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Background: Alzheimer’s disease (AD) greatly a�ects the daily functioning and

life quality of patients and is prevalent in the elderly population. Amyloid-β

(Aβ) accumulation in the brain is the main hallmark of AD pathophysiology.

Positron Emission Tomography (PET) imaging is the most accurate method to

identify Aβ deposits in the brain, but it is expensive and not widely available.

The development of a low-cost method to detect Aβ deposition in the brain,

as an alternative to PET, would therefore be of great value. This study aims to

develop and validate machine learning algorithms for accurately predicting brain

Aβ positivity using plasma biomarkers, genetic information, and clinical data as a

cost-e�ective alternative to PET imaging.

Methods: We analyzed 1,043 patients from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset and validated our models on 127

patients from the Center for Neurodegeneration and Translational Neuroscience

(CNTN) dataset. Brain Aβ status was determined using plasma biomarkers

[Aβ42, Aβ40, Phosphorylated tau (pTau) 181, Neurofilament light chain (NfL)],

Apolipoprotein E (APOE) genotype, and clinical information [Mini-Mental

State Examination (MMSE), Montreal Cognitive Assessment (MoCA), age,

education year, and gender]. Decision tree, random forest, support vector

machine, and multilayer perceptron machine learning methods were used to

combine all this information. We introduced a feature selection method to

balance the performance and the number of features. We conducted a feature

matching technique to enable our model to be tested on the external dataset

without retraining.

Results: Our system achieved a value of 0.95 for the Area Under the ROC curve

(AUC) using the ADNI dataset (n = 340) and the full set of 11 features. Our

architecturewas also tested on an external dataset (CNTN, n= 127) and achieved

an AUC of 0.90. When using only five features (pTau 181, Aβ42/40, Aβ42, APOE

E4 count, and MMSE) on 341 ADNI patients, we achieved an AUC of 0.87.
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Conclusion: The random forest, support vector machine and multilayer

perceptron methods can accurately predict brain Aβ status using plasma

biomarkers, genotype, and clinical information. The method generalizes well to

an independent dataset and can be reduced to using only five features without

losing much accuracy, thus providing an inexpensive alternative to PET imaging.

KEYWORDS

Alzheimer’s disease, Aβ PET, plasma biomarkers, machine learning classification

algorithm, feature selection, feature matching

1 Introduction

Alzheimer’s Disease (AD) is the most common form of

dementia that mostly happens in those aged 65 or above (NIH,

2023). According to the World Health Organization (WHO), more

than 55 million people are living with dementia around the world

in 2023, and 60-70% of them are AD patients (WHO, 2023).

The accumulation of amyloid-β (Aβ) and tau neurofibrillary

tangles are the two main pathological hallmarks of AD

(Radiological Society of North America, 2023). Aβ is a peptide

originating from the Amyloid Precursor Protein (Dementias

Platform UK, 2021). It is found most commonly in two forms,

Aβ40 and Aβ42, with the longer form being more toxic. In the

brains of AD patients, Aβ cannot be cleared effectively, which

leads to the accumulation of amyloid oligomers and plaques.

Amyloid deposits inhibit synaptic function and ultimately kill

neurons, predominantly in the hippocampus. Tau is a protein

normally bound to microtubules in the axons, which play a role

in transporting messages between neurons. For patients with AD,

their tau proteins leave the microtubules to form neurofibrillary

tangles, damaging neuronal structure and function.

Although there is currently no cure for AD (NIH, 2023),

amyloid-clearing therapies (most recently antibodies that target

Aβ) can slow down the progress of the disease and improve the

quality of life for patients in the first stages of the disease. This

new generation of drugs is likely to be most effective when given as

early as possible, ideally before any disease symptoms are evident.

An early diagnosis and prognosis are therefore crucial for potential

patients to receive timely treatments. The key to diagnosis is the

accurate detection of Aβ deposits.

Positron Emission Tomography (PET) imaging is currently the

state-of-the-art method to diagnose AD. Using imaging agents that

can bind to Aβ deposits, such as 11C-labeled Pittsburgh compound

B (PIB), PET can clearly detect and quantify Aβ accumulation in the

brain. However, PET imaging is expensive, the radioactive tracer

is unsuitable for patients with specific health conditions, and few

hospitals are equipped with PET scanners. There is, therefore, an

urgent need to develop a low-cost and easily accessible method for

the diagnosis of AD that can substitute for PET imaging.

Plasma blood biomarkers can be collected easily and are

much cheaper than PET imaging. Antibody-based methods, such

as ELISA, electrochemiluminescence, and Simoa, are typically

used. The presence of specific plasma biomarkers has been found

to be correlated with Aβ deposition in the brain. Therefore,

estimating the brain Aβ status may be possible using the

plasma biomarkers.

Various machine learning architectures have been proposed

for the diagnosis of AD using plasma biomarkers. Pan et al.

(2023) proposed a decision tree (DT) classification algorithm to

predict the Aβ status using plasma biomarkers and cognitive test

results. They enrolled 609 patients from hospitals and extracted

14 features from the patients as their dataset. They prepared three

models with different numbers of features on their study cohort.

Their DT model gave an Area Under the ROC curve (AUC)

value of 0.94 on the dataset with 14 features, 0.83 on the dataset

with 5 features, and 0.71 on the dataset with 3 features. Vergallo

et al. (2019) introduced a method to predict the brain Aβ status

using the plasma Aβ40/42 ratio in cognitively normal individuals.

They collected a dataset from the INSIGHT-preAD study (Dubois

et al., 2018). They identified the ratio of Aβ40/42 as the most

relevant feature for the Aβ prediction by the random forest (RF)

and classification-and-regression-trees algorithms. They showed

the Aβ40/42 ratio was able to estimate the brain Aβ status

with 0.79 AUC. Youn et al. (2022b) developed machine learning

algorithms to estimate the brain Aβ PET positivity using plasma

Aβ. Their dataset was from the Alzheimer’s Disease All Markers

Study (Youn et al., 2022a). They developed RF, support vector

machine (SVM), logistic regression, and deep neural network

algorithms using features of blood Aβ levels, age, Apolipoprotein

E (APOE) genotype, and Mini-Mental State Examination (MMSE)

scores. The RF achieved the best performance with 0.77 accuracy.

