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Background: Ischemic stroke (IS) is a leading cause of adult disability worldwide. 
The inflammatory processes involved are complex, making it challenging to fully 
understand the pathological mechanisms of IS. Phagocytosis plays an important 
role in eliminating neurotoxic or damaged neurons resulting from inflammatory 
responses. This study employed bioinformatics methods to analyze single-cell 
RNA sequencing (scRNA-seq) data to investigate the cell types and molecular 
biological processes involved in IS.

Methods: scRNA-seq data for IS were obtained from the Gene Expression 
Omnibus (GEO). Following sample screening and reprocessing, 5,582 single 
cells were identified from healthy controls and patients with IS. Uniform 
manifold approximation and projection (UMAP) was utilized to further explore 
the cellular composition in IS. Functional enrichment analysis of differentially 
expressed genes was conducted to identify transcriptional regulators, whereas 
cell developmental trajectories were predicted to uncover potential cell fate 
decisions. iTALK was employed to identify potential ligand-receptor axes within 
the cell-type immune microenvironment of IS.

Results: Based on scRNA-seq data analysis, we  identified four cell types and 
their associated subclusters, along with genes exhibiting significant differential 
expression within these subclusters. Phagocytosis was significantly enriched in 
cell types linked to IS, while the differentiation trajectories of subpopulations 
in IS was different. Additionally, multiple receptor-ligand axes were identified, 
indicating diverse interactions within the immune microenvironment of IS.

Conclusion: This study demonstrated that phagocytosis in IS cell types critically 
influences disease progression. It also predicted the trajectories of infarct 
cells. These findings provide valuable insights into the molecular and cellular 
mechanisms underlying IS and highlight potential pathways for therapeutic 
intervention.
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1 Introduction

Stroke is the second leading cause of disability and death 
worldwide, imposing a significant burden on individuals and society. 
Total direct medical expenses related to stroke are projected to more 
than double between 2015 and 2035, increasing from $36.7 billion to 
$94.3 billion (Saini et al., 2021). In China, stroke is a leading cause of 
death and loss of disability-adjusted life years, with ischemic stroke 
(IS) comprising approximately 65.3% of all stroke cases (GBD 2021 
Nervous System Disorders Collaborators, 2024; Ma et al., 2021). The 
primary clinical manifestations of IS include sudden weakness or 
numbness on the contralateral limb of lesions, difficulty in speaking 
or understanding speech, impaired consciousness, balance or 
coordination challenges, and vision loss (Walter, 2022). Cerebral 
infarction is characterized by high rates of morbidity, disability, 
mortality, and recurrence. The annual incidence of cerebral infarction 
is approximately 0.2% in the general population. Generally, around 15 
million people experience cerebral infarction annually, with 5 million 
dying from the condition and another 5 million permanently losing 
their ability to work (Donkor, 2018). Early identification of acute IS, 
prompt interventions to restore blood flow, and timely treatment in 
stroke centers can significantly reduce morbidity and mortality 
(Herpich and Rincon, 2020). Effective treatment of cerebral infarction 
requires strict adherence to time-sensitive protocols (Mendelson and 
Prabhakaran, 2021). Additionally, IS triggers a complex inflammatory 
cascade that contributes to localized brain damage (Petrovic-Djergovic 
et al., 2016). However, the exact molecular mechanisms underlying 
this process remain unclear.

Phagocytosis initiates a cascade of inflammatory responses in the 
brain during IS that protects neurons and improves disease prognosis. 
Conversely, excessive clearance can exacerbate neuronal damage and 
cerebral infarction. Inflammation is mainly triggered by resident 
immune cells, like microglia, astrocytes and others, besides, classical 
immune cells such as neutrophils, macrophages, and T lymphocytes 
also participate in this process (Wang H. et al., 2023; Candelario-Jalil 
et al., 2022). Recruitment of peripheral immune cells occurs through 
the release of chemokines at the site of injury, which activate 
endothelial cells and subsequently disrupt the blood–brain barrier 
(Blank-Stein and Mass, 2023). Studies have found that after cerebral 
infarction, microglia in the brain rapidly detect danger signals and 
participate in the immune response. Subsequently, macrophage-like 
cells, neutrophils, pro-inflammatory cytokines, tumor necrosis factor, 
interleukins, and other immune mediators are activated. These 
elements contribute to the regulation of immune signaling and the 
recognition of dead cells, pathogens, and autoantigens (Lambertsen 
et al., 2019). CD4 + T lymphocytes play a critical role in mediating 
tissue damage after IS. Animal experiments have shown that CD4 + T 
cell-mediated responses promote B cell infiltration into the central 
nervous system following cerebral infarction, likely involving 
additional interactions with microglia and infiltrating peripheral 
myeloid cells (Weitbrecht et  al., 2021). Macrophage phagocytosis 
involves recognizing, binding, engulfing, and digesting apoptotic cells. 
This process prevents secondary necrosis caused by tissue damage and 
inflammation while promoting pro-resolving signaling in 
macrophages, which is essential for tissue decomposition and repair 
(Schilperoort et  al., 2023). Naïve T cells and T cells are recruited 
during the formation of atherosclerotic plaques to regulate 
macrophage polarization by secreting pro-inflammatory and 

