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Introduction: The neural dynamics underlying cognition and behavior change

greatly during the lifespan of brain development and aging. EEG is a promising

modality due to its high temporal resolution in capturing neural oscillations.

Precise prediction of brain age (BA) based on EEG is crucial to screening high-risk

individuals from large cohorts. However, the lifespan representation of the EEG

oscillatory features (OSFs) is largely unclear, limiting practical BA applications in

clinical scenarios. This study aims to build an interpretable BA prediction model

through prior knowledge and sparse group lasso.

Methods: Based on the multinational cross-spectral (MNCS) dataset that covers

5–97 years, (1) we extracted four groups of OSFs, such as aperiodic parameters,

periodic parameters, power-ratio, and relative power; (2) the OSFs trajectories

evolving with age and the OSF importance topographies were mapped using

the generalized additive model for location, scale and shape (GAMLSS) and

Pearson’s correlation coe�cient (PCC); (3) the inter-oscillatory dependency

coe�cients (ODCs) were extracted by the sparse group lasso; (4) the fusion of

OSFs and ODCs was flattened and fed into a three-layer fully connected neural

network (FCNN); the FCNN interpretability was analyzed by Layerwise Relevance

Propagation and 10-fold cross-validation.

Results: The results showed that the FCNN model that incorporated ODC

significantly improved the prediction of BA (MAE = 2.95 years, R2 = 0.86)

compared to the use of only OSF (MAE = 3.44 years, R2 = 0.84).

Discussion: In general, this study proposed a BA prediction model named

NEOBA by systematically employing OSFs and highlighting the interpretability

of the model, which holds broad promise by integrating normative modeling for

precise individual stratification.
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1 Introduction

The brain aging process is a multidimensional phenomenon that involves the omics

change at the molecular level and structural and functional changes at the neuronal level

(Rutledge et al., 2022; Bethlehem et al., 2022). Age-dependent brain signature trajectories

have been the research interests of neuroscientists for decades (Giedd et al., 1999; Jernigan

et al., 2001). Magnetic resonance imaging (MRI) has been widely used to model brain age

Frontiers in AgingNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2025.1559067
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2025.1559067&domain=pdf&date_stamp=2025-07-22
mailto:shu@ahu.edu.cn
https://doi.org/10.3389/fnagi.2025.1559067
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1559067/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnagi.2025.1559067

(BA) prediction based on anatomical changes (Franke et al.,

2010; Vergun et al., 2013; Cole and Franke, 2017; Amoroso

et al., 2019; Mouches et al., 2022; Poloni and Ferrari, 2022).

The application of MRI-based BA prediction is limited by the

high cost of the MRI scanner, especially in low-middle-income

countries and underdeveloped areas. MRI-based BA prediction

models become even inefficient in the early stage of mental

disorders when structural abnormalities are undetectable. In

contrast, electroencephalography (EEG) can effectively capture

the neural oscillatory dynamics driven by the excitability of

neuronal populations due to its high temporal resolution and

non-invasiveness (Cohen, 2017). Neural oscillations are associated

with psychophysiological processes such as perception, cognition,

motor, and emotional function. From the macroscale view,

neural oscillations provide a window to study functional changes

in neurodevelopment, maturation, and aging throughout the

human lifespan (Siegel et al., 2012; Ward, 2003). The latest

quantitative EEG studies highlight the parameterization of neural

oscillations by first decomposing the power spectra into aperiodic

and periodic/rhythmic components (Donoghue et al., 2020a;

Hu et al., 2024), and then quantifying the oscillatory features

(OSFs). Common OSFs are aperiodic parameters (AP) that contain

offset and exponent, periodic parameters (PP) that include center

frequency, power, and bandwidth, and traditional descriptors such

as band-limited absolute power (BLAP), power ratios (PR), and

relative power (RP).

Existing studies on normative OSFs have drawn tedious

conclusions from different age groups.Marshall et al. (2002), Clarke

et al. (2001), and Miskovic et al. (2015) demonstrated that PP, RP,

and PR in all frequency bands vary with age. Cragg et al. (2011)

examined BLAP maturation in early adolescence and observed

that BLAP−δ and BLAP−θ decreased with age, accompanied

by increases in RP−α2 and RP−β , which was also reported by

Hashemi et al. (2016) andHu et al. (2019a). Smith (2023) found that

α peak frequency decreased with age in middle-aged and elderly

individuals. Changes in age-related OSFs reflect various functional

processes in neurodevelopment and aging (De Bellis, 2001; Larsen

and Luna, 2018). A critical point in studying OSFs is whether AP

is excluded from the raw power spectral curves (Donoghue et al.,

2020a). Previous studies treated BLAP as a direct reflection of

oscillatory activity, without considering AP (Schaworonkow and

Voytek, 2021). When oscillatory bursts of PP are not present, AP

dominates. Even when PP is absent, spectral analysis will show

power in the broad frequency band completely driven by AP

(Schaworonkow and Voytek, 2021). Therefore, it is impossible to

determine whether PP bursts, AP changes, or a combination of both

causes BLAP without separating AP from raw spectra.

Existing research suggests that AP changes over the full lifespan.

In adults, several studies have reported that the AP-exponent

decreases with age (Merkin et al., 2023; Tran et al., 2020; Voytek

et al., 2015; Dave et al., 2018). Age-related AP changes greatly

from childhood to adolescence. A longitudinal EEG study on 38–

203 days of infants showed that the AP-exponent decreases with

age (Schaworonkow and Voytek, 2021). An EEG study in children

and young adults aged 5–21 years reported flattening of the AP-

exponent and a decrease in the AP-offset with age (Tröndle et al.,

2023; Cellier et al., 2021). Recently, a similar trend was reported in

children and adults aged 3–24 years. Given the emerging evidence,

the AP-exponent shows strong variations in aging up to 70 years

(Voytek et al., 2015) and childhood aged 4–12 years. Therefore,

integrating AP and PP can help accurately assess functional brain

change and predict age, with implications for understanding brain

development patterns, preventing neural degenerative diseases, and

evaluating therapeutic efficacy.

Regarding the prediction of BA, Dimitriadis and Salis (2017)

observed reproducible patterns of accelerated brain aging in

different frequency bands in resting EEG, highlighting the

importance of intrinsic neural oscillations. They used a support

vector regressor to develop a linearmodel based on spatio-temporal

EEG features to predict BA. This model was applied to 194 resting

EEG recordings of 19–67-year-old adults using a single integrated

dynamic functional connectivity graph. The prediction process was

conducted under both eyes-open (R2 = 0.6) and eyes-closed (R2

= 0.48) conditions. Al Zoubi et al. (2018) used five sets of EEG

features across channels and frequency bands and stacked ensemble

learning to predict the BA of 468 participants with a mean age of

34.3 years. Their results showed a mean absolute error (MAE) of

6.87 years and a R2 of 0.37. Vandenbosch et al. (2019) used power

features for random forest, support vector machine, and relevance

vector machine to predict the BA of 702 juveniles aged 5–18 years.

The results showed MAE of 1.22 and 1.46 years, with R2 of 0.547

and 0.448. Khayretdinova et al. (2022) used data augmentation

and deep convolutional neural networks to predict the BA of 1,274

subjects aged 5–88 years using resting-state EEG and obtained the

MAE of 5.96 years.