Yang et al. (2023) used a stepwise logistic regression model to

predict the positive Aβ PET with the plasma biomarkers. They

collected the dataset from the Center for Neurodegeneration and

Translational Neuroscience (CNTN) data center (CNTN, 2015).

Their model estimated the Aβ PET status using Glial fibrillary

acidic protein (GFAP) and Phosphorylated tau (pTau) 181 with 0.86

AUC in all patients (57 cognitively unimpaired and 87 cognitively

impaired) and 0.93 AUC in cognitively impaired patients. Moradi

et al. (2024) proposed a machine learning model to estimate

the Aβ status based on demographics, APOE genotype, Magnetic

Resonance Imaging (MRI), and neuropsychological assessments.

The status of Aβwas defined by PET and Cerebrospinal Fluid (CSF)

measurements. Their dataset was acquired from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (ADNI, 2004).

They developed the ridge logistic regression (RLR) model and

achieved a 0.68 AUC score in status estimation of Aβ PET. Ashton

et al. (2019) created an Aβ positivity classification model with

plasma biomarkers. They acquired the dataset from the Australian

Imaging, Biomarker and Lifestyle Flagship Study of Aging (AIBL)

(AIBL, 2006) for their study. They developed an SVM algorithm

to predict the amyloid burden positivity with a different number
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of features. Their models gave an AUC of 0.891, using 12 features

[Prothrombin, Adhesion GPCR F4, Aβ A4 protein, NGN2, APOE

E4 count, DNAH10 (axonemal), REST, Neurofilament light chain

(NfL), RPS6KA3, GPSM2, FHAD1 and age] from the cognitively

unimpaired cohort, 0.904 AUC using 10 features (APOE E4 count,

Aβ A4 protein, NfL, NGN2, DNAH10 (axonemal), REST, APBB3,

GPSM2, Prothrombin, and FHAD1) from the Mild Cognitive

Impairment (MCI) and AD cohort, and 0.725 AUC using only

demographic features (gender, age, and APOE E4 count) in the

cognitively unimpaired cohort. Ko et al. (2019) developed a

brain Aβ positivity prediction model with patients’ demographic

information, APOE genotype, and neuropsychological test results.

They used the ADNI dataset as their study dataset. They introduced

an adaptive Least Absolute Shrinkage and Selection Operator

algorithm to identify the highly relevant features to the Aβ PET

status. Their model achieved 0.754 AUC in the mild change cohort

(cognitively normal, significant memory concern, and early MCI),

0.803 in the moderate change cohort (significant memory concern,

early MCI, and late MCI), and 0.864 in severe change cohort

(early MCI, late MCI, and AD). Ten Kate et al. (2018) proposed

an estimation system to predict positive Aβ using non-invasive

features, such as demographic information, cognitive data, and

APOE genotype of the patients. Their study cohort was from the

NeuGrid platform (NEUGRID4YOU, 2015). Their SVM model

gave prediction results of 0.81 AUC in MCI and 0.74 AUC in

cognitively normal patients.

Previous studies have thus demonstrated the feasibility and

clinical utility of estimating brain Aβ PET status using plasma

biomarkers, APOE genotype, and clinical information. The field

has matured significantly, with multiple studies achieving AUC

values above 0.90 and commercial assays receiving regulatory

approval for clinical use. Various machine learning algorithms,

such as DT and SVM, have been developed and shown to perform

well in predicting Aβ PET status. These findings provide a strong

foundation for our study.

However, several challenges remain in translating these

promising results to broader clinical practice. Existing studies

primarily emphasize achieving high accuracy within single-cohort

settings, often overlooking practical constraints related to feature

quantity, computational efficiency, and model generalizability

across different datasets and populations. Most published models

require retraining when applied to new datasets or when

key features are unavailable, limiting their practical utility.

Additionally, there remains a need for systematic comparison

of multiple machine learning approaches under standardized

conditions and validation across independent external datasets.

To address these practical challenges, we propose a

comprehensive machine learning framework that incorporates

feature selection methods to maintain high accuracy with minimal

features, and feature matching techniques that enable external

dataset testing without model retraining. Our approach emphasizes

model robustness and generalizability, critical factors for real-

world clinical implementation that have received limited attention

in previous studies.

Our system achieved a 0.95 AUC value to estimate the

amyloid PET positivity in the ADNI dataset, which is competitive

with existing approaches, and also achieved a high AUC of

0.90 when independently tested on the CNTN dataset. Building

upon the established foundation of plasma biomarker research

and commercial implementations, we developed four distinct

machine learning classification algorithms with a focus on

practical deployment challenges, including model generalizability

without retraining and computational efficiency. Our specific

contributions include systematic external validation and the

development of methods to maintain performance with reduced

feature sets, addressing key gaps in the translation from research

to clinical practice.

2 Materials and methods

2.1 ADNI and CNTN

The ADNI database, a public dataset especially for AD research,

contains various types of data, such as patient clinical information,

biomarker data, and medical test results, making it suitable for this

research target.

Another dataset is required to verify the robustness and

generalization ability of the machine learning algorithms. The

CNTN data center, committed to studying neurodegenerative

diseases in the aging population, such as Alzheimer’s and

Parkinson’s, is an ideal test dataset.

The data used in this study were obtained from the

ADNI database (adni.loni.usc.edu) and CNTN data center

(nevadacntn.org). The ADNI and CNTN studies were conducted

with informed consent from all participants or their authorized

representatives, and the study protocols were approved by the

institutional review boards of all participating institutions.

2.2 Study cohort

In the ADNI dataset, 1,043 patients were included in this study.

We prepared three datasets with different groups of features for

different purposes as follows:

The full feature dataset with the most features was used

to develop the four machine learning algorithms and tune

the hyperparameters.

The best feature dataset with fewer features was designed

to optimize the trade-off between performance and the number

of features.

The trimmed feature dataset with the same features as the

CNTN dataset was used to test the generalization ability of

the algorithms.

Table 1 indicates the details of each dataset used in this research

project. The first three datasets are from the ADNI database by

selecting different groups of features. There are 340 patients with

11 features that can be found in the ADNI database as the full

feature dataset, 341 patients with the 5 features as the best feature

dataset, and 1,043 patients with the 8 features as the trimmed

feature dataset.

The features used in this study are as follows:
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TABLE 1 Study cohort information.