anti-inflammatory factors. These macrophages destabilize 
atherosclerotic plaques by secreting pro-inflammatory factors 
(Carrasco et al., 2022). Natural killer (NK) cells are detrimental to 
chronic inflammation and autoimmune diseases. Their accumulation 
and increased cytotoxic potential induce apoptosis or necrosis of 
endothelial cells in the vascular wall, which promotes unstable 
atherosclerosis. However, NK cells also exert a protective effect on 
cells damaged by cerebral infarction by mitigating their cytotoxic 
effects (Crinier et  al., 2020; Kyaw et  al., 2017). Thus, further 
exploration of the biological functions of various cell types and the 
regulatory mechanisms of associated transcriptional factors is 
important for a deeper understanding of the pathological progression 
of IS. This may provide new insights into the diagnosis and treatment 
of cerebral infarction, emphasizing the need for detailed investigations 
into the relationship between cell subtypes and their biological 
roles in IS.

With the rapid advancement of science and technology, next-
generation sequencing (NGS) technology has evolved significantly 
from genomics, transcriptomics, and epigenomics to single-cell 
characterization. This progression has attracted substantial attention 
for uncovering more nuanced discoveries (Hwang et al., 2018). Single-
cell RNA sequencing (scRNA-seq) facilitates the analysis of cell 
heterogeneity and reveals regulatory relationships between genes. 
scRNA-seq of immune cells is widely employed to comprehensively 
analyze the immune system (Papalexi and Satija, 2018).

This study aimed to investigate the cell types and molecular 
biological processes involved in IS. We used scRNA-seq to investigate 
the cell types involved in IS, examine the IS ecosystem, and identify 
related cell subclusters. Additionally, we explored the developmental 
trajectories, intercellular communication, and signaling pathways 
within these IS cell subpopulations. Finally, we  identified specific 
biomarkers that maintain homeostasis in IS and examined the 
interactions between different cell types. Our findings offer deeper 
insights into the cellular functions and key signaling pathways 
associated with IS, potentially providing innovative strategies for its 
diagnosis and treatment.

2 Materials and methods

2.1 Data acquisition and processing

We obtained the scRNA-seq dataset GSE224273 (Fernandez et al., 
2019) from IS and healthy individuals via the Gene Expression 
Omnibus (GEO).1 This dataset was based on the GPL20301 platform 
and included nine samples: four carotid atherosclerotic tissue 
specimens collected during carotid endarterectomy from two IS 
patients (average age: 70 years) and five specimens from four non-IS 
patients (average age: 69.75 years). Samples GSM7018585, 
GSM7018586, and GSM7018587, which did not meet the study’s 
criteria, were excluded. The final dataset comprised six samples: 
GSM7018579, GSM7018580, GSM7018581, GSM7018582, 
GSM7018583, and GSM7018584.

1 https://www.ncbi.nlm.nih.gov/geo/
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2.2 Single-cell RNA sequencing cell 
clustering

Cells derived from the original dataset underwent standardized 
data processing and rigorous quality control, including the removal of 
double cell counts, dead cells, and mitochondrial gene content. The 
default filtering criteria included cells with a feature count of less than 
1% and mitochondrial content greater than 10% of total needs. The 
filtered high-quality cells were normalized using the sctransform 
function from the Seurat package in R, sctransform is based on 
regularized negative binomial regression. First, we  constructed 
generalized linear model (GLM), for each gene with a GLM, the 
independent variable is the sequencing depth of each cell (total UMI 
count), and the dependent variable is the UMI count of each gene in 
each cell. Next, regularization parameter estimation is applied to 
regularize the parameters in GLM to reduce the effects of overfitting 
and noise. Then we  calculated the residuals using regularized 
parameters and the sequencing depth of the cells, and recalculate the 
expected expression levels of each gene in each cell. And subtracted 
the actual expression amount from the expected expression amount 
to obtain the residual term. These residual terms reflect true biological 
heterogeneity in gene expression, not technical variation. Finally, 
we  obtained the standardized expression level of each gene via 
dividing the residual term by the standard deviation of the negative 
binomial distribution through variance stabilization transformation, 
which is the Pearson residual (Hafemeister and Satija, 2019). 
Furthermore, we constructed a single-cell atlas and cell clustering was 
performed using the Seurat package in R with default parameters 
(Butler et al., 2018). The IntegrateData function was employed to 
integrate all single-cell datasets and the FindClusters function was 
used to identify clusters. The clustering results were uniformly reduced 
and visualized using the uniform manifold approximation and 
projection (UMAP) for the dimensionality reduction algorithm 
(Becht et al., 2018). The FindAllMarkers function from Seurat was 
used to identify highly expressed marker genes in each cell cluster. 
Cell-type annotations were performed using a single-cell atlas based 
on existing cell-type marker genes (Fernandez et al., 2019).