Current EEG research primarily focuses on applying power

spectra or spatiotemporal features to predict BA. These researchers

often overlook the importance of AP for age prediction. Traditional

EEG feature extraction methods mainly concentrate on univariate

spectra or multivariate functional connectivity patterns, lacking

sufficient recognition of the dependency coefficients between

OSFs. Moreover, feature processing and model construction in

deep learning are complex and require substantial computational

resources, making it difficult to apply in clinical settings, and suffer

from poor interpretability. Therefore, developing a more effective

BA prediction framework remains a challenge.

The sparse group lasso was commonly used for feature selection

(Zhao et al., 2015; Huo et al., 2020; Zhou and Zhu, 2010; Rao

et al., 2015; Xu et al., 2023; Scardapane et al., 2017). Specifically, the

sparse group lasso imposes an L2 norm constraint on each feature

group to ensure that features within the entire group are either

all selected or all excluded. Concurrently, it applies an L1 norm

constraint on individual features to achieve further sparsification

(Simon et al., 2013; Liu et al., 2009). This design enables group

coefficients to retain significant feature groups while eliminating

irrelevant features, thus improving the generalization capability

and predictive accuracy of the model (Zhao et al., 2015; Xu et al.,

2023; Huo et al., 2020). However, these studies often focus on

the relationship between the selected features and the output,

overlooking the relationships within the features themselves. This

work attempts to explore a new feature analysis method using

the sparse group lasso. This method aims to transcend the binary

decision of either “select” or “not select,” instead delving deeper

into uncovering the complex connections between features, the
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inter-OSF dependency coefficients (ODC). The ODC provides

richer information for predictive models. These relationships

may have previously been underappreciated but have significant

implications for understanding neurodynamic changes during

brain development and aging processes.

Deep learning models are often considered “black boxes”

because of complex non-linear transformations that make it

difficult to directly understand the input-output relationship. To

enhance the interpretability of neural networks, researchers have

introduced attention mechanisms into Recurrent Neural Networks

and Convolutional Neural Networks (Mnih et al., 2014; Chorowski

et al., 2015; Xu, 2015). These mechanisms dynamically learn and

assign attention weights, effectively highlighting which features are

most important for a given task. However, this approach increases

model complexity and computational requirements. To address

interpretability without altering the original network architecture,

the Layerwise Relevance Propagation (LRP) algorithm has been

proposed as a postprocessing method (Bach et al., 2015; Samek

et al., 2016). The LRP process involves backpropagating the

network output to the input layer and assigning a relevance score

to each input. This process reveals the contribution of each input

feature to the final decision. In the field of bioinformatics, LRP

has been applied to explain clinical decisions made by deep neural

networks (Yang et al., 2018; Böhle et al., 2019). For example, LRP

has been used to visualize the CNN decision-making process for

Alzheimer’s disease (Böhle et al., 2019). Heatmaps are generated

to highlight input features that positively impact classification.

This visualization helps to understand which parts of the input

data are most influential in the network’s decisions. In addition,

Dobrescu et al. (2019) used LRP to determine the edges of the

leaves as a key to the leaf counting task. Li et al. (2022a) developed

a spatiotemporal LRP method, which can quantitatively evaluate

the temporal and spatial correlations between multiple inputs and

predicted energy consumption and provide in-depth explanations

based on expert knowledge. Generally, LRP is a method to evaluate

the impact of specific image pixels or regions on the prediction

by a classifier or regressive models (Dobrescu et al., 2019; Binder

et al., 2016).We hope to combine LRPwith fully connected layers to

analyze the direct impact of OSFs on prediction results and explore

which features have the greatest influence, as well as whether these

features can be consistent with existing prior knowledge, especially

considering the significance of certain features changing with age.

In this study, we propose an interpretable model to predict

BA based on prior knowledge and sparse group lasso. The main

contributions are: (1) Exploration of age-related OSFs: we integrate

AP and investigate the OSFs trajectories across the lifespan based

on GAMLSS; (2) Calculation and validation of ODC: we propose

ODC based on the sparse group lasso. Our empirical analysis shows

that ODC significantly improves the accuracy of BA prediction

using resting EEG. This contribution addresses a critical gap in

existing methodologies and offers more robust information in the

context of EEGBAprediction; (3) Enhancingmodel interpretability

with LRP: we employ LRP to improve the interpretability of

the prediction model. The structure of this paper is organized

as follows. Section 2 introduces data and model construction

methods. Section 3 presents the main results. Detailed discussion

is given in Section 4 with the concluding remarks presented

in Section 5.

2 Methods

2.1 MNCS dataset

The multinational EEG cross-spectra dataset (MNCS) (Li et al.,

2022b) is currently the largest repository dedicated to EEG spectral

profiles of healthy subjects covering the human lifespan. The

MNCS encompasses EEG cross-spectra from 12 amplifiers, 14

studies, and 1,966 subjects aged 5–97 years. It was collected from

voluntary contributions from nine countries with the support of the

International Collaboration Framework Global Brain Consortium

(GBC). All subjects provided their informed written consent,

allowing the EEG data to be shared for scientific research. All data

have been anonymized for privacy protection.

The gender distribution of the sample is nearly even, and

the age distribution of 5–97 years is illustrated in Figure 1. Raw

EEG data were recorded using 19 channels based on the 10–

20 international electrode placement system, including Fp1, Fp2,

F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3/T7, T4/T8, T5/P7,

T6/P8, Fz, Cz, Pz. Data shared from individual sites include

EEG cross-spectra, demographic information such as age, gender,

and country, and equipment information, including amplifiers,

reference electrodes, and experiment details. The cross spectra from

each site were computed using a unified script datagatherer. Li

et al. (2022b), which sets the Bartlett method (Møller, 1986), the

averaged non-overlapping periodograms and the frequency range

of 1.17–19.14 Hz with a 0.39 Hz interval. The window size to

calculate the cross-spectra was 2.56 s. The noise from the power line

was removed at the main AC frequency of the respective country.

The upper frequency was limited to accommodate legacy EEG cross

spectra of 211 subjects aged 5–80 years (Bosch-Bayard et al., 2020),

for which the raw EEG time series were not saved due to sampling

and memory limitations of the original amplifers.

The preprocessing of theMNCS dataset included: (1) extracting

diagonals from cross spectra as power spectra; (2) applying average

reference to standardize the scalp EEG reference and discarding

the electrode Pz to reduce the electrode from 19 to 18 because

the average reference has the property of rank deficiency by 1 (Hu

et al., 2019b, 2018c; Yao et al., 2019); (3) correcting the global scale

factor from the raw power spectra; (4) taking the log transformation

for all power spectra; (5) performing multisite harmonization

by the general linear additive model and the Nadaraya–Watson

kernel regression considering age and frequency as fixed effects and

gender and batch effects as random effects to minimize the batch

effects of inconsistent devices, studies, and counties of multi-site

recording (Li et al., 2022b). The preprocessing and harmonization

of the MNCS finally involved the 1,966 subjects of multinational

power spectra with 18 electrodes and 47 frequency bins, a 1,966 ×

18× 47 tensor.

