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This study is aimed to identify diagnostic and therapeutic biomarkers related to 
neuroplasticity in IS. Gene expression profiling (GSE61616) was derived from GEO, 
and neuroplasticity-related genes were obtained from the GeneCards databases. 
The overlapping genes related to neuroplasticity were processed for GO and 
KEGG analysis. The protein interaction network and hub genes were identified 
using Cytoscape and the PPI network. Then we predicted the potential TFs and 
miRNAs related to hub genes. Single-cell analysis was performed to explore 
cellular localization and intercellular communications related to hub genes in 
GSE167593. Immune infiltration characteristics were explored via GSVA package. 
The correlation between various immune cells and hub genes (CCR5 and CXCR4) 
was calculated via linKET package. Finally, DGIdb database was used for screening 
small-molecule drugs of CCR5 and CXCR4. Our study screened five significant 
neuroplasticity-related hub genes (CCR5, CXCR4, TIMP1, GRIN1, and GRM1). 
Moreover, single-cell analysis revealed that the CCR5 was specifically expressed 
in microglia and macrophages, while the CXCR4 was specifically expressed in T 
cells, NK cells, macrophages, and granulocytes. Immune infiltration and correlation 
analysis revealed a positive association of CCR5 with aDCs and T helper cells, while 
CXCR4 was positively correlated with CD8+ T cells, but negatively correlated with 
Tfh. Finally, the Leronlimab, Ulocuplumab, Burixafor, and MSX-122 are promising 
drugs to treat IS via targeting on CCR5 and CXCR4. In conclusion, our findings 
suggest that CCR5 and CXCR4 are promising targets for enhancing neuroplasticity 
post-ischemic stroke, thus providing potentially effective and reliable therapeutic 
targets for future interventional strategy.
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Introduction

Stroke is the second most common cause of death world-wide, with an estimated 
one-sixth of the global population experiencing it at least once in their lifetime (Duan et al., 
2023; Moskowitz et al., 2010). The number of stroke patients, long-term disability cases and 
resultant deaths continues to rise each year (Benjamin et al., 2019; Xu et al., 2023). It is 
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speculated that, by the year 2030, the number of stroke-related deaths 
will reach 12 million, and the number of stroke survivors will increase 
to 70 million (Feigin et al., 2014). Importantly, stroke-related disability 
imposes a significant economic, social and emotional burden on both 
individuals and society (Cornec et  al., 2017). In addition, 
approximately one-third of patients who survive for 6 months after a 
stroke become dependent on others (Durukan and Tatlisumak, 2007). 
There are two major types of strokes: ischemic stroke (IS) and 
hemorrhagic stroke (Chang et  al., 2021). IS is the predominant 
category of strokes, constituting 87% of all stroke cases, which is 
caused by the blockage of a major cerebral artery (mainly the middle 
cerebral artery) or its branches due to a thrombotic or embolic event 
(Barthels and Das, 2020; Durukan and Tatlisumak, 2007; Uzuner and 
Uzuner, 2023).

Currently, the commonly used medication approved by the 
Federal Drug Administration for IS is the recombinant tissue 
plasminogen activator (r-tPA), which is a thrombolytic agent, thus 
breaking down blood clots and restoring blood flow to the brain 
(Catanese et  al., 2017; Heckman et  al., 2023; Nagamine, 2023; 
Uzuner and Uzuner, 2023; Yawoot et al., 2021). Nevertheless, not 
every patient experiencing IS is suitable for the medication, 
because r-tPA needed to be administered within 4.5 h after the 
beginning of ischemia to reduce the likelihood of hemorrhage 
(Heckman et al., 2023; Yang et al., 2023; Yawoot et al., 2021). In 
fact, administering r-tPA beyond this time frame leads to 
detrimental side effects, such as hemorrhagic transformation 
(HT), edema, and neurotoxicity, which can contribute to high 
mortality in stroke patients (Figueroa et al., 2021; Jickling et al., 
2014). And only a small percentage of stroke patients, ranging 
from 5 to 20%, are eligible for r-tPA treatment (Figueroa et al., 
2021). Currently, the definitive treatment for IS is limited and 
most of existing therapies only provide symptomatic relief 
(Mikitsh and Chacko, 2014). Hence, there is an urgent need for 
the development of novel and more effective therapeutic 
approaches (Gribkoff and Kaczmarek, 2017).