2.3 Differential gene expression analysis

To explore variations in gene expression across different cell types, 
differential gene expression analysis was performed based on the 
FindMarkers function in the Seurat package (Butler et al., 2018). This 
function was used to identify differentially expressed genes between 
the control and IS groups. Genes with a p-value < 0.05 were considered 
statistically significant.

2.4 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis were applied to determine the 
molecular pathways and potential functions in each cell subset. 
We used the clusterProfiler package in R to perform an enrichment 
analysis of GO biological processes (BP), cellular components (CC), 
molecular functions (MF), and KEGG signaling pathways on multiple 
grouped gene lists (Yu et al., 2012). Pathways with a p-value < 0.05 

were considered significantly associated with marker genes. The 
Benjamin-Hochberg method was applied to adjust p-values and 
control the false discovery rate (FDR) within an acceptable range 
(Korthauer et al., 2019). Additionally, global gene expression profiles 
were analyzed using gene set enrichment analysis (GSEA) to explore 
potential biological characteristics (Subramanian et al., 2005), with a 
significance threshold of p < 0.05.

2.5 Single-cell trajectory analysis

RNA velocity analysis was used to infer the differentiation 
trajectory of cells during IS by linking measurements with potential 
mRNA splicing dynamics (Manno et al., 2018). We used the velocyto 
software which based on python, firstly, the single-cell data was 
performed by cellranger, then we used the steady-state/deterministic 
models to infer gene dynamics from the abundance ratio between 
spliced and unspliced mRNA to derive RNA velocities that can 
be used to infer the evolutionary trajectory of cells in IS pathogenesis 
(Bergen et al., 2020; Svensson and Pachter, 2018).

2.6 Construction of gene regulatory 
network

Single-cell regulatory network inference and clustering (SCENIC) 
was used to construct gene regulatory networks and identify cell states 
based on single-cell expression profiles, providing important insights 
into the mechanisms driving cellular heterogeneity. To analyze the 
intrinsic transcriptional regulatory drivers of IS, we used the Python 
module tool pySCENIC to reconstruct gene regulatory networks 
centered on transcription factors (TFs) (Aibar et al., 2017; Van de 
Sande et al., 2020).

2.7 Cell communication analysis

Signal transduction emphasizes the mode and results of signal 
reception, transmission, and the conversion of signals between cells, 
with ligand-receptor binding being a primary mechanism. In this 
study, the iTALK package in R was used to identify high-confidence 
ligand-receptor interactions between cells (Wang et  al., 2019). It 
preferentially identifies highly expressed or differentially expressed 
genes in cell clusters and matches them with entries in a ligand-
receptor database to identify significant intercellular communication 
events. The interaction ring network diagrams and differential 
interaction ring diagrams table were generated to visualize 
these interactions.

2.8 Data analysis and statistics

All bioinformatics analyses in this study were conducted using the 
Bioinforcloud platform.2 Differential gene expression levels were 

2 http://www.bioinforcloud.org.cn
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evaluated with a non-paired t-test. Statistical significance was 
indicated with a p-value < 0.05.

3 Results

3.1 Global single-cell landscape of IS and 
healthy controls

To explore the cellular landscape of IS, we analyzed the scRNA-seq 
dataset retrieved from the GEO database (Fernandez et al., 2019). The 
workflow of this study is illustrated in Figure  1, with clinical 
information for all samples provided in Supplementary Table S1. 
Following standardized data processing and quality control, 5,582 
high-quality single-cell transcription profiles were identified and 
categorized into 15 different clusters (Figure 2A). To further analyze 
these cell subtypes, we  annotated each cell cluster based on the 
expression of known cell-type markers and used the FindAllMarkers 
function in R to pinpoint specific marker genes of the annotated cell 
types (Supplementary Table S2). These 15 clusters were classified into 
four distinct cell types, encompassing both IS and control groups 
(Figures 2B,E; Supplementary Table S3). In addition, correlational 
analysis was conducted among the cell clusters. Using the expression 
patterns of the different clusters, we  calculated the correlations 
between them (Figure 2C). We then analyzed the abundance of cell 
types and found an increased abundance of naïve T cells and NK cells 

in IS, whereas the abundance of CD4 + T cells and macrophages 
(Mac) decreased in IS (Figure 2D; Supplementary Figure 1).

3.2 Biological functions and signaling 
pathways characteristics of CD4 + T cells

CD4 + T cells were divided into nine sub-clusters (Figure 3A), all 
of which were observed during IS. We found that neurobeachin like 1 
(NBEAL1), IGKC, and MTRNR2L8 were significantly enriched in IS, 
whereas MTRNR2L12, CRTAM, RPS26, and MTRNR2L1 were 
downregulated (Figure 3B). Moreover, the expression levels of these 
nine genes revealed high RPS26 expression (Figure  3C). In the 
enrichment analysis, oxidative phosphorylation was upregulated in the 
CD4 + T cell_CRTAM and CD4 + T cell_MTRNR2L1 subclusters. In 
contrast, pathways such as cytokine-cytokine receptor interaction, 
chemokine signaling, toll-like receptor signaling, MAPK signaling, T 
cell receptor signaling, protein processing in the endoplasmic reticulum, 
cell adhesion molecules, antigen processing and presentation, and NK 
cell-mediated cytotoxicity were downregulated. Notably, oxidative 
phosphorylation was significantly upregulated in the CD4 + T cell_
MTRNR2L1 subcluster, whereas chemokine signaling, MAPK signaling, 
and NK cell-mediated cytotoxicity were significantly downregulated 
(Figure  3D; Supplementary Table S4). The expression heatmap of 
markers of specific cell subpopulations depicted gene expression 
patterns across subclusters (Figure 3E). Within the gene regulatory 

