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Introduction: Inadequate primary care infrastructure and training in China and 
misconceptions about aging lead to high mis−/under-diagnoses and serious 
time delays for dementia patients, imposing significant burdens on family 
members and medical carers.

Main body: A flowchart integrating rural and urban areas of China dementia 
care pathway is proposed, especially spotting the obstacles of mis/under-
diagnoses and time delays that can be alleviated by data-driven computational 
strategies. Artificial intelligence (AI) and machine learning models built on 
dementia data are succinctly reviewed in terms of the roadmap of dementia 
care from home, community to hospital settings. Challenges and corresponding 
recommendations to clinical transformation are then reported from the 
viewpoint of diverse dementia data integrity and accessibility, as well as models’ 
interpretability, reliability, and transparency.

Discussion: Dementia cohort study along with developing a center-crossed 
dementia data platform in China should be  strongly encouraged, also data 
should be  publicly accessible where appropriate. Only be  doing so can the 
challenges be overcome and can AI-enabled dementia research be enhanced, 
leading to an optimized pathway of dementia care in China. Future policy-
guided cooperation between researchers and multi-stakeholders are urgently 
called for dementia 4E (early-screening, early-assessment, early-diagnosis, and 
early-intervention).
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1 Introduction

Nowadays 16.99 million people in China are living with dementia 
[63–70% diagnosed with Alzheimer’s disease (AD)] (Wang et  al., 
2024). Without disease-modifying Alzheimer’s therapies, early 
diagnosis is critical to slowing disease progression and enhancing 
quality of life (Breijyeh and Karaman, 2020; Liss et  al., 2021). In 
response, the National Health Commission of China, together with 
various medical organizations, has established a diagnostic process 
tailored to the Chinese population (Tian et al., 2019, 2021; National 
Center for Neurological Disorders et al., 2024) and is promoting the 
development of cognitive disorder treatment centers in township 
institutions (National Center for Neurological Disorders et al., 2024).

However, many patients delay seeking medical care due to 
misconceptions about aging, dementia-related stigma, financial and/
or distant issues, and inadequate primary healthcare, especially in 
rural areas of China, resulting in long waiting time of 24 to 146 months 
and significant cognitive decline (Zhao et al., 2016; Mattke et al., 2023; 
Olwage, 2024). Additionally, China lacks dementia-related specialists 
and hospital memory clinics (Wu and Lam, 2016). Only 24.7% general 
practitioners (GPs) received relevant training and about 60% reported 
feeling confident in providing diagnostic advice on dementia, leading 
to a high misdiagnosis rate (Li et  al., 2021). Therefore, this study 
integrates expert consensus and prevention guidelines (Tian et al., 

2019, 2021; Zhang et al., 2020; Huang et al., 2024; National Center for 
Neurological Disorders et  al., 2024) into a comprehensive China 
dementia care pathway (Figure 1), highlighting two critical barriers: 
mis/under-diagnoses and time delays (bolds in Figure 1).

Specifically, for those patients with subjective cognitive decline 
(SCD) or mild cognitive impairment (MCI), in urban areas, the initial 
consultation usually occurs at a community primary hospital 
(indicated in the left black-dotted box in Figure 1). While in rural 
areas, patients may visit a local health center (if there is) or consult 
traditional Chinese medical practitioners (Quail et al., 2020) (see the 
right black-dotted box). If suspicions persist, they may be referred to 
secondary or specialized hospitals. Whereas some patients skip 
primary care and seek comprehensive evaluations at higher-level 
hospitals directly, including medical history, physical exams, 
neuropsychological assessments, blood tests, computed tomography 
or magnetic resonance imaging (MRI) scans, positron emission 
tomography (PET) scans or cerebrospinal fluid (CSF) analysis. With 
the completion of all tests, the diagnosis and corresponding care plan 
will be made (bottom-right pink-dotted box).