2.2 Data quality control

It is vital to ensure that the data set contains only healthy

participants with the assumption of brain age = chronological age,

which is the basis for the study of brain age prediction. The details

of the inclusion/exclusion criteria, the notes before EEG recording,

the instructions during EEG recording, and the EEG preprocessing
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FIGURE 1

Age distribution of MNCS dataset.

after EEG recording were given in the Supplementary Appendix

“Cohort description.xlsx” with respective references. As indicated

in (Li et al., 2022b), (1) these criteria are sufficient and equally

stringent to guarantee a sample of functionally healthy subjects;

(2) To be accepted into the MNCS study, the shared data had

to be part of a normative study or a control group with explicit

inclusion/exclusion criteria; (3) the MNCS data were obtained

from ≥ 1 min artifact-free, eyes closed, quasistationary, resting

EEG. Detailed examples of inclusion/exclusion criteria are provided

in Hernandez-Gonzalez et al. (2011) and Bosch-Bayard et al.

(2020). The individual study who contributed data to MNCS was

required to strictly adhere to the inclusion criteria as Valdes-

Sosa et al. (2021). The EEG was usually recorded in the morning

after breakfast and before lunch. The duration of the recordings

varied from 5 min to half an hour. Subjects were instructed to

remain awake and eyes closed during the recording. At least

two trained and certified clinical neurophysiologists ensured that

subjects remained awake by both observation of behavior and

inspection of online EEG recordings.

Both normative modeling and BA prediction are to solve the

regression problem, which is a machine learning task. Appropriate

removal of outliers helps prevent overfitting while enhancing

generalizability and robustness. TheMNCS age values were divided

into groups according to WHO age brackets, such as the minors

(≤18 years), youth (19–45 years), middle age (46–60 years), and

elderly (>60 years). The uniform manifold approximation and

projection (UMAP) (McInnes et al., 2018) is a nonlinear algorithm

to map high-dimensional data to a low-dimensional space while

preserving the local and global structure of the data points. The

z-score transformation was applied to the power spectra to detect

outliers better using UMAP. Taking all power spectra across the

electrodes and the frequencies as features and subjects as samples,

UMAP reduced the dimensionality from 1,966 × 18 × 47 to 1,966

× 2, as shown in Figure 2. Then, the robust distance (Rousseeuw

and Leroy, 1987) between each subject within each group and

the clustering centroid of the age group was calculated using the

minimum covariance determinant algorithm. Finally, a threshold

of 0.975 was established to identify outliers, resulting in 338 subjects

being recognized as outliers. Note that the identical threshold was

applied as well as (Li et al., 2022b). One should be cautious when

removing outliers because the large variation may easily present

in the rapid transition stages such as from puberty to adults and

from adults to the elderly. Although removal of outliers can help

for normative modeling, we should avoid removing important

physiological changes. The trivial step in EEG preprocessing can

accumulate substantial impacts on postprocessing outcomes (Hu

et al., 2025; Delorme, 2023).

2.3 Extraction of oscillatory features (OSFs)

Four groups of neural OSFs were extracted, which are the

aperiodic parameters (AP) consisting of exponent and offset, the

periodic parameters (PP) including center frequency, power and

bandwidth, the power ratio (PR) of two frequency bands such as

θ/β , δ/θ , δ/α, θ/α, the relative power (RP) in the frequency bands

δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), and β (12–20 Hz).
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FIGURE 2

Outlier detection of power spectra using UMAP. (A) Power distribution in a 2D space for all age groups in di�erent colors. (B) Outlier detection for the

age groups of minors, youth, middle age, and elderly. The threshold was set to 0.975 to identify extreme outliers. Black crosses: outliers, solid dots:

acceptable samples.

2.3.1 Separating aperiodic and periodic
components

Neural oscillations that appear as EEG wave traces are

intrinsically the superposition of the aperiodic component and the

periodic component. FOOOF (Donoghue et al., 2020b) toolbox

can simultaneously perform spectral decomposition and estimate

the parameters of the aperiodic and periodic components. FOOOF

assumed the additive model in the log space as:

PSD = L+

n
∑

n=1

Gn (1)

where PSD is the log power, L is the aperiodic component, and Gn

is the periodic component.

2.3.2 Aperiodic parameters (AP)
The shape property of the aperiodic component is decreasing

monotonically. It is fitted as a power-law function throughout the

frequency range, indicating that the background aperiodic spectra

decay exponentially with frequency. The APs are the aperiodic

exponent (slope) and offset (Donoghue et al., 2020b) that are

expressed in the power-law function as:

L(F) = b− log(k+ Fχ ) (2)

where F is a vector of frequencies, b is the offset, k is the

optional knee parameter, χ is the exponent. The exponent χ

reflects the steepness of the power spectral decay across frequencies,

while the offset b reflects the broadband displacement of power

across frequencies.

2.3.3 Periodic parameters (PP)
The shape property of the periodic component is the

unimodality, which forms a prominent spectral peak in the spectral

curve, first increasing and then decreasing, both of which follow

the monotonicity. Each periodic component Gn in the form of

a spectral peak is individually modeled using a Gaussian kernel

function as:

Gn(F) = pn ∗ exp

[

−(F − cn)
2

2w2
n

]

(3)

where pn is the power, cn is the center frequency (Hz), and wn is

the bandwidth.

2.3.4 Power ratio (PR) between two frequency
bands

With the multinational power spectra, it is empirically

partitioned into δ, θ , α, and low β frequency bands with 1–4,

4–8, 8–12, 12–20 Hz, respectively. The absolute power for each

specific frequency band is the sum of power spectral values at

bandpass frequencies. The power ratio(PR) is the ratio between the

absolute powers of two frequency bands that are of interest, which

is expressed as:

PRfb1/fb2 =

∑hc1
lc1

PSD(fb1)
∑hc2

lc2
PSD(fb2)

(4)

where the fb refers to the frequency band passing through the low-

cut off frequency lc and high-cut off frequency hc. In this study,

the four PRs calculated were PR−δ/θ , PR−δ/α, PR−θ/β , and

PR−θ/α.
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2.3.5 Relative power (RP)
Similar to PR, relative power (RP) is a measure to eliminate

the absolute power difference between individuals. The RP is

expressed as

RPfb =

∑hc
lc PSD(fb)

∑

PSD(F)
(5)

where F is a vector of all frequencies within 1.17–19.14 Hz, and

the denominator is the sum of absolute powers from all frequency

bands. Here, the four calculated RPs are RP−δ, RP−θ , RP−α,

and RP−β .

2.4 Age-dependent trajectory of OSFs

The generalized additive model for location, scale, and shape

(GAMLSS) is a semiparametric regression method that allows us to

model the entire distribution of a response variable (Stasinopoulos

and Rigby, 2008). In this study, GAMLSS was applied to map the

trajectories of features that change with age. For each feature, we

first calculated the mean value for each electrode, then constructed

the GAMLSS model using cubic spline smoothing and the Box-

Cox-t family of distributions (Rigby and Stasinopoulos, 2006). We

modeled the evolutionary trajectories of 13 features from four

groups. In addition, we set the 25%, 50%, and 75% quantiles to

better understand the evolutionary trajectories of OSFs.