Source ADNI CNTN

Dataset Full feature Best feature Trimmed feature External dataset

Patients 340 341 1043 127

Features pTau181 pTau181 pTau181 pTau181

APOE4 Aβ42/40 APOE4 APOE4

NfL Aβ42 NfL NfL

Aβ42/40 MMSE MoCA MoCA

Aβ42 APOE4 MMSE MMSE

Aβ40 Age Age

MoCA Education Education

MMSE Gender Gender

Age

Education

Gender

• Plasma biomarkers: pTau 181 is the tau protein with Ser181

phosphorylated. Tau hyperphosphorylation is common in AD

(Shen et al., 2021; Mattsson-Carlgren et al., 2021; Therriault

et al., 2023). The higher pTau 181 level is correlated to Aβ

positivity. Aβ42 and Aβ40 are the most common forms of Aβ.

Aβ42 is more prone to aggregation, while Aβ40 is relatively

stable (Cheng et al., 2022). When the Aβ42 accumulates

in deposits in the brain, the concentration of Aβ42 in the

plasma decreases, which leads to a lower Aβ42/40 ratio in

the plasma (Wisch et al., 2023). NfL forms part of the

neurofilament within large-caliber myelinated axons. When

axons are damaged or neurons degenerate, NfL levels increase

and are released into the blood (Rauchmann et al., 2021). A

higher plasma NfL concentration is related to a severe brain

Aβ burden.

• There are three main APOE genotypes: APOE E2, E3, and E4.

The APOE E4 genotype is a significant genetic risk factor for

AD (Weigand et al., 2021). Being homozygous for APOE E4

has a higher risk for AD than being heterozygous. The number

of APOE E4 was counted as the feature in this study.

• Demographic information: age, gender, and years

of education.

• Neuropsychological tests: The MMSE test includes 30

questions covering language, memory, attention, reading, and

writing ability. The total score range is from 0 to 30. Patients

with lower scores are more likely to be at risk of cognitive

impairment. The Montreal Cognitive Assessment (MoCA)

test also includes 30 questions but is more complex than the

MMSE. MoCA includes a visuospatial test component. MoCA

is more sensitive to the early stage of cognitive impairment.

The plasma biomarkers, APOE genotype, and clinical

information data were downloaded from the ADNI database

(“University of Gothenburg Longitudinal Plasma P-tau181

[ADNI1, GO, 2] Version 2020-06-18.csv,” “ADNIMERGE - Key

ADNI tables merged into one table [ADNI1, GO, 2, 3].csv,”

and “Blennow Lab ADNI1-2 Plasma neurofilament light (NFL)

longitudinal [ADNI1, GO, 2] Version 2018-10-03.csv”).

2.3 Feature selection

For the full feature dataset, we used features known to be

relevant to AD.

For the best feature dataset, we calculated the importance scores

of the features from the full feature dataset using random forest,

which achieved the highest AUC value among the decision tree

(DT), random forest (RF), support vector machine (SVM), and

multilayer perceptron (MLP) algorithms (Results Section 4.1).

During the training process, RF evaluates the importance of

each feature by measuring its contribution to the Gini impurity

reduction when it is used to split the dataset. The importance

score of each feature can be calculated by averaging the decrease in

Gini impurity caused by this feature across all trees in the forest.

The feature with the higher importance score is considered the

more important, indicating a stronger contribution to the model’s

predictive power. The importance score of each feature is shown

in Figure 1. For a fair comparison, we selected five features for our

best feature dataset, the same feature amount as the best model of

the state-of-the-art work (Pan et al., 2023). The five features with

the highest importance scores were selected for the best feature

dataset. The features were pTau 181, Aβ42/40, Aβ42, APOE E4

count, and MMSE.

The features were used in the trimmed feature dataset to match

those in the CNTN dataset, as the CNTN dataset lacks some

information compared to the full feature dataset.

2.4 Feature matching

To enable direct testing of our model on the external dataset,

we selected the same group of features for the trimmed feature
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FIGURE 1

Feature importance scores.

dataset as those used in the CNTN dataset. Since the CNTN dataset

and the ADNI trimmed feature dataset originate from different

data sources, we applied z-score standardization to both datasets,

ensuring consistency in feature value range and distribution. We

also utilized z-score standardization for the remaining datasets

to eliminate the impact of feature scale differences on the

model performance.

2.5 Amyloid β PET status

ADNI database provided processed labels for the Aβ PET

status, 0 for negative and 1 for positive.

The Aβ PET status information data was downloaded from the

ADNI database (“UC Berkeley - amyloid PET 6mm Res analysis

[ADNI1, GO, 2, 3, 4].csv”).

2.6 Raw data preprocessing

The data collected from the ADNI and CNTN databases are

distributed in different files and formats. To make the data suitable

for machine learning algorithms, the collected data needs to be

preprocessed. The steps of data preprocessing are as follows:

1. Locate the label (Aβ PET status) and features (each plasma

biomarker test result, APOE genotype, and clinical information)

data in corresponding data files.

2. Unify the format of the sampling date.

3. Extract sampling results and corresponding sampling date for

the label and each feature.

4. Combine the label with all required features into the complete

samples. Only keep the samples with all the features sampled

within 90 days before or after the label sampled date.

FIGURE 2

8-fold cross validation.

5. Transfer categorical features into numbers and

standardize the continuous value features with the z-score

standardization method.

2.7 8-fold cross validation

The 8-fold cross validation was conducted to tune the

hyperparameters and test the models. Figure 2 shows the process

of 8-fold cross validation.

20% of the patients were randomly picked as the test set, and

the remaining 80% of the patients were split into 8 equal-sized

groups. Each group was used as the validation set once, and the

remaining 7 groups were pooled to be used as the training set. The

hyperparameters were tuned to optimize the performance of the

8 validation sets. Finally, the entire training data (80% patients)

was used to train the model with the optimal hyperparameters,

and the model was tested on the test set (20% patients) to evaluate

the performance.

3 Machine learning algorithm design

3.1 Rationale for algorithm selection

We selected four machine learning algorithms, DT, RF, SVM,

and MLP, which are widely used and achieved good performance

in related works. The architectures of these algorithms have good

interpretability, and the characteristics of these algorithms are very

suitable for our research as follows.