In this pathway, both objective and subjective factors contribute 
to mis/under-diagnoses and time delays. Advancements in computing 
science, particularly data-driven methods, can help reduce subjective 
errors while improving diagnostic accuracy and efficiency 
(Muhammad et al., 2021; Rodrigues et al., 2023). Therefore, these 

FIGURE 1

Flowchart of China dementia care pathway. Bolds: potential mis/under-diagnosis and time delay that could be alleviated by data-driven computational 
strategy. Flowchart proposed in the basis of studies in Tian et al. (2019, 2021), Zhang et al. (2020), Dementia and Cognitive Impairment Group of 
Chinese Society of Neurology, Cognitive Disorders Committee of Neurology Branch of Chinese Medical Doctor Association (2023), Huang et al. 
(2024), and National Center for Neurological Disorders et al. (2024). Blue rounded box: pathway starting/ending. Green box: dementia screening/
assessing/examining. Orange diamond: if-then-else condition. GP, general practitioner; SCD, subjective cognitive decline; MCI, mild cognitive 
impairment.
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approaches hold promise in addressing the existing challenges in 
China dementia care pathway (Devenney et al., 2024).

2 From home to hospital: digital 
health care

2.1 Scenarios in home and community

Digital neuropsychological testing can reduce errors from manual 
record-keeping and evaluator biases, improving diagnostic precision 
and streamlining the process, while also enabling better data storage 
and remote management (Dementia and Cognitive Impairment 
Group of Chinese Society of Neurology, Cognitive Disorders 
Committee of Neurology Branch of Chinese Medical Doctor 
Association, 2023). Some existing digital strategies are the computer 
assessment of MCI (CAMCI-Research, 2016), Cambridge 
neuropsychological test automated battery paired associates learning 
(CANTAB Assessments, 2012), and CogState digital cognitive 
assessment (CogState, 2013) etc., where CogState brief battery is a 
highly automated and standardized tool, lasting only 15 min and 
assessing multiple cognitive functions (Staffaroni et al., 2020). These 
tools support less experienced GPs in primary care, reducing 
misdiagnosis rates.

Each neuropsychological assessment focuses on specific areas. 
Previous research showed that some assessments performed poorly in 
certain cognitive domains, whereas multiple assessments together 
cover a broader range (Yin et al., 2015). However, comprehensive 
neuropsychological assessment is time-consuming, prompting 
computational studies into the most effective assessment combinations 
for diagnosing MCI and AD (Hemmy et  al., 2020). For instance, 
Bucholc et al. (2019) used support vector machine (SVM) to assess 
dementia severity, achieving 83% accuracy by combining mini-mental 
state examination (MMSE), Montreal cognitive assessment (MoCA), 
functional activities questionnaire (FAQ), and AD assessment scale. 
Similarly, McCombe et al. (2022) employed random forest using nine 
selected sub-items from FAQ, MMSE, and the global deterioration 
scale, achieving an area under the receiver operating characteristic 
curve (AUC) of 0.865 for classifying cognitive normal (CN), MCI, and 
AD. These methods improve diagnostic accuracy even using fewer 
scales, demonstrating the potential of data-driven computational 
approaches to assist GPs in reducing misdiagnoses and shortening 
clinical management times.

Moreover, emerging data-driven techniques have shown great 
potential in the early detection, caregiver support and personalized 
management of AD, with the possibility of being widely adopted in 
home and community scenarios. For instance, wearable devices, as a 
non-invasive technology, collect real-time physical data from patients, 
e.g., retinal imaging (Wang et al., 2021; Gaire et al., 2024), language 
(Lindsay et al., 2021), hearing (Bucholc et al., 2021), and gait (Duan 
et al., 2023) etc. These devices, combined with artificial intelligence 
(AI) techniques, analyze patient’s physical condition, lighten care 
burdens, and aid doctors in making well-informed decisions remotely 
(Qi et al., 2022; Salehi et al., 2022; Vrahatis et al., 2023; Borna et al., 
2024; Chen et al., 2024). A study used gait data collected via seven 
wearable devices served for 77 CN and 68 MCI subjects, with 
advanced machine learning (ML) models achieving classification 
accuracy of 0.73 in dual-task walking and 0.66 in normal walking 