2.5 Electrode-wise correlation of OSFs
with BA

For each subject, 13 OSFs of four groups were extracted from

18 electrodes for the prediction of BA. The Pearson correlation

coefficient (PCC) (Lee Rodgers and Nicewander, 1988) was applied

to calculate the relationship between each OSF on each electrode

and BA. This helps to determine which features are significantly

correlated with BA prediction, and PCC quantifies the contribution

of each feature to predicting BA. After a detailed analysis of the

correlation between each OSF per electrode and age, we divided

the 18 electrodes into five scalp regions according to the electrode

locations. Each region contains a specific set of electrodes: frontal

(Fp1, Fp2, F7, F8, F3, F4, Fz), central (C3, C4, Cz), parietal (P3, P4),

occipital (O1, O2), and temporal (T3, T4, T5, T6). This division

allows for further exploration of the importance of OSFs in brain

regions and understanding of differences among brain regions in

age prediction. The PCCs of each brain region were the mean of

the PCCs of the electrodes located in that brain region.

2.6 Inter-OSFs dependency coe�cients
(ODC)

Because bivariate pairwise correlations between features can

ignore the potential effects of other features, the sparse group lasso

(Liu et al., 2009) is used to quantify the relationships among OSFs.

The OSFs of each subject are represented as X = [x1, ..., xm] ∈

Rd×m, with a total of m features, where xm = [e1, e2, e3, ..., ed]
T ∈

Rd represents them-th OSF extracted from all electrodes. Each xi is

considered a target vector that can be fitted by a linear combination

of otherm− 1 features, that is, regressors.

The sparse regression model is defined as xi = Aw, where w

is the regression coefficient. In the i-th regression, the data matrix

A = [x1, x2, ...xi−1, xi+1, ...xm] contains all feature vectors except

for xi. Sparse solutions are achieved by solving the Moreau-Yosida

regularization (Liu and Ye, 2010) as

min
w

1

2
‖xi − Aw‖22 + λ1 ‖w‖1 + λ2

g
∑

j=1

z
g
j

∥

∥

∥
wGj

∥

∥

∥

2
(6)

where A ∈ Rd×(m−1), xi ∈ Rd, w ∈ Rm−1 are divided into g

non-overlapping groups wGj (j = 1, ..., g). z
g
j represents the weight

for the j-th group as z
g
j =

∑nj
i=1

∣

∣

∣
PCC(xi, a

nj
i )

∣

∣

∣
with a

nj
i 6= xi

and PCC indicating the Pearson correlation coefficient between

xi and the other nj feature vectors in the j-th group. Note that

if a
nj
i = xi, a

nj
i should be excluded as the PCC with xi itself is

one. z
g
j reflects the general similarity between the target OSF and

a specific group of OSFs. The sparsity between groups is controlled

by the product of λ2 and the weight z
g
j of the respective group. This

aggregation method helps us to better capture the dependencies

and interactions between features within a group, which is crucial

for sparse group lasso models to identify important feature groups

and their contributions to regression.

The optimal (λ1, λ2) was selected when the least MAE

was obtained using the grid search and cross-validation

approach. The SLEP MATLAB package (Liu et al., 2009)

was used for optimization. The λ ranges were set in

λ1 ∈
{

2−1, 2−2, 2−3, ...2−10
}

, λ2 ∈ {0, 0.1, 0.2, 0.3, ..., 0.9}

according to Liu et al. (2009) as the solution w to the formula 6

will decay to zero if they were set ≥1. λ1 was set on the logarithmic

scale for quick search, while λ2 was set on the natural scale with

λ2 > λ1 to incorporate more intergroup sparsity than intragroup

sparsity. The similar parameter setting is applied in Zheng et al.

(2021), Liu et al. (2022), and Zheng et al. (2018).

The ODC was constructed by the optimal λ. A brief overview

of this method is shown in Figure 3. For each subject, this process

was repeated m times to construct the ODC matrix W =

[w1, ...,wi, ...,wm]
T ∈ Rm×(m−1). Each row ofW represents a set of

regression coefficients from a single sparse regression model, with a

non-zero value indicating a relatively strong relationship between

the target feature vector and the regressor vectors and a zero

value indicating a null relationship. Due to each row in the matrix

being composed of sparse solutions from different regression

processes, the ODCmatrix should be asymmetric, representing the

dependencies between features.

2.7 Prediction model

With the learned OSFs and the ODC, the fully connected neural

network (FCNN) is designed for the downstream BA regression

task. It includes an input layer, three hidden layers, and an output

layer. The input layer receives processed features with a size equal

to the number of input features. Each hidden layer contains 10

neurons. The output layer consists of a neuron that outputs the
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FIGURE 3

Schematic flowchart of BA prediction. Extract four sets of electrode-wise features from MNCS dataset. Adopting the sparse group lasso, with the

vector of one feature as the target variable and the vectors of other features as the regression variables. By repeating this process 13 times, a

multi-feature-based ODC matrix was constructed, where each row in the gray matrix reflects a set of regression coe�cients from a single sparse

regression model. Finally, OSFs and ODC matrix were input into the fully connected layers to predict BA.

predicted age value. Toomany hidden layers may lead to overfitting

and a waste of computational resources, while too few hidden

layers may not fully capture complex data patterns. The selection

of 10 neurons per hidden layer was validated through comparative

experiments. Excessive neurons can increase computational burden

and lead to overfitting, while insufficient neurons may not fully

express the complex internal relationships in the data. In terms of

the activation function, the hidden layer adopts the function tansig,

which maps the input to the range [–1, 1], helping to normalize

the output of neurons and stabilize the training process. The

output layer adopts a linear activation function purelin to ensure

the continuity of the output for the regression task. The training

process involves forward propagation, backward propagation, and

weight updates. In the forward propagation process, the input data

passes through each layer, and each neuron applies an activation

function to the weighted sum of the input, ultimately producing an

output. Backpropagation calculates the error between the output

and the target using the Levenberg Marquardt (LM) algorithm

(Ranganathan, 2004) to adjust the network weights to minimize

the error. The LM algorithm is particularly suitable for training

small and medium-sized networks due to its fast convergence.

We perform a 10-fold cross-validation by randomly partitioning

the entire data set into 10-folds with 90% as the training set

and 10% as the test set. Four metrics were used to evaluate

prediction performance, namely the mean absolute error (MAE),

the coefficient of determination (R2), the root mean square error

(RMSE), the mean absolute percentage error (MAPE) and the

respective 95% confidence interval.

MAE =
1

ns

ns
∑

i=1

∣

∣yi − ŷi
∣

∣ (7)

R2 = 1−

∑ns
i=1(yi − ŷi)

2

∑ns
i=1(yi − ȳ)2

(8)

RMSE =

√

√

√

√

1

ns

ns
∑

i=1

(yi − ŷi)2 (9)

MAPE =
1

ns

ns
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

∗ 100% (10)

where ŷi is the predicted age, yi is the actual chronological age based

on the date of birth, ȳ is the average actual age, and n is the total

number of samples.