FIGURE 1

Flowchart of this study. IS, ischemic stroke; scRNA-seq, single-cell RNA sequencing; NK, natural killer cells; Mac, macrophages; Naive T, naive T cells; 
DEG, different expression gene; KEGG, Kyoto Encyclopedia of Genes and Genomes; UMAP, Uniform manifold approximation and projection.
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network for specific markers in these subpopulations, MAX, SOX12, 
KLF12, KLF10, and HOXA1 emerged as transcriptional regulators 
(Figure 3F). In addition, RNA velocity analysis of the CD4 + T cells 
showed that there were two differentiation fate, one was that CD4 + T 
cell_MTRNR2L1 could differentiate into CD4 + T cell_MTRNR2L8, 
another was differentiated into CD4 + T cell_IGKC, and the latter 
differentiated faster than the former (Figure 3G).

3.3 Differential gene expression and 
biological functional landscape of mac

Mac were classified into eight sub-clusters (Figure 4A), all of which 
were observed in IS samples. We found that MT1E, EPAS1, and PTRF 
were highly enriched, whereas actin related protein 2/3 complex 
subunit 5 (ARPC5), GNB2L1, RPS10, and RPS17 showed reduced 

FIGURE 2

Global single-cell atlas of IS. (A) The mononuclear atlas identified 15 cell clusters. (B) IS mapping of single-cell types: CD4 + T cells, Mac, Naive T, NK. 
(C) Correlation analysis between sample groups. (D) Proportions of four cell types in patients with IS and the control group. (E) Violin plot displaying 
characteristic genes in different cell types. UMAP, Uniform Manifold Approximation, and Projection.
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FIGURE 3

Identification of CD4 + T cell clusters in IS. (A) Single-cell plot of CD4 + T cell clusters and scatter plot of subclusters (B) Mapping of marker genes in 
CD4 + T cell subsets. (C) Comparison of cell abundance between patients with IS and controls. (D) Biological pathway enrichment of CD4 + T cell 
subsets, with darker colors indicating more prominent enrichment. Count represents the number of genes enriched in a certain pathway, and the 
larger number, the more genes were enriched in that pathway. -Log10 (FDR) represents the significance of enrichment differences, with darker colors 

(Continued)
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abundance (Figure 4B). Among the eight genes, ARPC5, GNB2L1, and 
RPS17 exhibited the highest expression levels (Figure 4C). Enrichment 
analysis revealed that the chemokine signaling pathway was significantly 
downregulated in the Mac_ARPC5 and Mac_MT1E subclusters. 
Additionally, Mac_MT1E, which is involved in multiple signaling 
pathways, showed a strong positive correlation with the regulation of 
the actin cytoskeleton. Subclusters Mac_ARPC5, Mac_MT1E, and 
Mac_PTRF were positively associated with the ECM-receptor 
interaction pathway (Figure 4D; Supplemental Table S5). The expression 
heatmap of the markers of specific cell subpopulations showed the gene 
expression patterns (Figure 4E). The gene regulatory network of Mac 
subclusters identified EOMES and FOXP2 as transcriptional regulators 
(Figure  4F). Furthermore, the differentiation potential of Mac 
subclusters in IS was identified by cell trajectory analysis. It was found 
that Mac_ARPC5 developed into Mac_RPS10, and some cell 
subclusters had no obvious differentiation fate (Figure 4G).

3.4 Biological functional landscape and 
differentiation trajectory of T cells

Naïve T cells were categorized into nine subclusters (Figure 5A), 
all of which were identified in patients with IS. We found that NBEAL1 
and RPS10 were significantly enriched in IS, whereas HLA-B, TMSB4X, 
CD48, IGLC3, and IFI6 were downregulated (Figure 5B). Furthermore, 
we determined the expression levels of these nine genes and found that 
TMSB4X and HLA-B were expressed at notably higher levels 
(Figure 5C). Enrichment analysis revealed that naïve T_RPS10 was 
involved in multiple signaling pathways, showing a significant positive 
correlation with the intestinal immune network for IgA production. In 
contrast, the B cell receptor signaling pathway, Fc gamma R-mediated 
phagocytosis, Fc epsilon RI signaling pathway, lysosome activity, Toll-
like receptor signaling, NOD receptor signaling, cytokine-cytokine 
receptor interaction, and chemokine signaling pathway all exhibited 
negative regulatory effects in the naïve T_CD4, naïve T_CD48, and 
naïve T_TMSB4X subclusters (Figure 5D; Supplementary Table S6). 
The expression heatmap of specific cell subpopulation markers 
demonstrated the expression patterns of each gene (Figure 5E). In the 
gene regulatory network, GATA2, NR1I3, ZNF282, RFX3, EGR1, 
EGR2, and SOX18 emerged as key transcriptional regulators of the 
naïve T subcluster (Figure 5F). And exploring the changes in cell state 
of Naive.T subclusters in IS through RNA velocity analysis, it was 
suggested that Naive.T_NBEAL1 transformed into Naive.T_CD48, 
although the entire differentiation process was slow (Figure 5G).