(Jeon et al., 2023). In addition, other smart technologies can assist 
clinicians and patients through interactive devices and distributed 
systems, such as leveraging sensors in homes or care facilities to collect 
patient and environmental data and providing feedback to patients. 
For instance, Munteanu et al. (2022) designed an intelligent assistance 
system that uses AI to recognize human activities in videos. This 
system can detect when AD patients eat or drink and remind them 
with a voice message if they forget or overconsume. It also enables 
caregivers to remotely supervise and manage the patient’s nutrition 
plan. Integrating these technologies into routine dementia 
management can improve care efficiency and enhance quality of 
patients’ life (Gillani and Arslan, 2021). Therefore, data-driven 
computational approaches are efficient for early dementia detection 
and personalized care, optimizing the dementia care pathway.

2.2 Scenario in hospital setting

Patients with referrals can further undergo comprehensive 
examinations at a hospital to determine the dementia type and 
corresponding treatment planning. Specifically, neuroimaging 
examinations can identify changes in the brain. Currently, structural 
MRI (sMRI) is the most important imaging detection method of 
prodromal AD (pAD), as it provides valuable imaging markers 
(Dementia and Cognitive Impairment Group of Chinese Society of 
Neurology, Cognitive Disorders Committee of Neurology Branch of 
Chinese Medical Doctor Association, 2023). A systematic review 
indicates that, for identifying MCI, the total hippocampal volume 
contributes a sensitivity of 0.73 and specificity of 0.71; medial temporal 
lobe atrophy provides a sensitivity of 0.64 and specificity of 0.65; and 
lateral ventricular volume presents a sensitivity of 0.57 and specificity 
of 0.60 (Lombardi et  al., 2020). Nowadays, majority of imaging 
analyses utilize various deep learning (DL) methods to capture brain 
structural and pathological changes in sMRI images, eventually 
improving the accuracy of dementia diagnosis and prognosis 
(Yamanakkanavar et al., 2020; Frizzell et al., 2022; Borchert et al., 2023; 
Xu et al., 2023). Crucially, these decision-making support techniques 
significantly reduce errors caused by clinical fatigue or negligence in 
practice (Zhou et al., 2024).

Unlike MRI, a PET scan is more expensive and invasive, but it 
reveals molecular metabolic activity and brain function, making it a 
valuable tool for diagnosing and assessing neurological disorders like 
dementia (Borchert et al., 2023; Ricci et al., 2020; Bao et al., 2021). It 
turns out that conventional ML and DL has been effectively utilized 
for PET image analytics to detect lesion size, morphology, and changes 
over time and further to improve the accuracy of early-stage dementia 
diagnosis and prognosis (Tang et  al., 2024). For instance, SVM 
achieved >85% accuracy in detecting AD-specific hypometabolic 
patterns with fluorodeoxyglucose (FDG)-PET and outperforming 
sMRI (Ferreira et al., 2017; De Carli et al., 2019). It also performed 
promising in distinguishing AD vs. CN (>86% accuracy) and MCI vs. 
CN (>78.8% accuracy) as well as predicting MCI-to-AD conversions 
within 12–60 months (72–80% accuracy), all based on FDG-PET 
images (Pan et al., 2019; Li et al., 2019; Shen et al., 2019; Teng et al., 
2020). Similarly, applying SVM to amyloid-PET data achieved >85% 
accuracy for predicting MCI-to-AD conversions and diagnosing AD 
(Nozadi and Kadoury, 2018; Yang et  al., 2020). In terms of DL, 
convolutional neural networks have presented a range of accuracy of 
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75–100% on FDG-and amyloid-PET images, depending on the 
variables of data size, imaging modality, and image preprocessing 
(Ding et al., 2019; Huang et al., 2019; Son et al., 2020). These findings 
highlight the potential of ML to enhance PET imaging analytics for 
AD diagnosis and prognosis (Borchert et al., 2023) in hospital setting. 
In addition, leveraging the combination of PET and MRI images 
enables more comprehensive assessments. More studies regarding DL 
on PET/MRI focus on image segmentation and reconstruction, 
pathological features visualization, thereby facilitating dementia 
detection and prediction (Dyrba et al., 2021; Zhao et al., 2023; Zhou 
et al., 2024).

