 
could be inferred according to the Boston criteria, based on clinical and 
MRI information. In 2022, the Boston criteria were updated to version 
2.0 (Charidimou et al., 2022), which demonstrated superior accuracy 
compared to the older version. To be specific, the Boston criteria 2.0 
classify CAA into different diagnostic certainty levels: definite CAA, 
probable CAA with supporting pathology, probable CAA (pCAA), and 
possible CAA. The first two categories require full postmortem brain 
examination or biopsy confirmation. The pCAA is diagnosed based on 
combined clinical and imaging criteria. Clinical manifestations include 
spontaneous intracerebral hemorrhage, transient focal neurological 
episodes, or cognitive impairment/dementia (Perini et  al., 2023). 
Imaging criteria require either: (1) at least two strictly lobar hemorrhagic 
lesions on T2*-weighted MRI, or (2) one lobar hemorrhagic lesion plus 
one white matter feature (either severe centrum semiovale perivascular 
spaces or multifocal white matter hyperintensities). Although the 
diagnosis of pCAA is not definitive, it provides a valuable framework 
for clinical research on this important disease.

In this study, we aimed to: (1) determine whether the two CSF 
circulation markers were altered in patients with pCAA as defined by 
the new Boston 2.0 criteria, and (2) examine the associations between 
CSF circulation markers, brain degeneration, and cognitive 
impairments. We  hypothesized that patients with probable CAA 
exhibit altered CSF circulation markers, which may contribute to 
brain degeneration.

Methods and materials

Participants

The data used in this article were from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database.1 The database was 
launched by the National Institute on Aging (NIA), the Food and 
Drug Administration (FDA), and the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), aiming to explore whether 
serial MRI, positron emission tomography (PET), biological markers, 
and other neuropsychological assessment can be  used for early 
detecting and tracking AD. Participant inclusion and exclusion criteria 
are available at www.adni-info.org. All procedures performed in 
studies involving human participants were under the ethical standards 
of the Institutional and National Research Committee and with the 
1964 Helsinki Declaration and its later amendments or comparable 
ethical standards. Written informed consent was from all participants 

1  http://www.loni.ucla.edu/ADNI

Abbreviations: DTI-ALPS, diffusion tensor imaging analysis of perivascular space; 

AD, Alzheimer’s disease; MCI, Mild cognitive impairment; MMSE, Mini-Mental State 

Examination; MoCA, Montreal Cognitive Assessment; NC, Normal control; Aβ, 

β-amyloid; CAA, cerebral amyloid angiopathy; FLAIR, fluid-attenuated inversion 

recovery; SVD, small vessel disease; VFT, Verbal Fluency Test; WM, white matter; 

PSMD, peak width of skeletonized mean diffusivity; SWI, susceptibility weighted 

imaging.
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and authorized representatives before any protocol-specific procedures 
were carried out in the ADNI study. More details can be found at 
http://www.adni-info.org.

The diagnosis of pCAA was based on the Boston Criteria version 
2.0 (Figure  1). A radiologist with over 10 years of diagnostic 
experience evaluated the entire ADNI3 baseline dataset, identifying 
lobar hemorrhagic lesions on T2* images. According to the Boston 
Criteria, subjects with cognitive impairments and either more than 
two lobar hemorrhagic lesions or one lobar hemorrhagic lesion plus 
one white matter feature (e.g., severe perivascular spaces in the 
centrum semiovale or white matter hyperintensities in a multispot 
pattern) were classified as pCAA. Since the diagnosis of probable CAA 
also requires clinical impairment, we  included only those with 
cognitive impairment. To control for the potential influence of 
cognitive status, which has been associated with CSF circulation 
abnormalities, we also included a group with MCI but without CAA 
(MCI-nonCAA). Finally, 26 pCAA cases, 26 age- and sex-matched 
MCI-nonCAA, along with 26 age- and sex-matched normal controls 
(NC) were included in this study. The groups were matched using the 
propensity score matching tool in SPSS Statistics Version 27.0 (IBM).

Demographic and clinical data
Demographic and clinical data were obtained from the ADNI 

database,2 including age, sex, smoking status, and vascular risk factors 
such as hypertension, diabetes, hyperlipidemia, stroke, myocardial 
infarction, and atrial fibrillation. A summary vascular risk factor score 
(VRFs) was calculated by summing the presence of each factor.