Meanwhile, we applied the layerwise relevance propagation

(LRP) (Bach et al., 2015) to examine which input features are

important to the output. LRP is an interpretability method for

neural networks that utilizes backpropagation technology. Based

on the relevance between a neuron and the output decision R
(l+1)
k

,

the decomposition of the relevance between the previous layer of

neurons, denoted R
(l,l+1)
i←k

, is obtained as follows:

R
(l,l+1)
i←k

= R
(l+1)
k
·

aiwik
∑n

i=1 aiwik + bk
(11)

where ai is the activation value of the neuron with index i in the

l-th layer, wik is the weight connecting the neuron i in the l-th layer

and the neuron k in the (l + 1)th layer, and bk is the bias in the

(l + 1)th layer. The relevance of a certain neuron in the lth layer is

decomposed from the relevance of each neuron in the next layer

with the following formula:

R
(l)
i =

n
∑

k=1

R
(l,l+1)
i←k

(12)
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FIGURE 4

Extraction of OSFs and the trajectories of AP and PP. (A) Illustrive fitting with the AP-exponent (in yellow) and AP-o�set (in red), as well as the

PP-center frequency, PP-power, and PP-bandwidth (in green) on the O1 electrode; (B, C) Power spectra and AP for each age group; (D, E)

Age-depdendent trajectories of AP and PP. Note that age is in the log scale and the shown curves in (B–E) were the averaged values over all the

electrodes.

According to Equations 11, 12, the relevance for a certain neuron

can be calculated as:

R
(l)
i =

n
∑

k=1

R
(l+1)
k
·

aiwik
∑n

i=1 aiwik + bk
(13)

To prevent R
(l,l+1)
i←k

from taking an infinite value, this algorithm

divides the relevance into positive and negative. Therefore, the

final formula for calculating the relevance of a certain neuron is

as follows:

R
(l)
i =

n
∑

k=1

R
(l+1)
k

(
aiwik

+

∑n
i=1 aiwik

+
+ bk

+
aiwik

−

∑n
i=1 aiwik

−
+ bk

) (14)

Here, the relvance for each OSF between the transformed inputs

at the first hidden layer and the output decision (BA) was

computed. Then the relvance for each group of OSFs was computed

by summing the relvances of each OSF that belongs to the

specific group.

3 Results

3.1 Lifespan evolutionary trajectories of
OSFs

Figure 4A is an illustrative process for spectral fitting using

FOOOF. Prominent differences in power spectra can be seen

between age groups (Figure 4B) and the aperiodic components

were shown as Figure 4C. The spectral decomposition model

effectively captured the differences between different age groups.

The peak of the power spectrum increased with age and reached a

maximum at the age of 40 years, after which it gradually decreased.

The largest difference in AP was observed between the <10 years

group and the 10–20 years group. The AP-exponent and AP-

offset (Figure 4D) rapidly decreased from the beginning of life until

the age of 18, when they slowly decreased, PP−center frequency

(Figure 4E) rapidly increased before the age of 18 and then slowly

decreased, while the trend of PP−power and PP−bandwidth

changes was not quite significant.

Meanwhile, the GAMLSSmodel was applied to traditional band

powers (PR, RP) to capture their age-dependent trajectories. We

found that PR-θ/β , PR-δ/α, PR-θ/α (Figure 5A) decreased first

with age and tended to plateau after adulthood. PR-δ/θ increased

in the early stages of life until the age of 18 years and showed

a downward trend after adulthood. In the low-frequency band

of RP (Figure 5B), RP-δ and RP-θ decreased with age and slowly

increased around adulthood. RP-α increased first with age and

slowly decreased aroundmiddle age, while RP-β showed an upward

trend throughout the lifespan, but the rate of increase varied in

different age groups. Note that the curves shown in Figures 4B–E

were the averaged values over all electrodes with the aim of

mapping the global trajectories across age groups, meaning that the

electrode differences were not of key concern, which can be referred

to our previous work (Hu et al., 2019a).
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FIGURE 5

Normative trajectory of band power. (A) Power ratio (PR); (B) Relative power (RP). Note that all the shown curves were the averaged values over all

the electrodes.

FIGURE 6

Feature importance for age prediction. (A) Topographies of electrode-wise PCCs between each OSF and BA. Electrodes from left to right, from

anterior to posterior, are Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, C4, T4, T5, P3, Pz, P4, T6, O1, O2; (B) The PCCs of OSFs as to brain region.

3.2 PCC analysis between OSFs and BA

The PCCs between 13 OSFs with BA were anlyzed in terms

of electrodes and brain regions. Figure 6A depicted the scalp

topographies of the electrode-wise PCCs between the OSFs and the

BA. In Figure 6A, each row represents a group of features, and the

topographies of electrode-wise PCCs exhibit a generally symmetric

distribution. It may indicate that no difference between the left

and right hemispheres should be considered for the prediction

of BA when using OSFs. From the perspective of intragroup

OSF comparison, the AP exponent, the AP offset, the PP center

frequency, PR-θ/β and PR-δ/α, as well as RP-δ and RP-β were

found to be more important compared to other OSFs within the

respective group. The bar charts in Figure 6B is the PCC between

OSFs and BAs across the brain regions, where the OSFs were

arranged in descending order. For OSFs such as the AP-exponent,

the AP-offset, the PP-center frequency, PR-θ/β and RP-β , the

central and parietal regions exhibit the larger PCCs than the other
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TABLE 1 Feature comparison with PR, RP, PP as baselines [confidence intervals].

Feature MAE R2 RMSE MAPE (%)

PR 4.40 [4.01, 4.79] 0.78 [0.75, 0.81] 6.30 [5.82, 6.78] 18.21 [16.86,19.56]

RP 5.21 [4.56, 5.86] 0.72 [0.67, 0.76] 7.38 [6.68, 8.09] 22.73 [21.52,23.95]

PP 8.38 [8.05, 8.71] 0.51 [0.48, 0.54] 11.95 [11.39, 12.51] 38.54 [36.29,40.79]

AP 3.69 [3.41, 3.96] 0.83 [0.81, 0.85] 5.42 [4.98, 5.87] 15.23 [14.51,15.96]

OSFs 3.44 [3.07, 3.81] 0.84 [0.82, 0.86] 5.08 [4.60, 5.57] 15.43 [14.44,16.42]

ODC 3.71 [3.25, 4.17] 0.84 [0.81, 0.87] 5.34 [4.75, 5.92] 15.07 [14.04, 16.09]

OSFs-ODC 2.95 [2.66, 3.24] 0.86 [0.82, 0.91] 4.51 [3.88, 5.13] 12.44 [10.90, 13.98]

The values in bold are the results of our proposed upstream method.

TABLE 2 Sensitivity analysis of the (λ1, λ2) selection.