In this study, we  use Gene Expression Omnibus (GEO) 
database, single-cell analysis and immune infiltration analysis to 
uncover novel insights into the mechanisms of IS (Riis et al., 2023). 
Based on the above mentioned three analysis methods, our aim is 
to establish a basis for improving the diagnosis and remedies of IS, 
with the overarching target of alleviating the impact of IS (Riis 
et al., 2023).

Methods

Datasets and data preprocessing

Gene expression profiling datasets and Single-cell transcriptome 
datasets (GSE61616 and GSE167593) in this study were downloaded 

from the GEO database1 (Ke et al., 2024; Yuan et al., 2024). The datasets 
were obtained on the basis of the brain tissues of control mice and model 
mice exposed to MCAO. GSE61616 included 5 ischemic stroke samples 
and 5 controls using the GPL1355 platform (Table  1). GSE167593 
included 1 ischemic stroke sample and 1 control using the GPL24247 
platform (Table 1). The workflow chart was demonstrated in Figure 1A.

Identification of differentially expressed 
genes (DEGs)

To identify DEGs in mouse brain samples from MCAO and 
control mice in the GSE61616 datasets, we conducted differential 
expression analysis using the “limma” package (Alhussaini et  al., 
2024). After batch correction, we  established |log2 fold change 
(FC)| > 1 and adjusted p-value < 0.05 as the thresholds.

Gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes 
(KEGG) enrichment analysis

The biological functions of the overlapping genes were analyzed 
through enrichment analysis of the GO and KEGG. GO and KEGG 
enrichment analysis were conducted using the R package 
“clusterProfiler” (Zou et  al., 2019). GO enrichment analysis was a 
common bioinformatics means for exploring widely information in 
large genetic datasets, encompassing biological processes (BPs), 
molecular functions (MFs), and cellular components (CCs)
(Subramanian et al., 2005). Furthermore, KEGG pathway enrichment 
analysis was usually applied to gain insights into biological mechanisms 
and functions of the overlapping genes (Kanehisa et al., 2019).

Protein–protein interaction (PPI) network 
analysis and hub gene screening

The STRING database2 was utilized to build the PPI network, and 
visualization was performed with Cytoscape software version (3.10.1) 
(Chi et al., 2022).

Construction of regulatory networks

Transcription factors (TFs) and microRNAs (miRNAs) are the 
main regulatory factors that govern gene expression (Alhussaini et al., 

1 http://www.ncbi.nlm.nih.gov/geo

2 https://cn.string-db.org/

TABLE 1 Basic information of gene expression profiling in GSE61616 and GSE167593.

GEO 
accession ID

Platform Samples (total 
number)

Number of 
cases

Number of 
controls

Country Year Author

GSE61616 GPL1355 Rattus norvegicus (15)
5 ischemic stroke 

samples
5 controls China 2014 Wang L

GSE167593 GPL24247 Mus musculus (3)
1 ischemic stroke 

samples
1 control China 2021 Shi X
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FIGURE 1

(A) The workflow chart. (B) Normalization of the expression data in GSE61616. (C) Volcano plot of DEGs in GSE61616. Red plot points represent 
upregulated DEGs, and blue plot points show downregulated DEGs. (D) Heatmaps of DEGs in GSE61616. Heatmap showing the DEGs between MCAO 
and control group in GSE61616. Red represents upregulated genes, and blue indicates downregulated genes. (E) Venn diagram shown the 51 overlaps 
genes between DEGs in GSE61616 and neuroplasticity-related genes. (F) Top 10 bubble chart of BP, CC and MF of GO enrichment analysis. 
(G) Top 10 bar chart of BP, CC and MF of GO enrichment analysis. (H) Top 10 bubble chart of KEGG enrichment analysis. (I) Top 10 bar chart of KEGG 
enrichment analysis. (J) PPI network of the 51 overlaps genes. (K–M) The top 15 hub genes of the PPI network. B = maximal clique centrality (MCC), 
C = maximum neighborhood component (MNC), D = Density of Maximum Neighborhood Component (DMNC). The brighter color in (F, G, and H), the 
higher score. (N) Venn diagram shown the 5 hub genes between MCC, MNC, and DMNC. (O) The TFs regulatory networks of the hub genes.
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TABLE 2 Grouping results of gene expression profiling.