Neuropsychological assessment
The neuropsychological assessment included the mini-mental 

state examination (MMSE), Montreal cognitive assessment (MoCA), 
and clinical dementia rating scale sum of boxes (CDR-SOB).

2  http://adni.loni.usc.edu/

PET acquisition and preprocessing
The amyloid PET scans were performed using two tracers 

(florbetapir, or FBP; florbetaben, or FBB). For this study, 
we  analyzed amyloid PET data processed by UC Berkeley and 
Lawrence Berkeley National Laboratory. The summary standardized 
uptake value ratio (SUVR) was calculated by averaging the uptake 
values across four primary cortical regions (frontal, anterior/
posterior cingulate, lateral parietal, and lateral temporal) and 
normalizing by the whole cerebellum. To promote the 
harmonization of Aβ PET imaging, we utilized data from FBB and 
FBP to derive standardized Centiloid (CL) conversions, as 
previously described (Royse et al., 2021).

The tau PET scans were performed using one tracer (flortaucipir, 
or FTP). We also analyzed tau PET data processed by UC Berkeley and 
Lawrence Berkeley National Laboratory. The SUVR for the temporal 
meta-ROI was determined as a volume-weighted average of the 
SUVRs from the entorhinal cortex, amygdala, parahippocampal 
gyrus, fusiform gyrus, inferior temporal cortex, and middle temporal 
cortex. The detailed acquisition protocols are described in the ADNI 
PET Technical Procedures Manual.3

Magnetic resonance imaging acquisition
The imaging data from the ADNI were acquired from multiple 

centers utilizing standardized protocols. We  include 3D 
T1-weighted (T1w), 3D T2 FLAIR, axial T2*-weighted, and axial 
diffusion tensor imaging (DTI) sequence. All imaging data were 
obtained using 3T scanners manufactured by three leading vendors 
(GE, Siemens, and Philips). Detailed information on the parameters 
can be  found at https://adni.loni.usc.edu/methods/documents/
mri-protocols/.

3  http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET_Tech_

Manual_0142011.pdf

FIGURE 1

Subject enrollment flowchart. CAA, cerebral amyloid angiopathy.
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Brain segmentation
We performed brain segmentation in each subject using the 

“recon-all” processing pipeline in FreeSurfer (version 6.0).4 It 
segmented different tissue types and estimated the total intracranial 
volume (TIV). We calculated the brain parenchymal-to-TIV ratio to 
reflect brain atrophy.

WMH assessment and segmentation
T2 FLAIR images were used for WMH assessment. Visual 

assessment was performed using the Fazekas grading (Fazekas et al., 
1993). For volume quantification, an automatic segmentation tool 
(Lesion Segmentation Tool) based on the lesion prediction algorithm 
of the Statistical Parametric Mapping software (SPM12)5 was used. 
The automatically created WMH labeled images were then manually 
corrected for misclassified tissues. WMH volume was extracted and 
normalized using the subject’s TIV.

Choroid plexus segmentation
For each subject, the 3D FLAIR image was registered to the 3D T1w 

image using linear registration. The ChP was then segmented based on 
both 3D T1w and 3D FLAIR images using an in-house-trained deep 
learning model. This model was trained using 44 subjects scanned with 
various scanners and tested on 15 subjects. Compared with manual labels, 
the model demonstrated excellent performance on the testing dataset, 
achieving a mean Dice coefficient of 0.878, a mean precision of 0.872, and 
a mean recall of 0.888. Visual inspection was performed to ensure 
segmentation quality. The ChP volume was then calculated and 
normalized using the subject’s total intracranial volume (TIV).

DTI-ALPS evaluation
The processing of DTI data was conducted using FSL 6.06 and 

MRtrix3.7 Preprocessing steps included Gibbs ringing removal, eddy-
current and head motion correction, and bias field correction. Then, 
the b0 and b1000 images were used to fit an ellipsoid model using the 
DTIFIT command in FSL. All the generated results including the 
fractional anisotropy (FA) map and the mean diffusivity (MD) map 
were normalized to the MNI space using linear registration. Regions 
of interest (ROI) containing 5 voxels (40mm3) were placed at the 
projection and association fiber regions (Zhang Y. et al., 2021) based 
on the anisotropy color maps and then the diffusivities at the x, y, and 
z orientations were extracted. The DTI-ALPS index was calculated 
using the following formula: DTI-ALPS index, mean (Dxproj, 
Dxassoc) / mean (Dyproj, Dzassoc). The DTI-ALPS indices in the 
bilateral hemispheres were calculated, respectively, and the mean of 
them was used in further analyses. To reduce site effects, 
we conducted multicenter data harmonization on DTI-ALPS using 
the COMBAT method (Fortin et al., 2017).