λ1, λ2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2-1 3.54 3.58 4.06 4.35 4.27 3.32 3.83 4.13 4.25 3.96

2-2 3.14 3.81 4.20 3.98 3.34 4.08 4.49 4.75 5.36 3.84

2-3 4.31 3.74 3.08 3.93 4.21 4.54 3.36 3.03 3.40 4.00

2-4 4.52 6.44 4.85 3.13 4.13 3.39 5.50 5.61 3.44 3.50

2-5 3.31 4.27 3.27 5.41 4.57 3.73 3.48 3.92 3.13 4.26

2-6 3.24 2.95 3.31 3.66 3.34 3.35 3.79 3.69 4.69 3.13

2-7 3.61 3.61 3.14 2.99 3.89 4.24 3.09 4.08 3.38 3.12

2-8 3.33 3.23 3.69 3.35 3.94 3.74 5.17 3.79 3.28 3.15

2-9 3.39 3.23 3.96 3.09 4.26 3.12 4.13 3.14 5.23 3.91

2-10 2.99 3.29 4.27 4.20 4.92 3.40 3.08 3.01 4.07 4.80

The value in bold is the least MAE.

regions, while the lower PCCs are observed in the occipital region.

In contrast, PR-δ/θ shows a higher PCC in the temporal and

occipital areas compared to other regions. It suggests that the PCCs

of the OSFs show slight variations with brain regions. However,

seen from the descending order of PCCs in the Figure 6B, the

variations in the PCCs as to the group and type of OSF are greater

than those of the hemisphere and the brain region. This implies that

the selection of OSFs is necessary for the prediction of BA.

3.3 Performances of BA prediction models

Each group of fused OSFs was entered into the prediction

model to evaluate the prediction performances of that group. We

applied the traditional band power, PR and RP, as the first two

important baselines. The prediction performances are shown in

Table 1. Evidently, it showed that the traditional band powers

offered the worse performances than AP in all four metrics of MAE,

R2, RMSE, andMAPE.With intergroup comparison among PR, RP,

PP, AP, it is easily found that the best prediction result is obtained

with AP, with a MAE of 3.69 years and R2 of 0.83. When all OSFs

were fused as input, MAE decreased to 3.44 years and R2 increased

to 0.84. In contrast to OSFs, the MAE increased slightly to 3.71 and

the RMSE increased to 5.34 if the ODCwas input only. This showed

that ODC was worse than OSF and AP, perhaps due to the lack of

neurophysiological interpretability and sensitivity. With both ODC

and OSF concatenated as model input, MAE decreased to 2.95 and

R2 increased to 0.86, with λ1 = 2−6 and λ2 = 0.1 as shown

in Table 2 reflecting how MAE varied with the values of λ. From

Table 2, it can be summarized that MAE tends to be smaller and less

sensitive to the variation of λ if λ1 ∈ [2−6, 2−9] and λ2 ∈ [0.1, 0.3]

are compared to λ which fall into other regions.

To validate the effectiveness of the downstream prediction

model, we systematically conducted baseline comparisons,

comprehensively comparing FCNN with baseline methods such

as linear regression (LR), support vector regression (SVR), ridge

regression (RR), and random forest (RF). As shown in Table 3,

the experimental results show that the MAE followed the order

FCNN (2.95) < RF (4.51) < LR (5.04) < SVR (5.47) < RR (8.90).

Thus, FCNN showed 34.6% advances compared to RF, and sensibly

outperformed the other baseline methods. Later, it was combined

with the LRP to significantly improve the interpretability of the

model. Our proposed full model is “OSFs-ODC-FCNN” for neural

oscillation-based brain age (NEOBA) prediction, where “OSFs-

ODC” is in the upstream of NEOBA for feature construction and

the FCNN is in the downstream of the NEOBA model for age

prediction. To verify the effect of NEOBA on the independent

dataset, we implemented validation in the TDBRAIN dataset,

which is an open clinical EEG database with 1,274 subjects aged

5–89 years (Khayretdinova et al., 2022). The TDBRAIN dataset

was analyzed using the three conditions: eyes open and closed,

eyes open only, and eyes closed only, with the MAE results shown
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TABLE 3 Comparison with basic regression methods.

Methods MAE R2 RMSE MAPE (%)

LR 5.04 0.79 7.18 24.63

SVR 5.47 0.84 7.43 23.02

RR 8.90 0.69 11.96 39.17

RF 4.51 0.85 6.69 16.83

FCNN 2.95 0.86 4.51 12.44

The values in bold are the results of our proposed downstream method.

TABLE 4 Comparative experiment on TDBRAIN dataset (MAE).

Methods Eyes states

Eyes open-closed Eyes open Eyes closed

DCNN 5.96 6.39 6.33

NEOBA 4.95 5.62 5.24

The values in bold are the results of our proposed model.

in Table 4. When using the end-to-end deep convolutional neural

network (DCNN) model proposed in Khayretdinova et al. (2022),

MAE (years) were 5.96, 6.39, and 6.33, respectively. With our

proposed “NEOBA” model, the MAE was reduced to 4.95, 5.62,

and 5.24, with improvements of 16.94%, 12.05%, and 17.21%,

respectively.

To gain explcit model interpretability, LRP analysis was

performed to calculate the relevance between the first hidden

layer of FCNN and the output layer by backpropagating. The first

hidden layer was analyzed because it is responsible for learning the

first transformations between the input and the later predictions.

Figure 7A shows the relevances corresponding to each OSF per

electrode. Figure 7B shows the relevance of each group of OSF by

averaging on intragroup OSFs and electrodes and the relevance

of ODC by averaging all entries within the ODC matric, further

quantifying their importance in the age prediction task. Note that

the sum of all the relevances in Figure 7B is 1. The relevance values

in Figure 7 AB are small, because the flatten feature dimension is

as large as 390 × 1 from the size 18 electrodes × 13 OSF (two APs,

four PRs, four RPs, and three PPs) and the size 13× 12 for the ODC

matrix. As seen in Figure 7B, ODC occupied a pivotal position in

the age prediction process, closely followed by RP and AP. Delving

deeper into the Figure 7A, it was found that RP-β maintained a

high importance in most brain regions, except the occipital regions

compared to RPs in the other bands, while RP-α showed a more

balanced spatial distribution throughout the brain. The relevances

of the RP-δ and RP-θ bands were higher in the occipital regions,

showing the sensitivity of this specific region to RP in these bands.

The relevances were higher in the central and parietal regions of

the AP.

Moreover, the NEOBA model was validated within the specific

age range. The four age ranges are adolescents aged 5–18, youth

aged 18–45, middle aged 45–60, and elderly aged >60. As shown in

Table 5, the minors achieved the best MAE of 2.33 and R2 of 0.68.

The youth group had anMAE of 2.83 and an R2 of 0.61. In contrast,

the middle-aged group and the elderly group had much larger age

prediction errors with MAE of 5.03 and 4.73 and R2 of 0.34 and

0.25, respectively.