ID Group

GSM1509422 Control

GSM1509423 Control

GSM1509424 Control

GSM1509425 Control

GSM1509426 Control

GSM1509427 MCAO

GSM1509428 MCAO

GSM1509429 MCAO

GSM1509430 MCAO

GSM1509431 MCAO

2024). They play a pivotal role in both the establishment and 
maintenance of gene expression and epigenetic regulatory frameworks, 
highlighting their therapeutic potential as targets for treating IS injury 
(Alhussaini et al., 2024).

NetworkAnalyst database3 was utilized to predict regulatory 
networks of potential TFs based on hub genes (Xia et al., 2015). The 
multiMiR package and mirtarbase database were employed to predict 
miRNAs associated with these hub genes. Subsequently, Cytoscape 
software (3.10.1) was used for further visualization (Chi et al., 2022).

Single-cell analysis

Single-cell analysis was utilized to validate and evaluate the 
expression of hub genes (CCR5, CXCR4, TIMP1, GRIN1 and GRM1) 
at the single-cell level (Perera et al., 2021). Quality control, dimensional 
reduction, and clustering of the data from the mouse brain datasets 
(GSE167593) were conducted using Seurat (v.4.0.4) according to a 
previous paper (Perera et al., 2021). Clusters were annotated using 
singleR (v.1.0) and corrected with CellMarker (Aran et  al., 2019; 
Zhang et al., 2019). Then the CellChat package was used to evaluated 
cell–cell communications and significant pathways related to hub 
genes (Jin et al., 2021).

Immune infiltration and correlation analysis

We analyzed the immune infiltration characteristics between 
MCAO and controls group using readxl and GSVA package (Liu et al., 
2022). And the correlation between various immune cells and hub 
genes (CCR5 and CXCR4) expression was calculated by Spearman 
analysis, via psych, reshape2 and linKET package (Liu et al., 2022). 
p < 0.05 was considered statistically significant.

Screening drugs

DGIdb database4 is a biological application database for screening 
of drugs, which can be used to screen drugs with high correlation to 
the disease genes (Tica et al., 2018). Then, we predict several drugs 
that may reverse the altered expression of CCR5 and CXCR4 (Zhu 
et al., 2020).

Molecular docking

CCR5 and CXCR were selected, and their structures were 
comprehensively characterized through the UniProt website. The 
structures of the compounds were downloaded from the Pubchem 
website, and molecular docking was conducted using CB-DOCK2. 
Subsequently, top-ranked complex conformations in terms of docking 
scores were selected for visualization, and the visualization part was 
provided by Pymol software.

3 http://www.networkanalyst.ca

4 https://www.dgidb.org

Results

Data preprocessing

R software (version 3.5.1) was used to perform the bioinformatics 
analysis (Pearson, 2019). The “affy” package in R was implemented to 
perform the normalization and background correction of data 
(Figure 1B). We downloaded a series of matrix flies and corresponding 
annotation documents from the GEO database. Subsequently, the 
probe data was correlated to the corresponding genes by the 
Bioconductor package in R software (Gentleman et al., 2004). In cases 
where a gene matched with multiple probes, the mean expression 
value was selected for subsequent analysis (Gentleman et al., 2004). As 
shown in Table  2, 10 samples (GSM1509422, GSM1509423, 
GSM1509424, GSM1509425, GSM1509426 GSM1509427, 
GSM1509428, GSM1509429, GSM1509430, and GSM1509431) were 
used for subsequent analysis (Table 2).

Identification of DEGs

The analysis of DEGs (GSE61616) was performed using the 
“limma” package, obtaining 2046 DEGs (1,533 up-regulated and 
513 downregulated). The DEGs presented in the form of a volcano 
map, and the red parts stands for upregulation and the blue parts 
stands for downregulation (Figure 1C). The heatmap of 25 most 
up-regulated and 25 most down-regulated DEGs were shown in 
Figure  1D. The areas highlighted in red indicate the genes of 
upregulation, while the sections shown in blue represent the genes 
of downregulation.

The GeneCards database,5 a comprehensive database for human 
gene search and prediction, was used to obtain 418 genes related to 
neuroplasticity. A total of 311 neuroplasticity-related genes were 
obtained after human-mouse homologous gene conversion using the 
“homologene” package. Among the 311 neuroplasticity-related genes, 
51 genes overlapped with DEGs (Figure 1E). Here, we selected the 51 
overlapping genes for subsequent analysis.