Statistical analysis

All statistical analyses were performed using SPSS Statistics 
Version 27.0 (IBM) and R (Version 4.2.1). Mean ± SD and median 

4  https://surfer.nmr.mgh.harvard.edu/

5  http://www.fil.ion.ucl.ac.uk/spm

6  https://fsl.fmrib.ox.ac.uk/fsl

7  http://www.mrtrix.org

(interquartile range) were reported for normally and non-normally 
distributed variables, respectively. Frequencies (%) were 
presented for categorical variables. A p-value <0.05 was considered 
statistically significant.

We first analyzed whether demographic, clinical, imaging, and 
disease markers differed among the three groups. Continuous 
variables were analyzed using ANOVA, categorical variables using 
Chi-square tests, and ordinal variables using Kruskal-Wallis tests. 
Post-hoc analyses were conducted to identify sources of differences.

Second, we performed Spearman’s correlation analyses to examine 
the associations between CSF circulation markers and brain 
parenchymal damage, AD pathological markers, and cognitive 
impairments in the pCAA group. Age and sex were included as 
covariates. Considering the possible influence of vascular risk factors 
on CSF circulation and brain degeneration, we  also performed 
additional correlation analyses while controlling the VRFs.

Results

Table 1 shows the demographics of the included subjects. Figure 2 
briefly illustrates the imaging findings of normal controls and pCAA 
patients. There were no significant differences in age, sex, diabetes, 
hyperlipidemia, smoking, stroke, MI, AF, brain parenchymal-to-TIV 
ratio among the three groups (all p > 0.05).

The NC, MCI-nonCAA, and pCAA groups exhibited significant 
differences in hypertension and cognitive assessments. For imaging 
markers, deep and periventricular WMH scores, WMH volume, and 
DTI-ALPS showed significant differences among the three groups. 
Post hoc analyses showed that patients with pCAA had significantly 
higher prevalence of hypertension, lower MMSE, lower MoCA, higher 
CDR-SOB, higher WMH burden, higher Aβ and tau deposition, and 
lower DTI-ALPS than NC. Compared to MCI-nonCAA, patients with 
pCAA showed significantly higher prevalence of hypertension, lower 
MoCA, higher WMH burden, and higher Aβ deposition. Although 
the pCAA group showed a trend of increased ChP volume, the 
difference was only marginally significant among the three groups.

In correlation analyses, we found that CSF circulation disorders 
were associated with downstream adverse events in the pCAA group. 
Specifically, we found a negative association (r = −0.478, p = 0.018) 
between DTI-ALPS and WMH volume fraction (Table 2). We did not 
observe that CSF circulation markers were associated with AD 
pathological markers. However, we  found a negative association 
(r = −0.491, p = 0.024) between ChP volume fraction and MoCA 
(Table  2). After controlling for the VRFs, the findings remain 
consistent in additional correlation analyses (Table 3).

Discussion

In this study, we examined two CSF circulation markers in NC, 
MCI-nonCAA, and pCAA groups. Our findings revealed that patients 
with pCAA had significantly lower DTI-ALPS values, higher WMH 
burden, more Aβ and tau deposition, and worse cognitive performance 
compared to NC. Within the pCAA group, a lower DTI-ALPS value 
was associated with a higher WMH burden, while a larger ChP 
volume correlated with a lower MoCA score. These results provide 
evidence of CSF circulation abnormalities in CAA, which may 
contribute to a better understanding of the disease’s etiology.
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We screened over a thousand subjects in the ADNI3 database 
using the Boston 2.0 criteria for probable CAA and identified 26 
cases. Unlike the high prevalence of CAA reported in pathological 

studies, imaging studies typically report a much lower prevalence 
(Jäkel et al., 2022). Additionally, variations in MRI scanners and 
protocols may affect the visualization of lesion features used to 

TABLE 1  Demographic, clinical, and imaging data of the three groups.