4 Discussion

In this study, we first applied FOOOF to extract OSFs

and then mapped the age-dependent trajectory of OSFs using

GAMLSS. Evident differences in terms of power spectrum and

AP were found between the age groups. The offset of AP and

the exponent of AP was observed to decrease rapidly in the

early stages of the lifespan, while the α PP-center frequency

increased rapidly before adulthood. These results reveal the

evolutionary patterns that brain functions may experience at

different stages of life. In addition, we show that AP and PP

play a key role in predicting BA, especially in the central and

parietal regions. The significance of these OSFs in specific brain

regions should be linked to the pronounced neurofunctional

reorganization associated with normal development and aging

processes. Secondly, the constructed ODC matrix integrated the

interaction information among the 13 OSFs by applying the sparse

group lasso and demonstrated its superiority over the most OSFs in

predicting BA. Comparison experiments with baselines indicated

that ODC in combination with OSFs can greatly improve the

prediction performances; and the FCNN outperformed all basic

regression models tested. Lastly, the application of LRP analysis

to FCNN uncovered the different contributions of OSFs and

ODCs in age prediction that were ODC > RP > AP > PR >

PP. This work established a novel analytical framework, NEOBA,

that efficiently integrates lifespan-related neural oscillations for

accurate prediction of BA, while offering crucial insights into

the neural mechanisms underlying developmental trajectories and

senescence processes.

The two APs, offset and exponent, decreased rapidly in the

early stages and then slowly in adulthood, as shown in Figure 4D.

Compared to young people, older people exhibited a flatter power

spectrum as shown in Figure 4C, which is consistent with (Voytek

et al., 2015; Tran et al., 2020). Similar patterns have also emerged

when considering both adults and children, with exponent and

offset negatively correlated with age (He et al., 2019), and adults

have higher center frequencies of the α peak than children as

shown in Figure 4E, indicating higher cortical maturity (Marshall

et al., 2002). In general, the above results are in line with other

neurophysiological findings that exponent and offset are reliable

markers that exhibit nonlinear decline throughout the development

process and may lead to age-related changes in cognitive function

(Tran et al., 2020).

The offset and exponent of AP are closely related to brain

development and psychopathology (Molina et al., 2020; Tran

et al., 2020). Gao et al. (2017) suggests that AP may indicate

the balance between excitation and inhibition in cortical circuits.

The lower exponent reflects the broadband flattening of PSD,

indicating transfer from cortical inhibition, whereas the higher

exponent indicates opposite activation patterns. It also provides

insight into the physiological mechanisms underlying information

interruptions in neurodevelopmental disorders (Ostlund et al.,

2021; Robertson et al., 2019), autism (Levin et al., 2020), and

schizophrenia (Molina et al., 2020). The AP offset showed fair

test-retest reliability in typical developmental and autistic children

(Levin et al., 2020). For example, children with ADHD have a

larger offset compared to healthy peers (Robertson et al., 2019).

Levin et al. (2020) demonstrated the utility of the spectral shape
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FIGURE 7

FCNN interpretability by LRP analysis. (A) Relevancies between the transformed OSFs and the output BA; (B) relevancies between the group of OSFs

or ODC and the output BA.

TABLE 5 Performance under di�erent age groups.

Age Sample size MAE R2 RMSE MAPE (%)

5–18 485 2.33 0.68 2.86 24.86

19–45 881 2.83 0.61 4.33 11.34

46–60 53 5.03 0.34 7.44 9.49

61–97 208 4.73 0.25 7.24 6.51

5–97 1,628 2.95 0.86 4.51 12.44

The values in bold are the results of our proposed lifespan age prediction.

and other parameters as stable biomarkers of cortical activity and

disease diagnosis. The clear advantages of incorporating the AP

into the EEG-based BA studies can be inferred from existing

studies that spectral parameterization can help with the appropriate

physiological interpretation by accurately decomposing the spectral

components. It confirms that traditional spectral features such as

PP are no longer sufficient, as they may be conflated by aperiodic

components (Donoghue et al., 2020a). The joint use of AP and

traditional band powers verified the consistency of these two

components, providing a solid reference for building accurate and

reliable age prediction models.

Note that in low signal-to-noise ratio scenarios, FOOOF may

not accurately estimate oscillation parameters such as center

frequency, power, and bandwidth, as well as AP such as exponent

and offset (Donoghue et al., 2020b). Furthermore, the differences

in EEG features across age groups can lead to biased parameter

estimation. Children EEG often have higher noise levels, while

elderly EEG may show flatter power spectra and lower power

peak (Schaworonkow and Voytek, 2021; Voytek et al., 2015).

These factors may influence the accuracy and reliability of the

research findings. Thus, it is recommended to combine strict data

preprocessing and feature validation methods when applying ξπ

to minimize their potential impact (Hu et al., 2024). In addition,

the EEG OSFs did not cover all age-related EEG biomarkers. Other

EEG analysis, such as functional connectivity and microstates (Hu

et al., 2018a), may provide additional information to provide a

comprehensive understanding of BA changes.

The construction of the interaction matrix between multiple

features based on sparsity has been widely used in the medical field

for the diagnosis of diseases (Zheng et al., 2021; Liu et al., 2022;

Zheng et al., 2018). Here, the sparse group lasso was applied to

construct the ODC matrix because of its ability to handle both

intergroup and intragroup sparsity simultaneously. In contrast, the

Lasso with L1 regularization picks individual OSF while ignoring

the inherent group structure (Zheng et al., 2021); and the Elastic

net addresses collinearity issues but lacks an explicit group-wise

selection mechanism (Xu et al., 2023). By imposing the group

sparsity, the ODC matrix achieves two goals: (1) the intergroup

sparsity can identify entire feature groups that contribute little

to the prediction task; (2) the intragroup sparsity further can

identify the most predictive features from the preserved groups

with biologically meaningful interaction patterns between these

groups. Our findings indicate that the incorporation of ODC in

the upstream input reduced the MAE by 14.24% compared to

using only OSFs. Both OSFs and ODC may be complementary

and together provide a comprehensive description of neural

oscillation. This underscores the necessity of including ODC in

model input, a point not addressed in previous studies. Meanwhile,

we observed that the prediction results are age related, and older

participants have poorer prediction results, which may reflect the

large individual variation due to brain atrophy (Amoroso et al.,

2019; Kumari and Sundarrajan, 2024).

The feature selections generally include filtering methods based

on the correlation and the information score, the wrapper search

methods, such as recursive elimination, stepwise selection, and

the embedded methods in the model training process to avoid
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overfitting. Common embedded methods with regularization are

the lasso (L1 norm), the ridge regression (L2 norm), the elastic net

(L1 + L2 norm) and the group lasso (L2 norm with group) and the

sparse group lasso (L1+L2 norm with group). The lasso and elastic

net enable the selection of individual features, while the elastic net

is more stable than the lasso by alleviating collinearity using the

L2 norm. However, the lasso, the ridge regression, and the elastic

net were unable to perform group selection. Unlike a group lasso

that may eliminate the whole group, the sparse group lasso enables

both inter-group and intra-group selection, simultaneously. In this

work, we predefined the four physiologically meaningful groups

of OSFs, such as AP, PR, RP, and PP according to quantitative

spectra analysis. Since the number of intragroup features is not

large, we intended to retain as more intergroup OSFs as possible,

thus making it necessary to apply the sparse group lasso. The ODC

matrix is the interactive representation among all OSFs, uncovering

crucial information hidden in the OSFs.