3.5 Differential gene expression and 
biological functional landscape of NK cells

NK cells were grouped into seven subclusters (Figure 6A), all 
present during IS. X-C motif chemokine ligand 1 (XCL1) and CCL3L3 

were significantly enriched in IS, whereas the abundance of 
HLA-DQB1, HBA2, ZNF90, and KLRC1 was reduced (Figure 6B). 
Additionally, we determined the expression levels of these seven genes 
and found no significant differences compared to other cell subtypes 
(Figure 6C). Enrichment analysis demonstrated NK_HBA2 and NK_
HLA-DQB1 were positively correlated with NK cell-mediated 
cytotoxicity, whereas NK_XCL1 was negatively associated with 
leukocyte transendothelial migration, cell adhesion molecules, the 
intestinal immune network for IgA production, and endocytosis. A 
relationship between microglia and NK cells was proposed based on 
analysis (Figure 6D; Supplemental Table S7). The expression heatmap 
depicted the expression status of specific genes across subpopulations 
(Figure 6E). The gene regulatory networks analysis identified ELK1, 
NFATC2, ERF, NFE2L2, and JUN as transcriptional regulators of the 
NK cell subclusters (Figure  6F). Furthermore, by analyzing the 
expression status of NK cells at different time points in IS with cell 
trajectory analysis, it was indicated that NK_KLRC1 would 
differentiate into NK_HBA2 and NK_MTRNR2L10, while the speed 
of developing into NK_HBA2 was relatively fast. (Figure 6G).

3.6 Cell communication in IS

Across the four subpopulations of CD4 + T cells, Mac, naïve T 
cells, and NK cells, overlapping gene expressions were observed. 
NBEAL1 was expressed in both CD4 + T cells and naïve T cells; 
MTRNR2L10 and ZNF90 were co-expressed in CD4 + T cells and NK 
cells; and RPS10 was common to both Mac and naïve T cells. 
Therefore, we evaluated the cellular interactions among the different 
modules of these four cell subpopulations. The immune checkpoint 
module (Figure  7A) revealed interactions between CCL5, CCR1, 
CXCL12, and CXCR4. The cytokine module (Figure 7B) showed the 
bi-directional influence of the CCL5-CCR1 and CXCL12-CXCR4 
pathways on different cell types. However, the growth factor module 
(Figure  7C) highlighted the involvement of the CTGF-ITGAM 
pathway in regulating central nervous system function.

4 Discussion

This study utilized a single-cell analysis of public database to 
identify four cell types: CD4 + T cells, Mac, naïve T cells, and NK cells. 
We performed an enrichment analysis of these cell subpopulations, 
which revealed significant differences in the biological functions of 
these cell subclusters between the IS and control groups. Furthermore, 
we  explored cell developmental trajectories and intercellular 
interactions, offering an in-depth understanding of the molecular 
mechanisms underlying IS and establishing a theoretical foundation 
for its pathology. Our findings indicated that the abundance of naïve 
T cells and NK cells increased during IS, whereas CD4 + T cells and 
Mac decreased. Notably, naïve T cells may disrupt tolerance to 

indicated more significant enrichment differences. (E) Heatmap of differentially expressed genes in CD4 + T cell subsets. (F) Heatmap of motif-based 
transcription factor (TF) gene regulatory networks for CD4 + T cell subsets. (G) Mapping of CD4 + T cells and differentiation trajectories of monocytes, 
arrows represent the direction of differentiation, and the length of arrows represents the speed of differentiation. UMAP, Uniform Manifold 
Approximation and Projection.

FIGURE 3 (Continued)
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FIGURE 4

Identification of Mac clusters in IS. (A) Single-cell plot of Mac clusters and scatter plot of subclusters. (B) Mapping of marker genes in Mac subclusters. 
(C) Comparison of cell abundance between patients with IS and controls. (D) Biological pathway enrichment of Mac subpopulations, with darker 
colors indicating more prominent enrichment. Count represents the number of genes enriched in a certain pathway, and the larger number, the more 
genes were enriched in that pathway. −Log10 (FDR) represents the significance of enrichment differences, with darker colors indicated more 
significant enrichment differences. (E) Heatmap of Mac subclusters. (F) Heatmap of motif-based transcription factor (TF) gene regulatory networks of 
Mac subpopulations. (G) Mapping of Mac and differentiation trajectories for monocytes, arrows represent the direction of differentiation, and the 
length of arrows represents the speed of differentiation. UMAP, Uniform Manifold Approximation and Projection.
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FIGURE 5