5 https://www.genecards.org/
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GO and KEGG enrichment analyses

GO and KEGG enrichment analysis were used to analyze the 
potential functions and associated pathways of the 51 overlapping 
genes. And the top 10 enrichment results were demonstrated in the 
form of bar charts and bubble charts (Figures  1F–I). The GO 
analysis clearly suggested that the 51 overlapping genes in the BP 
were most enriched in “modulation of chemical synaptic 
transmission” and “regulation of trans−synaptic signaling.” These 
the 51 overlapping genes in CC were most enriched “neuronal cell 
body.” Alterations in MF were dominantly brimming with “cytokine 
receptor activity.” Furthermore, the KEGG analysis highlighted that 
these genes were mainly participated in the cAMP and calcium 
signaling pathway.

PPI network analysis and hub gene 
screening

The STRING database was used to analyze protein prediction and 
experimental interactions (Liu et al., 2023). The interactions among 
51 overlapping genes were studied by constructing and optimizing a 
PPI network through the STRING database (Figure 1J). Subsequently, 
the 5 hub genes (CCR5, CXCR4, TIMP1, GRIN1, and GRM1) were 
identified by intersecting the results from the three algorithms of 
CytoHubba (the plugin of Cytoscape) including maximum clique 
centrality (MCC) (Figure 1K), maximum neighborhood component 
(MNC) (Figure  1L), and density of maximum neighborhood 
component (DMNC) (Figures 1M,N).

Construction of regulatory networks

Furthermore, we screened potential TFs and miRNAs that may 
regulate the hub genes, as illustrated in Figures 1O, 2B. In this study, 
we  identified a total of 29 TFs and 86 miRNAs. Specifically, 
we predicted 29 target TFs based on the four hub genes (CXCR4, 
GRIN1, TIMP1, and GRM1) (Figure  1O) and 86 target miRNAs 
associated with the four hub genes (CCR5, CXCR4, TIMP1, and 
GRM1) (Figure 2B). These TFs and miRNAs may have a potentially 
crucial role in the post-ischemic stroke neuroplasticity.

And then, a comparison between MCAO and control groups was 
assessed to evaluate the expression levels of hub genes (CCR5, CXCR4, 
TIMP1, GRIN1, and GRM1) (Figure 2A). The results showed that 
CCR5, CXCR4 and TIMP1 were up-regulated in the MCAO groups 
compared with control groups, while GRM1 and GRIN1 were down-
regulated in the MCAO groups compared with control groups. All 
these above mentioned results were helpful to better understand the 
role of neuroplasticity in IS and screen the feasible targets for post-
ischemic stroke neuroplasticity.

Single-cell analysis

Single-cell analysis was performed to explore the cell localization 
of 5 hub genes (CCR5, CXCR4, TIMP1, GRIN1, and GRM1). The 
processes of dimensional reduction and cluster annotation of 
GSE167593 datasets were detailed in Figures 2C–F. To ensure datasets 

purity and accuracy, measures were taken to remove doublets from 
each sample, and cell clusters were annotated using SingleR package 
(Fernandez et al., 2019). A total of 11 cell clusters were identified 
through cell clustering and annotation (Figures  2G–I). Further 
analysis of hub genes in cell subpopulations revealed specific 
expression were illustrated in Figures 2J,K, 3A–C. The results showed 
that the CCR5 was specifically expressed in microglia and 
macrophages (Figure 2J), while the CXCR4 was specifically expressed 
in T cells, natural killer (NK) cells, macrophages, and granulocytes 
(Figure  2K). Figures  3D,E showed the aggregated cell–cell 
communication network, and the thickness of connecting lines 
indicated interaction strength and significant changes in cell types, 
suggesting the interaction strength and the cell types with 
significant changes.

Heatmaps were used to identify differential interactions, revealing 
complex cell–cell networks involving CCR5, CXCR4, and immune 
cells. Outgoing and incoming signaling patterns of CCR5 and CXCR4 
pathways were highlighted in Figures 3F–I, providing insights into 
specific cell types. Several outgoing signaling patterns of CCR5, 
including CCL, PSAP, TNF, IFN-I, GRN, and PROS pathways, were 
exhibited in Figure 3F. Several incoming signaling patterns of CCR5, 
including CCL, PTN, CSF, TGF-β, INF-II, CAS, and COMPLEMENT, 
were exhibited in Figure 3G. Several outgoing signaling patterns of 
CXCR4, including CCL, SPP1, CXCL, TNF, CALECTIN and INF-II, 
were exhibited in Figure 3H. Several outgoing signaling patterns of 
CCR5, including CXCL, TNF, CSF and ANNEXIN, were exhibited in 
Figure 3I. These findings demonstrate the single-cell level specificity 
of CCR5 and CXCR4 in the pathways, guiding future in-depth studies 
targeting on specific cells.