DT is straightforwardly interpretable because its structure can

be visualized to explain the classification process. Since it is widely
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FIGURE 3

Demonstration of DT structure.

used in many related works and performs well, it was considered in

our study.

RF is an ensemble learning method consisting of multiple DTs.

By combining the results of multiple DTs, the ensemble method can

achieve better performance than a single tree.

SVM is a robust classification algorithm capable of addressing

both linear and non-linear problems. It is particularly effective in

handling high-dimensional data and is well-suited for classification

tasks involving a large number of features. In this study, we chose

the SVM algorithm due to its strong performance on small to

medium-sized non-linear datasets.

MLP is the most basic neural network with a good ability for

generalization. The MLP was chosen for this study due to the

medium size of the dataset, its ability to handle non-linear data,

and the ease of implementing and adjusting the MLP’s network

structure.

3.2 DT

3.2.1 Structure of DT
Figure 3 shows a demonstration of DT structure. The tree was

built from a root node, and all the training data were included.

Then, the node was split into two child nodes following the

condition of the feature, which minimized the Gini impurity.

Although the right child tree did not distinguish the classes, the

Gini impurity was reduced by the condition. The whole tree

was constructed by recursively splitting the node until the stop

conditions (the maximum depth, the minimum sample split, and

the minimum sample leaf) were reached.

3.2.2 Hyperparameter tuning of DT
The grid search technique was used to tune the

hyperparameters of the DT. Grid search is a hyperparameter

tuning method (Anggoro and Mukti, 2021), which can find the

hyperparameter combination in the given grid with the best score

in a specific performance metric (Géron, 2022). Table 2 shows

the hyperparameters tuning setup for the DT. Max depth limits

the maximum depth of the tree. Min samples split specifies the

minimum number of samples required to split an internal node.

Min samples leaf sets the minimum number of samples required to

be a leaf node.

TABLE 2 Grid search setting of DT.

Max depth 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Min samples split 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Min samples leaf 2, 3, 4, 5, 6, 7, 8, 9, 10

TABLE 3 Grid search setting of RF.

Number of trees 30, 50, 100

Max features 2, 3, 4

According to the grid search, the optimum combination of the

hyperparameters is the maximum depth of 4, the minimum sample

split of 11, and the minimum sample leaf of 2.

3.3 RF

3.3.1 Diversity of RF
The RF is an ensemble architecture that consists of multiple

DTs. In order to achieve better performance, the core idea of the

ensemble method is to make each individual tree different from

each other. One method that can maximize the diversity of the

individuals is random feature selection, which randomly selects a

subset of features for each individual tree.

3.3.2 Hyperparameter tuning of RF
Since the RF is based on the DT, the hyperparameters include

the tree and ensemble hyperparameters. The tree hyperparameters

are reused from the DT optimized from the previous Section 3.2.2,

with a maximum depth of 4, a minimum sample split of 11, and a

minimum sample leaf of 2. The ensemble hyperparameters are the

number of trees and the maximum features. Table 3 shows the grid

search setting.

The optimum ensemble hyperparameters of the RF model

were found to be a number of trees of 100 and the maximum

features of 2.

3.4 SVM

3.4.1 Kernel selection
The kernel function is the core of the SVM algorithm. The

most commonly used kernel functions are linear, polynomial, and

Gaussian (radial basis function) kernels. Three kernels were tested

in this study.

The computational resource requirement for the linear kernel

is the lowest. It can only handle linearly separable data. The linear

kernel function is

K(x, x′) = xTx′ (1)

where x, x′ are the two distinct data points. Superscript T represents

the transpose of the vector. xTx′ is the dot product of the

data points.
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Polynomial kernel and Gaussian kernel can be used to process

non-linear separable data. Both map the data into a higher-

dimensional space to realize linear separability. The difference

between them is the mapping method.

The Gaussian kernel uses the Gaussian function tomap the data

into a higher dimensional space (Yang et al., 2021). The Gaussian

kernel function is

K(x, x′) = exp(−γ ||x− x′||2) (2)

where G is the hyperparameter which controls the width of the

Gaussian function. The larger G narrows the Gaussian function.

||x− x′|| is the Euclidean distance between the data points.

The Gaussian kernel excels at processing data with local

correlations because it calculates the distance between the

data points.

The polynomial kernel uses the polynomial function to map

the data into a higher dimensional space. The polynomial kernel

function is

K(x, x′) = (λxTx′ + r)d (3)

where ń is the hyperparameter that controls the scaling of the dot

product, r is the hyperparameter that controls the bias, d is the

degree of the polynomial, xTx′ is the dot product of the data points.

The polynomial kernel is well-suited for data with global

correlations since it calculates the dot product of the data points.

3.4.2 Hyperparameter tuning of SVM
The hyperparameters were tuned using a grid search. The grid

setting was shown in Table 4. C is the regularization parameter. Too

large C narrows the margin of SVM, which may lead to overfitting.

Too small C widens the margin, which may lead to underfitting.

The ń in the polynomial kernel by default is 1.0/number of features

(Scikit-learn, 2023), which is adaptive for datasets with various

numbers of features.

According to the grid search, the optimal hyperparameters were

found, the Gaussian kernel with the G of 0.01 and the C of 10.

3.5 MLP

3.5.1 Structure of MLP
The structure of the designed MLP algorithm is illustrated in

Figure 4. There is one input layer with many neurons for feature

input, two hidden layers with 10 neurons for each, and one neuron

as the output layer for the estimation result. The MLP is a fully

connected neural network, which means all the neurons in the

previous layer are connected to all the neurons in the next layer.

The output neuron presents the probability of the positive class

calculated by a sigmoid function. If the probability is >0.5, the

result is positive; otherwise, the result is negative.

3.5.2 Hyperparameter tuning of MLP
The hyperparameter tuning is an essential part of implementing

the MLP algorithm. The ReLU function (below) is infinitely

TABLE 4 Grid search setting of SVM.