Variable NC (N = 26) MCI-nonCAA (N = 26) pCAA (N = 26) p value

Demographic

Age (years) 78.81 ± 6.14 78.19 ± 5.99 79.81 ± 7.40 0.669

Sex (female/total) 12/26 10/26 10/26 0.809

Vascular risk factors

Hypertension, N (%) 9/26 8/26 17/26 0.022b,c

Diabetes, N (%) 3/26 3/26 3/26 1.000

Hyperlipidemia, N (%) 9/26 13/26 12/26 0.508

Smoking, N (%) 8/26 4/26 3/26 0.177

Stroke History, N (%) 1/26 0/26 0/26 0.363

MI, N (%) 2/26 5/26 4/26 0.477

AF, N (%) 1/26 1/26 3/26 0.425

Cognitive assessments

MMSE 29.12 ± 1.28 26.92 ± 3.54 25.58 ± 2.90 <0.01a,b

MoCA 24.92 ± 2.71 21.62 ± 5.30 18.43 ± 5.81 <0.01a,b,c

CDR-SOB 0.17 ± 0.50 2.10 ± 2.09 3.14 ± 2.66 <0.01a,b

Brain damage indicators

Microbleeds, N (IQR) 0[0–0] 0[0–0] 4[2–15] <0.01bc

Cortical Superficial Siderosis, N (IQR) 0[0–0] 0[0–0] 0[0–0] 0.046bc

Deep WMH score <0.01b,c

0 1/26 0/26 0/26

1 18/26 22/26 4/26

2 6/26 4/26 14/26

3 1/26 0/26 8/26

Periventricular WMH score <0.01b,c

0 3/26 0/26 1/26

1 17/26 17/26 3/26

2 5/26 8/26 12/26

3 1/26 1/26 10/26

WMH volume, ml (IQR) 2.08 (0.92–5.49) 1.32 (0.61–4.57) 9.40 (4.72–24.8) 0.007b,c

WMH volume fraction, *10−3 (IQR) 1.50 (0.54–3.93) 0.85 (0.40–3.76) 6.33 (3.39–12.57) 0.034b,c

Parenchymal-to-TIV ratio 0.70 ± 0.39 0.70 ± 0.37 0.69 ± 0.05 0.799

AD pathological markers

Aβ, Centiloid 17.5 ± 30.12 36.05 ± 44.37 67.30 ± 56.14 <0.01b,c

Aβ, positive, N (%) 10/24 10/22 17/20 0.007b,c

Tau, meta-ROI 1.12 ± 0.09 1.35 ± 0.28 1.52 ± 0.44 0.002b

Tau, positive, N (%) 10/24 7/19 12/20 0.001b

ChP volume (ml) 2.42 ± 0.76 2.34 ± 0.69 2.82 ± 1.00 0.095

ChP volume fraction, *10−3 1.59 ± 0.41 1.56 ± 0.39 1.77 ± 0.53 0.200

Mean DTI-ALPS 1.26 ± 0.16 1.19 ± 0.18 1.15 ± 0.44 <0.01b

WMH, White matter hyperintensity; NC, normal control; MCI, cognitive impairment; CAA, Cerebral amyloid angiopathy; AD, Alzheimer’s disease; TIV, Total intracranial volume; AF, 
auricular fibrillation; MI, Myocardial infarction.
aNC vs. MCI-nonCAA; bNC vs. pCAA; cMCI-nonCAA vs. pCAA.
Aβ data was available in 24 NC, 22 MCI-nonCAA, and 20 pCAA.
Tau data was available in 24 NC, 19 MCI-nonCAA, and 20 pCAA.
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define CAA. The ADNI3 project acquired T2* images but did not 
include susceptibility-weighted imaging (SWI), further lowering 
the estimated prevalence (Buch et al., 2017). To disentangle the 
influence of cognitive status and CAA, we established two control 
groups. We  applied a deep learning-based ChP segmentation 
method that utilizes two imaging modalities for segmentation. This 
method has a high segmentation accuracy compared to 
traditional tools.