Immune infiltration and correlation analysis

Moreover, we  investigated the differences in immune-related 
signatures in the mouse brain between the MCAO and control groups. 
The heat map intuitively displayed the screening results (Figure 3J). 
And red indicates upregulation, while blue indicates downregulation. 
The expression of immune-related signature signatures, including 
activated dendritic cells (aDCs), CD8+ cells, dendritic cells (DCs), 
interdigitating dendritic cells (iDCs), macrophages, neutrophils, 
plasmacytoid DCs (pDCs), T follicular helper (Tfh) cells, tumor 
infiltrating lymphocytes (TIL) and regulatory T cells (Treg) in the 
MCAO group were significantly higher than control group.

Subsequently, we  explored the correlation between immune 
infiltration and gene expression of CCR5 and CXCR4 in MCAO. The 
results indicated there was a positive correlation between CCR5 and 
aDCs/T helper cells, while CXCR4 was positively correlated with 
CD8+ T cells, but negatively correlated with Tfh (Figures 3K,L). These 
findings demonstrated the immune-related signatures of CCR5 and 
CXCR4, guiding future in-depth studies targeting on specific cells.

Screening drugs

The DGIdb database was used to screen the potential drugs of 
CCR5 and CXCR4. In this study, we predicted a total of 13 drugs 
targeted to CCR5, and eight drugs targeted to CXCR4. Detailed 
information on drugs was demonstrated in Tables 3, 4. Among them, 

https://doi.org/10.3389/fnagi.2025.1561282
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FIGURE 2

(A) Validation of hub genes between MCAO and control sample in violin diagram. (B) The miRNAs regulatory networks of the hub genes. (C–F) Data 
filtering process of GSE167593 database. (G) PC plot showing linear dimensionality reduction process of hypervariable genes. (H) t-SNE plot visualizing 
clustering of single cells colored by cell types. (I) Visualisation of clustering and annotation in the tSNE plot control of MCAO groups and control 
groups. (J,K) The expression of hub genes (CCR5 and CXCR4) of MCAO and controls groups in different cell clusters.
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FIGURE 3

(A–C) The expression of hub genes (TIMP1, GRM1 and GRIN1) of MCAO and controls groups in different cell clusters. (D,E) An overview of cell–cell 
interactions. Arrow and edge color indicate direction. Edge thickness indicates the relationship between cells. (F–I) Identification of major signaling 
changes in mela Ccr5 and Cxcr4. Heatmap shows outgoing (F,H) and incoming (G,J) signaling patterns of Ccr5 and Cxcr4. (J) Heatmap depicting the 
mean differences in the expression of immune-related cells between the MCAO and control groups in GSE61616. Red indicates upregulation, while 
blue indicates downregulation. (K,L) Correlation between Immune Infiltration and Expression of Ccr5 and Cxcr4 in MCAO (*p < 0.05).
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the drug with the highest correlation scores with CCR5 was 
Leronlimab, and the highest correlation scores with CXCR4 was 
Ulocuplumab, Burixafor and MSX-122.

Molecular docking

Based on the drug prediction results of CCR5 and CXCR4, 
we  selected the highest correlation scores drugs (Leronlimab and 
Ulocuplumab/Burixafor/MSX-122) for molecular docking. However, 
there were no available structure of Leronlimab and Ulocuplumab in 
Pubchem website.

The molecular docking results showed that Burixafor formed an 
H-bond with residues GLY-2, HIS-113, ARG-188 and TYR190 of 

CXCR4 with a docking fraction of −8.2 Kcal/mol (Figure 4). And 
MSX-122 formed an H-bond with residues ARG-188 of CXCR4 with 
a docking fraction of −7.4 Kcal/mol (Figure 4).