Linear kernel

C 0.1, 0.2, 0.5, 1, 5, 10, 20, 50, 100

Gaussian kernel

G 0.001, 0.01, 0.02, 0.05, 0.1, 0.5, 1, 2, 5, 10

C 0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 3, 5, 6, 7, 8, 9, 10

Polynomial kernel

Degree, d 2, 3

r 0.1, 1, 10, 20, 50

C 0.1, 1, 2, 3, 5

FIGURE 4

Structure of MLP.

differentiable, and its Equation 4 is concise for calculation (Eckle

and Schmidt-Hieber, 2019). The ReLU function is the most widely

used activation function in neural networks’ hidden layers, and it

usually performs very well.

f (x) = max(0, x) (4)

The Adam optimizer can adaptively adjust the learning rate

during the network training process (Zhang, 2018). The Adam

optimizer was selected for the designed MLP algorithm because

the Adam optimizer converged faster and was more robust than

basic optimizers such as stochastic gradient descent (Kingma and

Ba, 2015).

The remaining hyperparameters, such as hidden layer

structure, batch size, dropout rate, and epochs, were tuned with

the help of a grid search, as presented in Table 5. The hidden layer

sets the number of neurons in each hidden layer. The dropout

rate is the probability of the neurons to be dropped out to prevent

overfitting. The epoch is the number of times the entire training

set passed to the network. The batch size is the number of samples

used in each iteration to update the weights.
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The optimum hyperparameter combination for the MLP is a

hidden layer structure of (10, 10), a dropout rate of 0.5, an epoch of

750, and a batch size of 50.

TABLE 5 Grid search setting of MLP.

Hidden layer (10, 10), (30, 10), (30, 30), (10, 10, 10), (30, 10, 10)

Dropout rate 0.2, 0.5, 0.7

Epoch 500, 750, 1000

Batch size 50, 100, 200, 400

The entire workflow of the system is shown in Figure 5. The

framework of machine learning architecture implementation is

shown in Figure 6.

4 Results

Multiple performancemetrics, AUC, accuracy, precision, recall,

and F1 score, were used to evaluate and compare the performance

of the four machine learning architectures tested on the three

ADNI datasets (the full feature dataset, the best feature dataset, and

the trimmed feature dataset) and an external dataset (the CNTN

dataset). AUCwas used to evaluate the comprehensive performance

FIGURE 5

Entire workflow. In the data acquisition part, the data was collected from the ADNI database and CNTN dataset. The feature selection was conducted

to prepare various datasets with di�erent numbers of features. The data was preprocessed and ready to be used for the algorithm development part.

In the algorithm development part, four machine learning algorithms were designed. The hyperparameters were fine-tuned. The various

performance metrics were used to evaluate the comprehensive performance of each algorithm. The results of all the algorithms were compared. An

external dataset was used to test the generalization ability and robustness of the model.

FIGURE 6

Machine learning framework. First, the preprocessed ADNI dataset was split into the training data and test set. The training set and validation set were

split by 8-fold cross validation from training data. Then, the training and validation sets were used to train the model and help with hyperparameter

tuning. The hyperparameters of each algorithm were tuned on the full feature dataset and were kept the same on the best feature dataset and the

trimmed feature dataset. Finally, the model was evaluated on the test set. Various performance metrics such as ROC curve, AUC value, accuracy,

precision, recall, and F1 score were calculated to evaluate the model performance. In addition, the CNTN dataset was used as an external test set.
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of a model as it considers both the true positive rate and the false

positive rate. The other four performance metrics were used to

evaluate the model performance from different perspectives, and

their formulas are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 ·
Precision · Recall

Precision+ Recall
(8)

4.1 Result of full feature dataset

The performance metrics outcomes for four algorithms applied

to the full feature dataset are presented in Table 6. The RF achieved

the highest scores in all performance metrics. MLP achieved higher

scores in AUC and precision and lower scores in accuracy, recall,

and F1 than the SVM. DT has the lowest scores in all performance

metrics except for recall.

Figure 7a illustrates the Receiver Operating Characteristic

(ROC) curve comparison for each algorithm on the full feature

dataset. The curve represents the relationship between the true

positive rate and the false positive rate when the threshold changes.

The RF, SVM, and MLP performed better than the DT on

this dataset.

4.2 Result of best feature dataset

The results of the performance metrics using four algorithms

on the best feature dataset are illustrated in Table 6. MLP achieved

the highest scores in all performance metrics. SVM has a close AUC

score to RF and higher accuracy, precision, recall, and F1 than

RF. Except for recall, DT got the lowest scores in the remaining

performance metrics.

The ROC curves of the four algorithms, tested on the best

feature dataset, are compared in Figure 7b. The curves demonstrate

that the DT substantially underperformed the other algorithms on

this dataset.

4.3 Result of trimmed feature dataset

The performance metrics for the four algorithms tested on the

trimmed feature dataset are displayed in Table 6. TheMLP achieved

the highest AUC, the SVM achieved the highest accuracy, precision

and F1, and DT achieved highest recall. All four algorithms had

closely similar performances on this dataset with this set of features.

In Figure 7c, the comparison of the ROC curve for each

algorithm on the trimmed feature dataset is displayed. The four

curves are close to each other, indicating that the four algorithms

performed similarly on this dataset.

TABLE 6 Performance metrics on each dataset.

AUC Accuracy Precision Recall F1

Full feature dataset

DT 0.831 0.779 0.769 0.690 0.727

RF 0.951 0.897 0.958 0.793 0.868

SVM 0.918 0.824 0.815 0.759 0.786

MLP 0.938 0.794 0.826 0.655 0.731

Best feature dataset

DT 0.776 0.765 0.811 0.769 0.789

RF 0.863 0.794 0.879 0.744 0.806

SVM 0.864 0.809 0.882 0.769 0.822

MLP 0.870 0.824 0.886 0.795 0.838

Trimmed feature dataset

DT 0.792 0.716 0.686 0.735 0.709

RF 0.791 0.712 0.707 0.663 0.684

SVM 0.797 0.736 0.731 0.694 0.712

MLP 0.806 0.707 0.713 0.633 0.670

CNTN dataset

DT 0.677 0.504 1.0 0.074 0.137

RF 0.886 0.661 0.963 0.382 0.547

SVM 0.886 0.787 0.936 0.647 0.765

MLP 0.896 0.787 0.936 0.647 0.765

4.4 Result of CNTN dataset

The CNTN dataset was tested with the four algorithms trained

on the entire trimmed feature dataset.

The performance metrics of four algorithms on the CNTN

dataset are summarized in Table 6. MLP reached the highest

AUC. SVM and MLP achieved the same scores in the other four

performance metrics, which means they gave the same prediction

results and achieved the highest accuracy, recall, and F1. RF

achieved the same AUC as SVM and the highest precision but lower

recall and F1. DT performed in an unbalanced way with a precision

of 1.0 but very low recall and F1.