We found significantly decreased DTI-ALPS and a trend of 
increased ChP volume for the pCAA group. As discussed before, 
the decreased DTI-ALPS indicated decreased fluid mobility in the 
perivenous space, while the increased ChP volume suggested 
pathological hypertrophy. This was in line with previous 
pathological and animal studies suggesting that CAA pathologies 
had a negative influence on CSF production and circulation. 
Nonetheless, when comparing to the MCI-nonCAA group, all 

FIGURE 2

Images of microbleeds, white matter hyperintensities (WMH), and choroid plexus (ChP) in a normal control (NC) and a patient with probable cerebral 
amyloid angiopathy (pCAA). (A): pCAA demonstrates microbleeds on T2*-weighted sequences. (B): pCAA demonstrates white matter hyperintensities 
on T2 FLAIR sequences. (C): pCAA demonstrates ChP on T1-weighted sequences. (D): pCAA demonstrates ChP on T2 FLAIR sequences. (E): NC 
demonstrates white matter hyperintensities on T2 FLAIR sequences. (F): NC demonstrates ChP on T1-weighted sequences. (G): NC demonstrates ChP 
on T2 FLAIR sequences.

TABLE 2  Association between CSF circulation markers, brain degeneration and cognitive impairments in the pCAA group, controlling for age and sex.

ChP volume fraction DTI-ALPS

r p value r p value

Brain volumetric markers

WMH volume fraction 0.246 0.246 −0.478 0.018

Parenchymal-to-TIV ratio 0.320 0.128 0.019 0.930

AD pathological markers

Aβ 0.207 0.410 0.249 0.319

Tau −0.023 0.927 0.171 0.497

Cognitive function

MMSE −0.256 0.228 −0.199 0.352

MoCA −0.491 0.024 −0.095 0.683

CDR-SOB 0.018 0.934 0.168 0.432

WMH, White matter hyperintensity; TIV, Total intracranial volume; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; CDR-SOB, 
clinical dementia rating scale sum of boxes. Bold: Significant at p < 0.05. Italics values are correlation coefficients.
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results were non-significant, although the trends still existed. This 
is probably due to the small sample size and effect size.

The pCAA group had significantly higher WMH volume fraction 
and Aβ deposition compared to the MCI-nonCAA and NC groups. 
Regarding cognitive functions, the pCAA group showed lower cognitive 
scores in MoCA, but not MMSE and CDR, compared to the 
MCI-nonCAA group. These findings were consistent with the 
pathological theories of CAA, confirming that the Boston 2.0 diagnostic 
criteria of pCAA could correctly identify these patients.

In correlation analyses, we discovered that a lower DTI-ALPS 
was associated with a higher WMH burden in the pCAA group. Our 
previous studies demonstrated that venous disruption could cause 
stagnation of ISF and an increase in WMH volume (Zhang R. et al., 
2021). The lower DTI-ALPS index, reflecting impaired perivenous 
fluid movement, may have similar effects. ISF stagnation can lead to 
the accumulation of metabolic waste products and pathological 
proteins, triggering inflammatory responses that further contribute 
to cellular damage, demyelination, and lesion formation (Abdul 
Hamid et al., 2024). Notably, increased ISF content itself may promote 
the development of WMH, as the FLAIR sequence is highly sensitive 
to changes in tissue water content. Additionally, we found that the 
ChP volume fraction was associated with MoCA score. It is possibly 
due to that ChP alterations disrupt brain homeostasis and accelerated 
brain degeneration (Godrich et al., 2022; Choi et al., 2023; Gokcal 
et al., 2021; Jo et al., 2021).

This research has several limitations. First, this is a cross-
sectional study. The causal relationships between CSF circulation 
markers, parenchymal damage markers and cognitive decline over 
time still need to be  explored in longitudinal studies. Second, 
we  included pCAA without pathological confirmation. Some 
non-CAA participants might have been erroneously included. 
Furthermore, CAA can present with diverse clinical manifestations, 
including hemorrhagic stroke, transient focal neurological episodes, 
and cognitive impairment. Since our study exclusively enrolled 
patients with cognitive impairment, the generalizability of our 
findings to other CAA populations may be  limited (Perini et al., 
2023). Third, although we adjusted for age, sex, and vascular risk 

factors (VRFs), unmeasured confounding factors may still have 
influenced the findings. Fourth, T2*-GRE imaging was used to 
quantify microbleeds instead of the more sensitive SWI sequence, 
potentially contributing to a lower estimated prevalence. Fifth, the 
small sample size may have limited our ability to detect associations 
with smaller effect sizes.

Conclusion

In conclusion, our study suggested that CSF circulation markers 
were associated with elevated WMH burden and cognitive 
impairments in probable CAA. Further validations in cohorts with 
large sample sizes are needed.
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