Discussion

IS is a serious disease with a high occurrence and mortality rate, 
making it one of the main causes of lifelong dysfunction of adults 
(Stichling et  al., 2020), resulting in a heavy burden on patients’ 
families and society (Roychoudhury et  al., 2023; Stichling et  al., 
2020). In spite of notable progress in both diagnostic and treatment 
methods, it is anticipated that the rate of strokes will increase by more 
than twofold by the year 2050 (Simats and Liesz, 2022). Additionally, 

TABLE 4 Small molecule drugs targeting CXCR4.

Gene Drug Regulatory 
approval

Indication Interaction score Type and 
directionality

CXCR4 BURIXAFOR (C88323) Not approved Adjuvant to stem cell 

transplantation

6.3 Inhibitor

CXCR4 ULOCUPLUMAB (C95755) Not approved antineoplastic agent 6.3 Inhibitor

CXCR4 MSX-122 (DB12715) Not approved antineoplastic agent 6.3 Inhibitor

CXCR4 MAVORIXAFOR (C126660) Not approved HIV and antiviral agent 5.25 Inhibitor

CXCR4 PLERIXAFOR (733003) Approved antineoplastic agent 3.85 Inhibitor

CXCR4 MOTIXAFORTIDE 

(2664896)

Approved antineoplastic agent 3.15 Inhibitor

CXCR4 BALIXAFORTIDE (C91094) Not approved 2.1 Inhibitor

CXCR4 BEVACIZUMAB-AWWB 

(2046138)

Approved antineoplastic agent 0.1 Inhibitor

TABLE 3 Small molecule drugs targeting CCR5.

Gene Drug Regulatory 
approval

Indication Interaction score Type and 
directionality

CCR5 LERONLIMAB (C137824) Not approved HIV and antiviral agent 7.87 Inhibitor

CCR5 PF-232798 Not approved 5.25 Inhibitor

CCR5 TAK-220 (800) Not approved 3.93 Inhibitor

CCR5 MARAVIROC (620216) Approved HIV and antiviral agent 3.93 Inhibitor

CCR5 BMS-813160 (DB16240) Not approved 2.62 Inhibitor

CCR5 INCB-9471 (DB12960) Not approved 2.62 Inhibitor

CCR5 HGS-1025 

(CHEMBL2109342)

Not approved 2.62 Inhibitor

CCR5 VICRIVIROC MALEATE 

(C73146)

Not approved 2.62 Inhibitor

CCR5 CCR5MAB004 

(CHEMBL2109341)

Not approved 2.62 Inhibitor

CCR5 VICRIVIROC (C73589) Not approved HIV and antiviral agent 2.62 Inhibitor

CCR5 AZD5672 (7686) Not approved 1.31 Inhibitor

CCR5 PF-04634817 (DB14955) Not approved 1.31 Inhibitor

CCR5 APLAVIROC 

HYDROCHLORIDE 

(C76492)

Not approved 1.31 Inhibitor

https://doi.org/10.3389/fnagi.2025.1561282
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the occurrence of long-term disabilities resulting from strokes is 
likely to increase similarly, influenced by changes in demographics 
and a growing number of stroke survivors (Dumbrava et al., 2022; 
Simats and Liesz, 2022). Neuroplasticity is deemed as the foundation 
for functional restoration and neurological recovery following stroke, 
encompassing remodeling of dendrites and dendritic spines, axonal 
sprouting, synapse shaping, and neurogenesis (Qiao et al., 2023). 
However, the repair process is frequently incomplete due to the 
limited regenerative capacity of neurons (Chavez et al., 2017). Thus, 
it is imperative to develop more accessible diagnosis and treatment 
approaches in addition to the existing techniques to benefit the stroke 
patients (Cong et al., 2024; Yan et al., 2023). In this study, we explored 
potential biomarkers of IS, mechanisms of action, and possible 
targets related to neuroplasticity based on various 
bioinformatics analysis.

Our study utilized the GEO database, single cell analysis, and 
immune infiltration analysis to investigate the pathological processes, 
marker genes of neuroplasticity, and intercellular communications in 
the mouse brain following ischemic stroke. Finally, DGIdb database 
was used to identify drugs with high correlation to the hub genes 
(CCR5 and CXCR4).

GO enrichment analysis was used to detect the 51 overlapping 
genes and account for their potential biological mechanisms. The 
results showed that MF were most enriched in “cytokine receptor 
activity,” BP were most enriched in “modulation of chemical synaptic 
transmission” and “regulation of trans−synaptic signaling” and CC 
were most enriched “neuronal cell body.” Simultaneously, the KEGG 
enrichment analysis indicated that the cAMP and calcium signaling 
pathway, along with other signaling pathways, played a vital character 
in the occurrence and progression of IS.