Figure 7d presents a comparison of the ROC curves for all

algorithms on the CNTN dataset. The DT performed much worse

than the other algorithms on this dataset.

4.5 Comparison of architectures

Table 7 compares the AUC performance of each machine

learning architecture.

The RF model achieved the highest AUC value on the full

feature dataset, and the MLP model achieved slightly higher

AUC values on the remaining three datasets. The DT’s overall

performance is inferior to that of the RF, SVM, and MLP.
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FIGURE 7

ROC curves comparing machine learning algorithm performance across di�erent feature sets and datasets. ROC curves show the trade-o� between

true positive rate (sensitivity) and false positive rate (1-specificity) for decision tree (DT), random forest (RF), support vector machine (SVM), and

multilayer perceptron (MLP) algorithms. (a) Performance on full feature dataset (n = 340, 11 features) with RF achieving the highest AUC (0.95). (b)

Performance on best feature dataset (n = 341, 5 features) with MLP achieving the highest AUC (0.87). (c) Performance on trimmed feature dataset (n

= 1,043, 8 features) showing similar performance across all algorithms. (d) External validation on CNTN dataset (n = 127, 8 features) demonstrating

model generalizability with MLP achieving AUC of 0.90.

TABLE 7 Performance comparison on AUC.

Full feature dataset Best feature dataset Trimmed feature dataset CNTN dataset

DT 0.831 0.776 0.792 0.677

RF 0.951 0.863 0.791 0.886

SVM 0.918 0.864 0.797 0.886

MLP 0.938 0.870 0.806 0.896

Table 8 compares our work with recent studies on estimating

Aβ PET using plasma biomarkers on the whole cohort with

the AUC values reported. Our study achieves an AUC of

0.95 using a random forest model with 11 features, which is

competitive with the established literature including landmark

studies by Pan et al. (2023) and Nakamura et al. (2018) that

demonstrated AUCs exceeding 0.90. Our best feature model,

using a MLP with 5 features, achieves an AUC of 0.87,

which is competitive compared to the best feature models of

other studies.
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TABLE 8 Recent work of Amyloid β PET estimation with plasma biomarkers.

References Dataset size Feature amount Model AUC

Xu et al. (2025) (this article) 340 11 (full features) Random forest 0.95

341 5 (best features) MLP 0.87

Pan et al. (2023) 609 14 (full features) Decision Tree 0.94

609 5 (best features) Decision Tree 0.83

Palmqvist et al. (2019) 842 5 Logistic regression 0.87

Nakamura et al. (2018) 373 2 Youden’s index 0.91

Vergallo et al. (2019) 276 1 ROC analysis 0.79

Yang et al. (2023) 144 2 Stepwise logistic regression 0.86

Moradi et al. (2024) 231 4 Ridge logistic regression 0.68

Ashton et al. (2019) 169 10 SVM 0.90

5 Discussion

Four machine learning algorithms, DT, RF, SVM, and MLP,

were selected for the Aβ PET positivity prediction. DT has

high interpretability, and the tree structure of the decision

rules can be visualized. RF is well known for robustness and

can reduce overfitting by averaging multiple DTs. SVM often

performs efficiently on not-too-large datasets. MLP is a neural

network with a simple structure and good generalization ability.

All these algorithms achieved previous success in biomarker-

based models. The hyperparameters of the four machine learning

architectures were optimized using the full feature dataset and

subsequently reused for both the best feature dataset and the

trimmed feature dataset. This approach was adopted to maintain

consistent hyperparameters, thereby ensuring a fair comparison

and enabling an assessment of the model’s generalization ability

across different feature sets. In the full feature dataset, the RF

achieved the highest AUC value of 0.951, followed by the MLP with

0.938 and SVMwith 0.918, while theDTmodel produced the lowest

AUC value of 0.831.

Feature selection facilitates clinical feasibility. Identifying

the important and dominant features can significantly reduce

the detection costs and patients’ body burden, and RF, with

highly predictive accuracy and interpretability, is a feasible

choice for selecting important features in clinical applications.

The importance score of each individual feature was calculated

according to the contribution to the Gini impurity reduction

in the RF algorithm (Feature Selection Section 2.3). The AUC

values for the RF and SVM models were very close, 0.863 and

0.864, respectively, while the MLP model displayed a slightly

higher AUC of 0.870 on the best feature dataset. We balanced

the trade-off between feature reduction and model performance.

Despite reducing the number of features, the selected feature

set demonstrated a high correlation with Aβ PET status. This

dataset used significantly fewer features and preserved the robust

performance. In clinical applications, the reduced feature group

can also provide reliable prediction results. Clinicians can flexibly

choose from the full feature group or the reduced feature group to

satisfy the practical requirement of the highest accuracy or further

cost-efficiency.

Many features are costly to measure in blood, particularly

those that quantify the concentrations of proteins using antibodies.

It is, therefore, of great value to remove any features that are

expensive to collect and add little power to any prediction. A

very high performance can be achieved using only five features,

namely: pTau 181, Aβ42/40, Aβ42, APOE E4 count, and MMSE.

The APOE genotype and the MMSE test are cheap to measure,

and only three antibodies are needed to measure pTau 181, Aβ40

and Aβ42 with an ELISA. Applying our method to patients

is, therefore, straightforward and inexpensive. The finding that

only five features provided high AUC has significant clinical and

diagnostic implications, addressing the challenge of limited feature

availability, making biomarker-based AD diagnosis more cost-

effective and easier to implement in clinical settings.

The performance of the four algorithms on the trimmed feature

dataset is not significantly different. The MLP model achieved an

AUC of 0.806, 0.797 for SVM, 0.791 for RF, and 0.792 for DT.

On the external dataset, the CNTN dataset was only used for

an external test set and was not used to train our model. The

hyperparameter tuning process only depends on the performance

of the validation set of the ADNI dataset, as shown in Figure 6.

Therefore, the overfitting issue can be prevented. The MLP model

reaches its highest AUC of 0.896, while the SVM and RF follow

closely with an AUC of 0.886 for both. This indicated that RF,

SVM, and MLP effectively applied the available information in

the trimmed dataset to test the CNTN dataset. However, the

DT model achieved poor and unbalanced performance across

all performance metrics on this dataset, indicating that the DT

model had difficulty generalizing to the external dataset. The results

on the CNTN dataset emphasize the effectiveness of the feature

matching technique in enhancing the model’s generalization ability

to external datasets.