Another rich source of biomarkers for AD comes from CSF because 
it reflects changes in the central nervous system caused by neuronal 
metabolic disturbances (McGrowder et al., 2021; Bouwman et al., 2022; 
Ardanaz et al., 2022). CSF Aβ protein concentration has shown strong 
diagnostic performance, with sensitivity and specificity of 0.86 and 0.80 
for distinguishing AD from CN, and 0.79 and 0.61 for differentiating 
AD from non-AD dementias. Other CSF biomarkers, such as T-tau and 
P-tau181, have also demonstrated high diagnostic efficacy (Tian et al., 
2019). Recent studies have pointed out that the clinically diagnosed AD 
group may include patients with other types of dementia, while the 
control group often contains individuals with other neurological 
disorders, complicating the definition of cut-off values between the 
groups (Bellomo et  al., 2021). To address this, Bellomo et  al. used 
unsupervised ML methods to calculate unbiased cut-off values based 
on CSF biomarker distribution, reducing inter-laboratory variability 
and improving biochemical phenotyping. For instance, a study utilizing 
proximity extension-based assays to analyze CSF from dementia 
patients identified dopamine decarboxylase (DDC) as the most 
significantly dysregulated protein. DDC effectively classified Lewy body 
dementia (LBD) vs. CN with an AUC of 0.91, and LBD vs. AD with an 
AUC of 0.81. The study further established a biomarker panel 
comprising seven CSF proteins via the constructed classification model, 
achieving an improved AUC performance of 0.93 for differentiating 
LBD vs. AD (Del Campo et al., 2023). Subsequently, to determine the 
optimal combination of CSF biomarkers for predicting disease 
progression in AD and other neurodegeneration, a study analyzed data 
from 1,983 participants across three cohorts. Statistical analysis revealed 
that P-tau/Aβ42 is sufficient for predicting progression in AD with AUC 
performance greater than 0.87 (Salvadó et al., 2023). As such, data-
driven computational strategies have made significant contributions in 
precise patient stratification, the discovery of novel biomarkers, and the 
identification of effective marker combinations that enhance clinical 
diagnosis, thereby further reducing dementia misdiagnosis rates.

Researchers are also exploring peripheral biomarkers, such as 
blood tests, which offer a less invasive and more accessible method for 
detecting pAD, with high sensitivity and specificity (Dementia and 
Cognitive Impairment Group of Chinese Society of Neurology, 
Cognitive Disorders Committee of Neurology Branch of Chinese 
Medical Doctor Association, 2023). The measurement of plasma Aβ 
protein concentrations demonstrates a combined sensitivity and 
specificity of 0.88 and 0.90, respectively, in distinguishing AD and 
MCI from CN. Similarly, plasma tau concentrations show a combined 
sensitivity and specificity of 0.96 and 0.93, respectively, for the same 
differentiation. These findings highlight plasma biomarkers as a 
promising option for AD diagnosis (Tian et al., 2021). A recent study 
using a Markov model to predict the dementia care burden in China 
from 2024 to 2043 indicated that using blood tests could significantly 

shorten dementia care pathway, typically in reducing patient waiting 
time for diagnosis (Mattke et al., 2023). Importantly, AI techniques 
can be utilized in analyzing high-dimensional and complex blood data 
(Lee and Lee, 2020; Palmqvist et al., 2024). For instance, an exciting 
research based on ML had identified a small set of blood transcripts 
capable of effectively distinguishing CN from those with 
neurodegenerative diseases, including AD (Huseby et al., 2022).