Then, PPI network was performed to determine the hub genes. 
Five hub genes, including CCR5, CXCR4, Timp1, Grin1, and Grm1, 
were screened for subsequent and analysis. We also predicted the TFs 
and miRNAs regulatory networks, by the NetworkAnalysis database, 
multiMiR package and Cytoscape software, as shown in Figures 1O, 2B.

To further investigated potential cellular cross talk influencing the 
development and progression of hub genes, our analysis delved into 
intercellular communications at the single-cell level. Our findings 
revealed that the CCR5 was specifically expressed in microglia and 
macrophages, while the CXCR4 was specifically expressed in T cells, 
natural killer (NK) cells, macrophages, and granulocytes. These results 
were consistent with previous studies reported in the literature 
(Friedman-Levi et al., 2021; Liraz-Zaltsman et al., 2021).

CCR5 is a seven-transmembrane G protein-coupled receptor 
(Zhou et al., 2016). A series of studies demonstrate that inhibiting 
CCR5 expression in premotor cortical neurons following stroke can 
reduce astrocyte reactivity and macrophage recruitment, which may 
help create a beneficial environment for neural repair (Adelson et al., 
2012; Barreto et al., 2012; Liraz-Zaltsman et al., 2021).

Yael et al. demonstrated that CCR5 knockout resulted in advanced 
cognitive abilities, enhanced neural plasticity, greater neuronal 
growth, and less brain damage in both humans and animal models 
(Friedman-Levi et al., 2021). Additionally, CCR5 knockdown induces 
the upregulation of CREB and downstream proteins, such as dual-
leucine zipper kinase proteins, in the premotor cortex (Joy et  al., 
2019). This process may help preserve dendritic spines, promote 
axonal sprouting in the contralateral cortex, enhance the remapping 
of damaged sensory and injured motor circuits, as well as stimulate 
the formation of new connections within these circuits (Joy 
et al., 2019).

FIGURE 4

(A) Three-dimensional structure of Burixafor-CXCR4 molecular docking. (B) Three-dimensional structure of MSX-122-CXCR4 molecular docking.
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CXCR4 was present in the CNS from early developmental phase 
to adulthood, being expressed in neurons, astrocytes, microglia, and 
ependymal cells (Banisadr et al., 2002; Stumm et al., 2002). CXCR4 
plays a key role in neuronal plasticity, repair and immunomodulation 
in the adult brain (Lee et al., 2016). Lee et al. demonstrated that the 
interaction between insulin-like growth factor-1 receptor (IGF1R) and 
CXCR4 led to increased migration and differentiation of stem cells, 
enhanced neovascularization, and the promotion of neurite 
regeneration (Ciobanu et al., 2017; Lee et al., 2016).

Furthermore, we identified various outgoing signaling patterns of 
CCR5, such as CCL, PSAP, TNF, TFN-I, GRN, and PROS pathways, 
as well as incoming signaling patterns including CCL, PTN, CSF, 
TGF-β, INF-II, CAS, and COMPLEMENT. Similarly, CXCR4 
displayed several incoming signaling patterns including CCL, SPP1, 
CXCL, TNF, CALECTIN, and INF-II. Additionally, CXCR4 exhibited 
outgoing signaling patterns like CXCL, TNF, CSF, and 
ANNEXIN. These targets signaling patterns offer insights into the 
CCR5 and CXCR4 pathways within specific cell types.

The immune microenvironment plays a critical role in the 
pathophysiological progression of stroke (Chamorro et al., 2012). A 
variety of immune cells can infiltrate the brain parenchyma orderly 
following an acute stroke (Chen et al., 2023). As the primary immune 
cells in the CNS, microglia are participated in numerous aspects of 
neuroplasticity, including neuronal connectivity, axon formation, 
dendritic spine reorganization, and endogenous neurogenesis (Sandvig 
et al., 2018; Wang et al., 2022). Additionally, microglia contribute to 
tissue repair and functional recovery by secreting anti-inflammatory 
cytokines and growth factors, clearing cellular debris, promoting nerve 
regeneration, and remodeling synapses (Wang et al., 2022).