According to the results of four algorithms on each dataset,

the RF model performed best on the full feature dataset, which

is the main research target. The MLP achieved stable and

high performance across all the datasets, exhibited powerful

generalization ability, and excellent comprehensive predictive

performance. The SVM showed a slightly lower performance than

MLP in each dataset and also achieved a good generalization

ability. The DT, the simplest model, performed poorest. Since DT
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is easy to overfit when handling high-dimensional data, the rigid

decision boundaries of DT are not flexible enough to separate

the complex data distributions. Instead, MLP and SVM have

more flexible decision boundaries and more efficient overfitting

prevention methods, such as regularization for MLP and margin

maximization for SVM, enabling them to handle non-linear and

high dimensional data well and have a better generalization ability.

To address DT’s overfitting problem, RF utilized the ensemble

method by aggregating multiple DTs to achieve better performance

and stability than a single DT. In real-world clinical practice, MLP

and SVM can be applied to detect Aβ PET status for patients with

various types and amounts of features. Although the generalization

ability of RF was not as good asMLP and SVM, RF has the potential

to be used to obtain the most accurate prediction in circumstances

of patients with a large number of features.

Our study demonstrated the efficacy of feature selection

and feature matching techniques. These techniques offer the

potential to tackle the problem of feature amount constraints,

reduce computational resource demands, and increase model

generalization capability in practical applications. By comparing

with existing approaches, our work used a smaller dataset and fewer

features yet achieved competitive AUC values when compared

to established methods in the field. Within the rapidly evolving

landscape of plasma biomarker-based AD diagnosis, where

commercial solutions such as PrecivityADTM, Elecsys pTau181,

and Simoa-based platforms have already demonstrated clinical

utility, our contribution lies in addressing specific methodological

gaps related to model generalizability and practical deployment

challenges. Hence, using plasma biomarkers as a low-cost

alternative to PET is of established significance in clinical and

diagnostic applications, and our work contributes to improving

model robustness and addressing practical implementation

challenges in diverse clinical settings.

5.1 Clinical applicability and translation

The clinical translation of our plasma biomarker-based pipeline

presents both significant opportunities and practical challenges.

From a clinical workflow perspective, our system offers several

advantages over current diagnostic approaches. Our best model

(pTau 181, Aβ42/40, Aβ42, APOE E4 count, and MMSE) can

be readily integrated into existing clinical practice, as APOE

genotyping and MMSE testing are already standard procedures in

many memory clinics. The plasma biomarker collection requires

only a standard blood draw, making it accessible across diverse

healthcare settings, including primary care facilities that lack

specialized neuroimaging capabilities.

However, clinical implementation faces several hurdles.

Current clinical decision-making relies heavily on imaging-

based confirmation of Aβ pathology, and clinicians may require

substantial evidence before accepting plasma biomarkers as reliable

substitutes for PET imaging. The probabilistic nature of machine

learning predictions must be carefully communicated to clinicians

who are accustomed to more definitive diagnostic results.

The economic implications are substantial. With PET

scans costing $3,000–$8,000 compared to $100–$1,250 for

plasma biomarker panels (Pais et al., 2023), our approach could

significantly reduce healthcare costs while enabling broader

population screening. This cost-effectiveness is particularly

relevant given the increasing focus on early AD detection and the

growing availability of disease-modifying treatments that are most

effective when administered early in the disease course.

Integration with existing diagnostic pipelines requires careful

consideration. Our system is best positioned as a pre-screening

tool rather than a standalone diagnostic method. In practice,

patients with high-risk predictions could be prioritized for PET

imaging, while those with low-risk scores might undergo continued

monitoring or alternative diagnostic workups. This tiered approach

maximizes the clinical utility of both plasma biomarkers and PET

imaging while optimizing resource allocation.

5.2 Regulatory and implementation
challenges

The regulatory pathway for clinical implementation presents

complex challenges. Regulatory agencies such as the FDA and

EMA require extensive clinical validation demonstrating not

only analytical validity but also clinical utility and actionability.

Our current validation, while promising, represents only the

initial phase of the regulatory requirements. Large-scale, multi-

site clinical trials will be necessary to demonstrate consistent

performance across diverse populations and healthcare settings.

Data harmonization emerges as a critical challenge for

widespread implementation. Our feature matching technique

addresses some inter-dataset variability, but significant challenges

remain in standardizing plasma biomarker measurements across

different laboratories, analytical platforms, and patient populations.

The observed performance difference between ADNI (AUC

0.95) and CNTN (AUC 0.90) datasets, while encouraging,

highlights the importance of robust standardization protocols.

Different laboratory techniques, storage conditions, and processing

procedures can significantly impact biomarker measurements,

potentially affecting model performance.

Patient diversity represents another significant regulatory

challenge. The ADNI dataset, while valuable, predominantly

includes well-educated, Caucasian participants from high-

resource settings. Regulatory approval will require demonstration

of model performance across diverse demographic groups,

including underrepresented racial and ethnic minorities, varying

socioeconomic backgrounds, and different healthcare systems.

The potential for algorithmic bias in healthcare AI systems has

become a major regulatory concern, necessitating comprehensive

fairness assessments.

The international nature of healthcare requires consideration

of varying regulatory frameworks. While the FDA’s recent

guidance on AI/ML-based medical devices provides some clarity,

the European Union’s Medical Device Regulation (MDR) and

other international standards introduce additional complexity.

Our system’s requirement for periodic retraining or updating

to maintain performance may necessitate continuous regulatory

oversight rather than traditional one-time approval processes.

Quality assurance and clinical laboratory standards present

additional implementation challenges. The Clinical Laboratory

Improvement Amendments (CLIA) requirements in the US and

Frontiers in AgingNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1559459
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnagi.2025.1559459

similar international standards mandate rigorous quality control

procedures for clinical laboratory tests. Implementing our machine

learning pipeline within these regulatory frameworks requires

careful attention to result reporting, quality metrics, and laboratory

personnel training.