In terms of genetic biomarkers, it has already been reported that 
apolipoprotein E (ApoE) ε4 allele is associated with higher AD risk 
than the more common ApoE ε3 allele (Neu et al., 2017; Narasimhan 
et  al., 2024), highlighting the importance of genetic testing in 
dementia assessment (Koriath et  al., 2021). However, challenges 
remain in translating human genetic findings [such as genome-wide 
association studies (GWAS)] into the pathobiology and therapeutic 
discoveries for AD. To address this, a DL framework was proposed to 
identify disease-associated genes (Xu et al., 2022). This framework 
identified 156 AD-related genes, enriched in druggable molecules, and 
discovered four drugs linked to reduced AD incidence. These 
breakthroughs emphasize the potential of DL in both understanding 
AD pathobiology and in identifying genetic markers for early disease 
prediction and prevention. Given AD’s polygenic nature, polygenic 
risk scores (PRS) assess genetic susceptibility. Zhou et al. (2023) used 
DL to model genetic data more comprehensively, showing clear 
advantages over traditional PRS and least absolute shrinkage and 
selection operator models in identifying genetic risk and uncovering 
biological mechanisms. In addition, the integration of computational 
models into genetic evaluation enables the early identification of 
individuals at higher risk for AD, allowing for targeted prevention 
strategies and more timely interventions. In summary, computational 
models excel at processing large-scale datasets from genomics and 
proteomics, not only enabling the discovery of novel biomarkers but 
also predicting their associations with disease onset and progression. 
By detecting complex data patterns, these models may uncover 
insights overlooked by human experts, thereby enhancing screening 
efficiency for dementia patients and high-risk populations and 
consequently speeding dementia care pathway (Javaid et al., 2022).

In clinical settings, single-modal data typically provides only a 
partial view of the disease and cannot comprehensively reflect its full 
scope (Elazab et  al., 2024). Multi-modal data and corresponding 
techniques can capture various aspects of the disease and biomarkers 
related to AD pathology, leading to more accurate and personalized 
diagnostic results (Muhammad et al., 2021). Recently, a considerable 
AI-model built on multimodal data over diverse cohorts has been 
proposed to differentiate dementia etiologies (Xue et  al., 2024), 
achieving a microaveraged AUC of 0.94 for classifying CN, MCI, and 
dementia. In a random subset of 100 cases, the AUC of neurologist 
assessments increased by 26.25% with AI assistance compared to 
assessments made by neurologists alone, underscoring the significant 
enhancement that AI provides in supporting expert evaluations for 
dementia diagnosis. In addition, Rahim et al. (2024) used multimodal 
data to predict patient outcomes 3 years later with a DL model, 
achieving 88% generalization accuracy and an AUC of 0.88. This kind 
of multimodal data study of AD progression can provide information 
support for clinicians to intervene in treatment. Hospitals in China are 
actively engaging in multi-sectional cohort studies to collect, 
consolidate and integrate multimodal data.

Additionally, some studies on AD care recommendations use 
additional care assessments, such as those related to daily living care 
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problems, behavioral and psychological symptoms, and safety risks. 
For example, a study using a knowledge graph to develop a care 
recommendation system achieved 98.92% accuracy, providing 
decision support for personalized AD patient care and improving the 
care process (Sun et al., 2024).