In this study, we confirmed the differences in immune-related 
signatures in the mouse brain between the MCAO and control groups 
in GSE61616. The consequences demonstrated that MCAO group had 
higher expression of activated dendritic cells (aDCs), CD8+ cells, 
dendritic cells (DCs), interdigitating dendritic cells (iDCs), 
macrophages, neutrophils, plasmacytoid DCs (pDCs), T follicular 
helper (Tfh) cells, tumor infiltrating lymphocytes (TIL) and regulatory 
T cells (Treg) than control group.

Subsequently, we  explored the correlation between immune 
infiltration and the gene expression of CCR5 and CXCR4  in 
MCAO. Surprisingly, there existed obviously positive correlation 
between CCR5 and 2 immune cells (aDCs and T helper cells), as well 
as obviously negative correlation between CXCR4 and Tfh, while 
obviously positive correlation between CXCR4 and CD8+ cells. These 
exploratory findings will guide us to further comprehend the critical 
role of CCR5 and CXCR4.

Moreover, based on screening drugs, we demonstrated that the 
Leronlimab, Ulocuplumab, Burixafor as well as MSX-122 are the key 
drugs of CCR5 and CXCR4 in the treatment of IS. Leronlimab is a 
humanized monoclonal antibody that bound CCR5 (Dhody et al., 
2018), which has been extensively tested in clinical settings for treating 
infections caused by the human immunodeficiency virus type 1 
(Dhody et  al., 2018; Jacobson et  al., 2010). Ulocuplumab (BMS-
936564) is the pioneering fully human IgG4 monoclonal anti-CXCR4 
antibody (Kuhne et al., 2013), which demonstrated to trigger apoptosis 
in multiple myeloma cell lines that exhibited high CXCR4 expression 
(Kuhne et al., 2013). Burixafor is a selective antagonist of the CXCR4 
(Hsu et al., 2018). Wan et al. demonstrate that burixafor can alleviate 
cardiac dysfunction following myocardial infarction in a swine heart 

transplant model (Hsu et  al., 2015). MSX-122 is the only orally 
administered nonpeptide CXCR4 antagonist (Liang et  al., 2012). 
Previous studies indicated that MSX-122 was used to cancer treatment 
by inhibiting the growth and metastasis of cancer cells (Kajiyama 
et al., 2007; Liang et al., 2012; Ramsey and McAlpine, 2013).

The molecular docking results showed that Burixafor formed an 
H-bond with residues GLY-2, HIS-113, ARG-188 and TYR190 of 
CXCR4 with a docking fraction of −8.2 Kcal/mol. MSX-122 formed 
an H-bond with residues ARG-188 of CXCR4 with a docking fraction 
of −7.4 Kcal/mol. However, there were no available structure of 
Leronlimab and Ulocuplumab in Pubchem website. And we could not 
accomplish the molecular docking between Leronlimab/Ulocuplumab 
with CCR5/CXCR4.

After reviewing the relevant literature, however, there are still no 
researches to explore the relationship between leronlimab/Burixafor/
Ulocuplumab/MSX-122 and stroke. Therefore, these drugs are promising 
medications to treat IS, but the effectiveness and safety of these drugs in 
clinical applications for stroke therapy require further evaluation.

However, there are some limitations of our study. First, our study 
only involves two ischemic stroke cohorts, potentially introducing bias 
in the assessment of the immune microenvironment in the mouse 
brain. Second our prognostic model is constructed using data from 
the GEO public database, which may have inherent selection bias. 
Third, the limited number of samples and lack of racial diversity in our 
sample pool further constrain the generalizability of our findings. 
Finally, some of the drugs we screened have not yet been approved for 
the treatment of ischemic stroke so far and their safety and 
effectiveness needed to be further evaluated.

Conclusion

In this study, we utilize GEO datasets, single cell analysis and 
immune infiltration analysis to screen hub genes closely correlated 
with neuroplasticity following ischemic stroke. The results 
demonstrate that there is a close association of CCR5 and CXCR4 with 
post-ischemic stroke neuroplasticity. Meanwhile, there is a significant 
upregulation of CCR5 and CXCR4 following IS. Furthermore, 
immune infiltration characteristics and the targeting drugs to CCR5 
and CXCR4 are also identified to provide useful evidence for IS 
treatment. In conclusion, our study suggests that CCR5 and CXCR4 
are potentially effective and reliable targets for enhancing 
neuroplasticity following IS.
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