Identification of naive T cell clusters in IS. (A) Single-cell plot of naive T cell clusters and scatter plot of subclusters. (B) Mapping of marker genes in 
naive T cell subclusters. (C) Comparison of cell abundance between patients with IS controls. (D) Biological pathway enrichment of naive T cell 
subclusters, with darker colors indicating more significant enrichment. Count represents the number of genes enriched in a certain pathway, and the 
larger number, the more genes were enriched in that pathway. -Log10 (FDR) represents the significance of enrichment differences, with darker colors 
indicated more significant enrichment differences. (E) Heatmap of differentially expressed genes in naive T cell subclusters. (F) Heatmap motif-based 
transcription factor (TF) gene regulatory networks for naïve T cell subclusters. (G) Mapping of naive T cells and differentiation trajectories for 
monocytes, arrows represent the direction of differentiation, and the length of arrows represents the speed of differentiation. UMAP, Uniform Manifold 
Approximation and Projection.
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FIGURE 6

Identification of NK cell clusters in IS. (A) Single-cell plot of NK cell clusters and scatter plot subclusters. (B) Mapping of marker genes in NK cell 
subclusters. (C) Comparison of cell abundance between patients with IS and controls. (D) Biological pathway enrichment of NK cell subclusters, with 
darker colors indicating significant enrichment. Count represents the number of genes enriched in a certain pathway, and the larger number, the more 
genes were enriched in that pathway. -Log10 (FDR) represents the significance of enrichment differences, with darker colors indicated more significant 
enrichment differences. (E) Heatmap of differentially expressed genes in NK cell subclusters. (F) Heatmap of motif-based transcription factor (TF) gene 
regulatory networks for NK cell subclusters. (G) Mapping of NK cells and differentiation trajectories for monocytes, arrows represent the direction of 
differentiation, and the length of arrows represents the speed of differentiation. UMAP, Uniform Manifold Approximation and Projection.
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autoantigens in atherosclerosis, potentially influencing immune 
mechanisms and offering a preventive avenue for stroke (Khan et al., 
2024). NK cells were observed to be more highly expressed in stable 
plaques than in unstable plaques (Wang et al., 2022).

Cerebral infarction can manifest in several types, with 
atherosclerosis being the most common cause of large-artery 
atherosclerotic infarctions. Unstable plaques associated with 
atherosclerosis are significant contributors to cerebral infarction, 
where NK cells activate autoimmune defense mechanisms during 
IS. CD4 + T cells, classified as T-helper cells, play diverse roles in 
lymphocyte-mediated immune responses. Studies have shown that 
brain regulatory T cells inhibit astrocyte proliferation and enhance 
neurological recovery during stroke (Yuan et al., 2023; Ito et al., 2019). 
In this study, we observed a reduction in CD4 + T cells during cerebral 
infarction, aligning with the results of previous studies. The phagocytic 
activity of macrophages contributes to cerebral infarction by causing 
brain damage and disrupting neurological function. Studies have 
shown that suppressing macrophage phagocytosis during the IS can 
improve neurobehavioral outcomes and reduce brain damage (Shi 
et al., 2021). The levels of macrophages vary in different stages of IS, 
in the early stages, macrophage has the same upward trend as well as 
both neutrophils and microglia, while they begin to decrease around 
7 days. Interestingly, the number of Mac in this study decreased, 
which may be  related to the inclusion criteria and sampling 
(Fernandez et al., 2019; Zhang et al., 2022). This also indicates that it 
is pivotal to treat acute IS. Collectively, these results highlight the 
critical role of these cell types in the pathogenesis of IS.

Our research further uncovered diverse biological functions of 
these cell subclusters in blood samples. CD4 + T cell subpopulations 
exhibited distinct enrichment patterns: CD4 + T cell_MTRNR2L1 was 
significantly enriched in oxidative phosphorylation, cell adhesion 
molecules, and antigen processing and presentation pathways, whereas 
CD4 + T cell_ZNF90 was predominantly associated with the chemokine 
signaling, Toll-like receptor, and MAPK signaling pathways. Previous 
studies have confirmed the involvement of oxidative phosphorylation 
in various neurodegenerative diseases, including cerebral infarction, 
Alzheimer’s, Huntington’s, and Parkinson’s diseases (Cabral-Costa and 

Kowaltowski, 2020). Mitochondrial dysfunction and increased oxidative 
stress can cause an insufficient energy supply, hypoxia, ischemia, and 
abnormal reperfusion responses, thereby contributing to disease 
pathogenesis (Ham and Raju, 2017). Specifically, oxidative 
phosphorylation exacerbates cerebral infarction (Anderson et al., 2013). 
Chemokine expression, distribution, and function are primarily 
associated with neuropathic pain. Chemokine signaling-mediated 
neuroinflammation has been linked to neuropathic pain and may also 
contribute to neurological deficits such as paresthesia during ischemic 
events (Zhang et al., 2017). Similarly, the MAPK signaling pathway 
accelerates inflammatory responses, oxidative stress, neuronal damage, 
and cognitive impairment during ischemic events (Tian et al., 2020; 
Xiang et al., 2020). These results suggested that with the increasing 
number of CD4 + T cell_MTRNR2L1 or CD4 + T cell_ZNF90, IS may 
get worse.