3 Challenges and recommendations

3.1 Dilemma in clinical data

The complexity of dementia pathology challenges the acquirement 
of large-scale, clean data across multi-centers, thus hindering the 
translation of computational strategies to clinical settings (Afzal et al., 
2019; Bron et al., 2022). Consequently, most studies rely on openly-
sourced datasets like Alzheimer’s Disease Neuroimaging Initiative 
(Mueller et al., 2005), Australian Imaging Biomarkers & Lifestyle (Ellis 
et al., 2009), National Alzheimer’s Coordinating Center (Beekly et al., 
2007), and UK BioBank (Ollier et al., 2005). Although ClinicalTrials.
gov reports Chinese dementia cohort recruitment, patient data are 
still inaccessible.

Implementing data-driven strategies in China requires 
government-supported collaboration between medical and research 
institutions to build a multi-centered big-data platform integrating 
massive clinical records (National Center for Neurological Disorders 
et al., 2024). Poor data interoperability often brings redundant testing 
after referrals. Therefore, standardized data structuring and quality 
evaluation processes are essential to ensure data integrity and 
usability (Fan and Fu, 2023), enabling computational models to 
address clinical challenges like mis/under-diagnoses, drug efficacy, 
and health economics, ultimately providing more accurate and 
timely diagnoses for dementia patients (Xian et  al., 2023; Gao 
et al., 2021).

3.2 Computational model reliability

Many computational models emphasize improving accuracy to 
support clinicians in making diagnostic decision, but the “black-box” 
issue (lack of interpretability) hinders trust from patients and doctors 
(Bron et al., 2022; Mirzaei and Adeli, 2022; Wang et al., 2023; Chen 
and Cheng, 2024). Other challenges include terminology 
inconsistencies, preprocessing methods variety, unclear evaluation 
criteria, and model optimization complexity (Bron et al., 2022). As a 
result, varying implementation details across studies hinder 
practical validation.

Recommendations include traditional ML algorithms (e.g., 
Bayesian networking, distance-based modeling), offering inherent 
interpretability but require extensive manual feature engineering 
(Ding et  al., 2018; Yang et  al., 2024). In contrast, post-hoc 
interpretable methods like class activation mapping (CAM) and 
Grad-CAM enhance transparency for complex models such as 
neural networks (Zhou et al., 2016; Selvaraju et al., 2017). Moreover, 
occlusion methods improve trust in AI by identifying key features 
through output image comparison (Kwak et al., 2022a,b). Crucially, 
before large-scale deployment of data-driven models, clinical 
requirements elicitation, policy guidance, and extensive validation 
are the foundation to ensure clinical relevance, reliability, 
and transparency.

4 Discussion

Clear evidence exists for using data-driven computational strategy 
to speed up clinical administration time and reduce mis/under-
diagnosis rate, i.e., optimize China dementia care pathway. Therefore, 
dementia cohort study along with developing a center-crossed 
dementia platform in China should be  strongly encouraged. Data 
should also be publicly accessible where appropriate. Only be doing so 
can the challenges be overcome and can AI-enabled dementia research 
be  enhanced, thereby optimizing China dementia care pathway. 
Clinical transformation urgently requests substantive cooperation of 
multi-stakeholders, including computational researchers, medical 
professionals, healthcare specialists, policymakers, and industrial 
developers etc., across regions.
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Glossary

AD - Alzheimer’s disease

AI - Artificial intelligence

ApoE - Apolipoprotein E

AUC - Area under the receiver operating characteristic curve

CAM - Class activation mapping

CN - Cognitive normal

CSF - Cerebrospinal fluid

DDC - Dopamine decarboxylase

DL - Deep learning

FAQ - Functional activities questionnaire

FDG-PET - Fluorodeoxyglucose positron emission tomography

GP - General practitioner

LBD - Lewy body dementia

MCI - Mild cognitive impairment

ML - Machine learning

MMSE - Mini-mental state examination

MoCA - Montreal cognitive assessment

MRI - Magnetic resonance imaging

NCND - National center for neurological disorders

pAD - Prodromal AD

PRS - Polygenic risk scores

SCD - Subjective cognitive decline

sMRI - Structural magnetic resonance imaging

SVM - Support vector machine
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