Figure 6A shows that the PCCs are not uniform for different

electrodes or different OSFs, indicating that key factors in

predicting BA should not be uniquely attributed to a specific

channel or OSF. Each toporaphy is nearly symmetric between

the left and right hemispheres, but the PCCs are significantly

different over brain regions as shown in Figure 6B. This suggests

that the fusion of multiple OSFs from all electrodes can improve the

accuracy of the BA prediction. Both PCC and LRP comprehensively

evaluate the role of EEG OSFs in age prediction (Lee Rodgers and

Nicewander, 1988; Bach et al., 2015). PCC provides a statistical

perspective to analyze how upstream OSFs correlated with BA.

LRP further reveals the specific contributions of the FCNN input,

such as the roles of RP-β in most regions and AP in the central

region. The LRP analysis shown in Figure 7 provided an additional

perspective to evaluate how the upstream features were weighted

during the downstream FCNN transformation. As FCNN acted as

the black box, LRP gained transparency on how FCNN processed

the input through weighting and updating in the hidden layer.

The LRP revealed that the contribution of different features for

the prediction of BA followed the order: ODC > RP > AP > PR

> PP, which generally followed the feature importance as shown

in Figure 6. The LRP result provided direct evidence to interpret

why the addition of ODC could improve the accuracy of the BA

prediction as shown in Table 2.

Researchers use multiple modalities andmethods to explore the

patterns and mechanisms of brain aging (Rutledge et al., 2022).

Functional magnetic resonance imaging (fMRI) is a common

modality that has significant advantages in capturing functional

changes as well as anatomical changes. For example, Chang et al.

(2024) used the resting fMRI and LASSO to identify the 39

features that are most relevant to BA, established a prediction

model, and found that the default mode network is associated with

abnormal aging, adding insights to BA prediction and biomarker

research. EEG can effectively capture the dynamic changes of neural

oscillations due to high temporal resolution. Various models have

been applied to predict BA, such as support vector machines,

ensemble learning, random forests, correlation vector machines,

and deep convolutional neural networks (DCNN), to predict BA

(Dimitriadis and Salis, 2017; Al Zoubi et al., 2018; Vandenbosch

et al., 2019; Khayretdinova et al., 2022). Sun et al. (2019) adopted

the temporal statistical indicators and band powers, PR and RP,

as upstream features and an interpretable machne learning model

for the prediction of BA based on sleep EEG. They reported

that the EEG time-frequency features were superior to the sleep

macrostructure features in the BA prediction. Their results showed

a 7.6-year MAE in age prediction of 1,022 healthy participants

using only six electrodes and demonstrated a stable increase in

BA over time in longitudinal validation. Furthermore, participants

with neurological or mental diseases showed an average BA index

of 4 years older than the healthy group, while patients with

hypertension and diabetes showed an average BA of 3.5 years

older, indicating that sleep EEG may be an effective modality

for the prediction of BA. Currently, there are few studies in the

field of brain age prediction using scalp resting EEG, and high-

quality resting EEG datasets with the actual age values included are

scarcely available. This limits the possibility of fully and objectively

comparing the performances of different prediction models on

diversified datasets and thus makes it difficult to comprehensively

assess the generalization ability and robustness of each model. In

particular, the MNCS dataset in this study is not the raw EEG time

series but the cross-spectra, thus limiting the direct application of

other methods to this dataset. To date, only Jarne et al. (2024)

has attempted the BA prediction using the MNCS dataset, and

their model yielded results with an MAE of about 10 years and

an R2 of about 0.55. Compared to DCNN (Khayretdinova et al.,

2022), our NEOBA model has improved by reducing the MAR by

16.95% in the TDBRAIN dataset. NEOBA demonstrates significant

superiority on both the MNCS dataset and the TDBRAIN dataset.

It should be noted that the MNCS data set may be affected by

possible confounders, such as multisite data acquisition, variations

in electrode placement, and harmonization strategies. The details

of the MNCS data set can be accessed in Table C1, Appendix C

of our previous work (Li et al., 2022b). Because it is a data set

coshared by the call for international collaboration by the Global

Brain Consortium, there are significant differences in the recording

protocols for the different batches. Two steps were implemented to

homogenize the differences across all sites (counties), devices and

years of recordings, as detailed in Table D1 of Li et al. (2022b).

The first step was to extract the electrodes with the standard 10–

20 electrode placement system (Hu et al., 2018b), to restrict the

frequency range to 1.17–19.14 Hz to include the legacy data set of

211 subjects from Cuba (Bosch-Bayard et al., 2020), and to provide

unified instruction for the cleaning of artifacts and the standardized

all-in-one script for cross-spectral calculation. The second step was

to investigate the impacts of batches, that was defined as the sites,

devices, and the years (studies) of recordings.

It is interesting to discover gender-dependent changes as BA

is expected to be older in women during puberty and younger in

female during adulthood. The reason why sex-dependent changes

were not considered is as follows. (1) The MNCS data set

contains 908 males, 912 females, and 146 unknown cases. The age

distribution for either gender will be less balanced with reduced

sample count, preventing the normative study for the lifespan.

It has been shown that “gender” has no dependent effect on

normative modeling applying a mixed-effects model, while “age”

and “frequency” are crucial (Li et al., 2022b; Hu et al., 2019a).

However, this issue deserves to be addressed in the future if the
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data size gets much larger. This will enable to better understand

how gender affects BA prediction.

In the future, the spatiotemporal and spatiospectral features

of the EEG can be extracted to systematically evaluate the

importance of different types of features and identify the features

that best reflect brain aging. Longitudinal designs can capture true

individual changes over time, which is crucial for understanding

dynamic brain structure and function (Bethlehem et al., 2022).

Longitudinal data can validate and improve models built from

cross-sectional data, enhancing model generalization and stability.

In addition, longitudinal designs support early intervention by

detecting abnormalities early, facilitating early diagnosis and

disease progression. Since longitudinal data are difficult to obtain,

most lifespan EEG studies are based on cross-sectional data

(Jockwitz and Caspers, 2021; Rosenberg et al., 2020; Wang et al.,

2012). To ensure the stability and reliability of the model,

future research should prioritize longitudinal studies. At the

application level, based on EEG features, BA prediction models

are used as auxiliary diagnostic tools for the early detection of

neurodegenerative diseases or other age-related health problems.

Automated prediction of brain age from raw EEG is theoretically

feasible, as it only requires additional pre-processing and spectral

calculation steps. All the preprocessing, the spectral calculation,

and the downstream prediction can be integrated into a complete

standalone pipeline. If large normative EEG time series data are

available with brain age values for use, fully automated end-to-end

deep learning approaches can be developed with the latest advances

in time series state-space modeling, Fourier neural network, and

generative models.

5 Conclusion

This study constructed for the first time the evolutionary

trajectory of EEG OSFs over the lifespan and proposed a novel

framework named NEOBA, i.e., OSFs-ODC-FCNN, to predict BA.

The ODC matrix was learned by the sparse group lasso, reflecting

interactive representational information across multiple OSFs.

Integrating ODC with OSFs achieved optimal performance in

MNCS and TDBRAIN datasets. Through PCC and LRP, the role of

OSFs and FCNN in age prediction tasks was systemically evaluated,

gaining us more interpretability and reliability. It indicates that

the joint input of both ODC and OSFs can greatly improve the

prediction of BA. The code and tutorial of the NEOBA framework

are freely available at https://github.com/ShiangHu/NEOBA.
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