Interestingly, there were two differentiation trajectories in the 
CD4 + T cell_MTRNR2L1 subpopulation. Previous studies suggest that 
MTRNR2L1 protects against cerebral ischemia/reperfusion (I/R) injury 
by inhibiting ERK activation (Xu et al., 2006; Zhu et al., 2022). And the 
methylation of the MTRNR2L8 promoter is related to stroke (Shen 
et al., 2019). Conversely, there are currently no studies about IGKC with 
stroke, which deserve further exploration. Consequently, it is speculated 
that CD4 + T cell_MTRNR2L1 regulates oxidative phosphorylation 
and causes insufficient energy supply may be related to MTRNR2L8 
methylation, thereby affecting the progression of acute IS attacks.

In Mac, the Mac_MT1E subpopulation was enriched in pathways 
regulating the actin cytoskeleton, chemokine signaling, lysosomes, and 
vascular smooth muscle contraction. In naïve T cells, naïve T_CD4 was 
significantly enriched in lysosomal pathways, the intestinal immune 
network for IgA production, and antigen processing and presentation 
pathways. Both Mac_MT1E and naïve T_CD4 were significantly 
enriched in the lysosomal signaling pathway as negative regulators. 
Lysosomes play a key role in cellular homeostasis, development, and 
aging by mediating autophagy, endocytosis, phagocytosis, and 
macrocytosis (Yang and Wang, 2021). Neuronal autophagy during 
stroke, achieved through autophagosome-lysosome degradation, 
protects against metabolic disorders, ischemia/reperfusion, energy 

FIGURE 7

Cellular communication networks in IS subclusters. (A) Immune checkpoint modules involved in intracellular and intercellular communication. 
(B) Cytokine modules involved in intracellular and intercellular communication. (C) Growth factor modules involved in intracellular and intercellular 
communication.
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deficiency, neurotoxins, trauma, and inflammation (Ajoolabady et al., 
2021; Chen et al., 2020). Studies have shown that impaired autophagy 
during cerebral ischemia can disrupt lysosomal function, altering Mac 
cytokine secretion, damaging synaptic ultrastructure, and worsening 
neuronal dysfunction and neurodegeneration (Zhang Z. et al., 2021; 
Zhang X. et  al., 2021). Therefore, protecting lysosomal function 
emerges as a potential strategy to prevent stroke.

Studies have also shown that in mouse models, the upregulation 
of MT-1 and MT-2 expression levels can reduce neuronal neurotoxicity, 
thereby playing a neuroprotective role in mice models with focal 
cerebral ischemia (Liu et al., 2020). Conversely, increased CD4 + and 
CD8 + T lymphocytes can worsen neurological dysfunction in elderly 
mice post-stroke (Fernandez et  al., 2019; Levard et  al., 2024). 
Nevertheless, when we predicted the developmental trajectories of 
Mac and Naive. T cells, we found that the differentiation trajectories 
of Mac_MT1E and Naive.T_CD4 were not obvious. We considered 
that this may be related to differences in gene expression in the samples.

In NK cells, our research found that endocytosis was one of the 
pathways significantly enriched in the NK_XCL1 subgroup. 
Endocytosis is a widely observed cellular process. Numerous studies 
have shown that microglial phagocytosis plays an important role in IS 
(Jia et al., 2021). During acute cerebral ischemia, microglia phagocytose 
and clear neurons, ischemic necrotic cell fragments, endothelial cells, 
and leukocytes. Nonetheless, excessive phagocytosis can trigger 
secondary inflammatory responses or result in the excessive loss of 
neurons, aggravating neurological deficits (Candelario-Jalil et al., 2022; 
Planas, 2024; Chen et  al., 2022). Some studies have found that 
activating negative regulators of NK cells can reduce NK cell 
dysfunction and protect the brain’s immune defense, which is crucial 
for preventing post-stroke infections (Feng et  al., 2021). Dynamic 
changes in NK cells during stroke manifest as a reduced number and 
activity in the peripheral blood and increased infiltration in brain tissue 
(Qi and Liu, 2023). NK cells damage neurons through immune defense 
mechanisms, causing barrier dysfunction through cytotoxicity and 
inflammatory activity, thereby exacerbating stroke outcomes (Qi and 
Liu, 2023; Liu et al., 2017). Our study observed that the number of NK 
cells in the atherosclerotic plaque tissue of the internal carotid artery 
in cerebral infarction increased, and endocytosis was significantly 
enriched in the NK_XCL1 subpopulation. We speculate that NK cells 
may also play an endocytic role in the immune defense process, 
accelerating neuronal cell death or dissolution and aggravating cerebral 
infarction. However, there have been no relevant reports thus far, and 
further investigation is required. Moreover, in the cell differentiation 
trajectory, the two cell differentiation trajectories of NK cells subclusters 
we discovered have not been reported so far, and NK_XCL1 is also 
present in them, it is novel perspective for us to explore in the future.