5.3 Interpretability and clinical
decision-making

The interpretability challenge in clinical machine learning

represents a fundamental tension between model performance and

clinical acceptance. While our MLP model achieved the highest

performance across datasets, its “black box” nature poses challenges

for clinical implementation. Clinicians require understanding of

how predictions are generated, both for clinical decision-making

and for patient communication. The superior interpretability of our

decision tree model, despite its lower performance.

Our random forest-based feature importance analysis provides

some interpretability insights, identifying pTau 181 and Aβ42/40

ratio as the most predictive features. However, feature importance

alone may not satisfy clinical interpretability requirements.

Clinicians need to understand not just which features are

important, but how specific feature values contribute to individual

patient predictions. Figure 8 illustrates the use of SHAP (SHapley

Additive exPlanations) values to provide global and local

interpretability for our RF and MLP models. SHAP values quantify

the contribution of each feature to the model’s prediction, allowing

clinicians to see how individual feature values influence the final

risk score.

Patient communication represents another interpretability

challenge. Patients and families require clear explanations of what

Aβ positivity means, how the prediction was generated, and what

the implications are for their care. The probabilistic nature of

our predictions must be communicated in ways that patients can

understand and act upon. This is particularly important given the

emotional and psychological impact of AD-related diagnoses.

6 Conclusion

We developed an Aβ PET positivity estimation system utilizing

cost-effective plasma biomarkers, genetic information, and clinical

data. We devised a feature selection method to reduce the

number of features while maintaining high accuracy, which largely

decreased the computational costs and plasma biomarker test costs.

Additionally, we conducted a feature matching technique to align

the features of the research target dataset with those of an external

dataset, allowing our trained model to be evaluated on the external

dataset without retraining. Our machine learning model exhibited

highly accurate performance results on both the ADNI and CNTN

datasets, so it generalizes well.

Distinguishing AD from other forms of dementia is difficult at

present as diagnosis usually relies on cognitive assessments only.

The new generation of AD therapies targets Aβ and its deposits,

in particular. These drugs are likely to only work on brains that

contain Aβ deposits. The work described here, which predicts

which patient brains are Aβ positive, could therefore be of great

value in determining which patients would benefit from these

drugs, as well as helping identify different forms of dementia.

6.1 Limitations and future work

6.1.1 Dataset bias concerns
This study faces limitations regarding dataset

representativeness and generalizability that warrant careful

consideration. The ADNI cohort, while valuable for research

purposes, exhibits substantial demographic homogeneity that

may limit the clinical applicability of our findings. Specifically,

ADNI participants are predominantly well-educated, Caucasian

individuals from high-resource healthcare settings, with systematic

underrepresentation of racial and ethnic minorities, lower

socioeconomic groups, and individuals with limited educational

backgrounds. This demographic skew introduces potential

algorithmic bias that could result in reduced model performance

or increased prediction errors when applied to more diverse

patient populations.

The implications of this bias extend beyond simple

performance metrics. Different demographic groups may exhibit

varying baseline biomarker levels, genetic polymorphisms affecting

biomarker expression, and distinct disease progression patterns.

Furthermore, the clinical characteristics of ADNI participants

may not reflect real-world patient presentations. ADNI enrolls

individuals who are generally healthier, more cognitively intact,

and more compliant with study protocols than typical patients

presenting to memory clinics. This selection bias may result in

an overestimation of model performance when applied to more

heterogeneous clinical populations with comorbidities, medication

effects, and varying levels of cognitive impairment.

6.1.2 Model fragility and missing biomarker
challenges

The performance degradation observed in the CNTN dataset

reveals a vulnerability in our modeling approach that extends

beyond the specific case of missing Aβ42/40 ratios. While we

identified the Aβ42/40 ratio as the most important feature through

random forest analysis, the model’s dependence on this single

biomarker exposes a fragility that could limit clinical utility.

When this key biomarker is unavailable - whether due to

laboratory constraints, cost considerations, or technical failures

- the model’s performance drops substantially, undermining its

practical applicability.

The observed performance difference between ADNI (AUC

0.95) and CNTN (AUC 0.90) datasets, while numerically favorable,

masks underlying model instability. The fact that performance

can vary substantially based on feature availability suggests

that our model may not be sufficiently robust for widespread

clinical deployment.

6.1.3 Future research directions
Addressing these limitations requires a multi-faceted

approach that extends beyond simple dataset expansion. Future

work should prioritize multi-cohort validation studies that
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FIGURE 8

SHapley Additive exPlanations (SHAP) value analysis for model interpretability of random forest and multilayer perceptron algorithms. SHAP values

quantify the contribution of each feature to individual predictions, providing both global feature importance and local explanations. (a) Beeswarm

plot showing SHAP value distribution for RF model-each dot represents one patient, with color indicating feature value (red = high, blue = low) and

x-axis position showing impact on prediction. (b) Waterfall plot for RF showing cumulative contribution of each feature to a single patient prediction,

starting from baseline probability. (c) Beeswarm plot for MLP model showing similar feature importance patterns with Aβ42/40 ratio as the most

influential predictor. (d) Waterfall plot for MLP demonstrating how individual feature values combine to produce final prediction probability for

amyloid positivity.

specifically include diverse demographic groups, with particular

attention to underrepresented populations. This should include

collaboration with international research consortia to validate

model performance across different healthcare systems and

patient populations.

The development of robust imputation methods for

missing biomarkers represents a critical research priority.

Advanced techniques such as multiple imputation, matrix

factorization, or deep learning-based approaches could potentially

maintain model performance even when key biomarkers are

unavailable. However, such approaches require careful validation

to ensure they do not introduce additional bias or reduce

prediction accuracy.

Longitudinal validation studies are essential to understand how

model performance changes over time and across different disease

stages. This includes assessment of prediction stability, biomarker

trajectory modeling, and validation of the model’s utility for disease

monitoring in addition to diagnostic classification.

The development of standardized protocols for plasma

biomarker measurement and quality control represents another
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critical research need. This includes harmonization of analytical

platforms, establishment of reference standards, and development

of quality assurance procedures that can be implemented across

diverse clinical settings.

Finally, comprehensive health economic analyses are needed

to establish the cost-effectiveness of our approach compared to

current diagnostic standards. This should include assessment of

downstream clinical outcomes, healthcare resource utilization, and

patient quality of life measures to fully evaluate the clinical utility

of plasma biomarker-based AD diagnosis.
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