Additionally, our study identified significantly dysregulated genes 
in cell subsets, revealing that NBEAL1 and XCL1 were significantly 
upregulated, whereas ARPC5 was significantly downregulated. Previous 
studies have shown that NBEAL1 regulates low-density lipoprotein 
(LDL) uptake. Low expression of NBEAL1 disrupts LDL levels, 
promoting atherosclerosis and inducing cerebral infarction (Bindesbøll 
et al., 2020). This indicated that NBEAL1 has a protective effect on IS. In 
a mouse model experiment, the upregulated expression of ARPC5 was 
found to have a protective effect on neuronal cells during cerebral 
infarction, potentially through endocytosis mechanisms (Wan et al., 
2021). The role of XCL1 in stroke remains unreported and requires 
further investigation. These genes may serve as potential biomarkers for 

the early diagnosis of cerebral infarction. We  evaluated cell 
communication interactions and identified key immune mechanisms. 
In the immune checkpoint module, LGALS9-HAVCR2 enhanced 
macrophage-mediated immune checkpoint activation and T cell 
exhaustion during disease progression (Yan et  al., 2024), whereas 
CD40LG-ITGB2 activated inflammation-related pathways associated 
with internal carotid artery atherosclerosis and vascular elasticity 
(Schnabel et al., 2008; Shami et al., 2021). In the cytokine module, 
CCL5-CCR1 mediated inflammatory signaling, regulating stromal cells 
to promote tissue regeneration and repair nerve cells damaged by 
cerebral infarction (Kauts et al., 2013; Julián-Villaverde et al., 2022). 
CXCL12-CXCR4 mediates protective NK cell activity in the pathological 
process of ischemic brain injury, contributing to stroke recovery (Wang 
S. et  al., 2023). The growth factor module revealed CTGF-ITGAM 
transduction. CTGF is involved in cerebral infarction angiogenesis, and 
inhibition of this pathway can improve recovery (George et al., 2018). 
The results of the cell communication revealed the inflammatory 
response in cerebral infarction and the clearance and protection of 
immune cells important for cerebral infarction recovery.

From our analysis, we  intuitively demonstrated the single-cell 
landscape of immune cells in IS. In the cell population, XCL1, one of the 
different expression genes (DEGs), was identified for the first time, which 
may serve as a novel potential candidate gene for the diagnosis and 
treatment of IS. Moreover, NBEAL1 and ARPC5 are both candidate 
genes for protective effects, and enrichment analysis has showed the 
biological functions of cell subpopulations. In terms of signaling 
pathways, they were mostly enriched in negative regulatory signaling 
pathways such as oxidative phosphorylation, lysosomes, and endocytosis, 
which are meaningful for targeted therapy of IS. Additionally, our RNA 
velocity analysis simulated the trajectory of cell differentiation and 
predicted their fate, which may provide a new target for IS diagnosis and 
treatment. Last but not least, we also found that there was currently a 
mismatch between TFs and binding motifs, which means there are still 
many molecular mechanisms worth exploring and uncovering, as 
binding motif analysis is worthy of further study. However, this study has 
some limitations. It exclusively analyzed carotid artery atherosclerotic 
plaques from male participants without exploring other tissue sources, 
such as brain tissue. Therefore, future research should incorporate 
diverse tissue samples for confirmation and validation. Additionally, as 
this study relied primarily on bioinformatics analysis, experimental 
validation through cell and animal studies is imperative.

5 Conclusion

This study identified the biological functions and characteristics 
of the four cell subtypes in IS using single-cell analysis. The 
abundance of naïve T and NK cells increased in stroke patients, 
whereas that of CD4 + T cells and Mac decreased. Enrichment 
analysis revealed that cell subtypes enriched in oxidative 
phosphorylation, lysosome, and endocytosis signaling pathways, 
which were significant differences in the differentiation trajectories 
of cell subpopulations. Through differential gene expression analysis, 
three significantly differentially expressed genes (NBEAL1, XCL1, 
and ARPC5) were identified, and the transcription regulatory factors 
affecting the different cell subgroups were preliminarily identified. 
This could become the starting point for future diagnosis and 
treatment of cerebral infarction.
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Glossary

ARPC5 - actin related protein 2/3 complex subunit 5

BP - biological processes

CC - cellular component

DEG - different expression gene

FDR - false discovery rate

GEO - Gene Expression Omnibus

GLM - generalized linear model

GSEA - Gene set enrichment analysis

IS - ischemic stroke

LDL - low-density lipoprotein

KEGG - Kyoto Encyclopedia of Genes and Genomes

MF - molecular function

Mac - macrophages

NK - natural killer

NGS - next generation sequencing

NBEAL1 - neurobeachin like 1

scRNA-seq - single-cell RNA sequencing

SCENIC - Single-cell regulatory network inference and clustering

TFs - transcription factors

UMAP - Uniform manifold approximation and projection

XCL1 - X-C motif chemokine ligand 1
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