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Background: Parkinson’s disease (PD) typically presents with unilateral 
symptoms in early stages, starting on one side and progressing, with the onset 
side showing more severe motor symptoms even after bilateralization. This 
asymmetry may reflect complex interactions among multiple brain regions 
and their network connections. In this study, we aimed to use surface-based 
morphometry (SBM) and structural covariance networks (SCNs) to investigate 
the differences in brain structure and network characteristics between patients 
with left-onset PD (LPD) and right-onset PD (RPD).

Methods: A total of 51 LPD and 49 RPD patients were recruited. Clinical 
assessments included the Unified Parkinson’s Disease Rating Scale motor 
section, Hoehn and Yahr stage, Mini-Mental State Examination, Parkinson’s 
Disease Questionnaire, and Beck Depression Inventory. All participants 
underwent 3 T structural MRI. FreeSurfer was used to perform vertex-wise 
comparisons of cortical surface area (CSA) and cortical thickness (CT), whereas 
the Brain Connectivity Toolbox was implemented to construct and analyze the 
structural covariance networks.

Results: In patients with LPD, we found reduced CSA in the right supramarginal 
gyrus (SMG), right precuneus (PCUN), left inferior parietal lobule (IPL), and left 
lingual gyrus (LING) compared to RPD, while no significant differences in CT 
were found between the two groups. The CSA of the right PCUN showed a 
significant positive correlation with MMSE score in LPD patients. In our SCNs 
analysis, LPD patients exhibited increased normalized characteristic path length 
and decreased small-world index in CSA-based networks, while in CT-based 
networks, they showed increased small-world index and global efficiency 
compared to RPD. No significant differences in nodal characteristics were 
observed in either CSA-based or CT-based networks between the two groups.

Conclusion: In patients with LPD, reductions in CSA observed in the right PCUN, 
right SMG, left IPL, and left LING may be associated with cognitive impairments 
and hallucinations among non-motor symptoms of PD. Additionally, the SCNs 
of LPD and RPD patients show significant differences in global topology, but 
regional node characteristics do not reflect lateralization differences. These 
findings offer new insights into the mechanisms of symptom lateralization in PD 
from the perspective of brain regional structure and network topology.
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Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder after Alzheimer’s disease, characterized 
by a spectrum of progressive motor and non-motor symptoms 
(Aarsland et al., 2021). The pathophysiology of PD is complex and not 
yet fully understood. However, one prominent clinical feature of PD 
is the asymmetry of motor symptoms, which typically begin on one 
side of the body and later progress to the other (Wang et al., 2015). The 
onset side, also known as the symptomatic dominant side, often 
displays more severe motor symptoms even when the disease becomes 
clinically bilateral (Djaldetti et  al., 2006). Unlike the symmetric 
presentation of multiple-system atrophy and progressive supranuclear 
palsy in their classic forms, this asymmetry in PD may reflect its 
unique heterogeneity and provides valuable insights into its 
progression mechanisms (Postuma et al., 2015; Wang Z. et al., 2016; 
Miki et al., 2021).

Numerous studies have found that the side of onset of motor 
symptoms in PD might influence their clinical characteristics and the 
progression of non-motor symptoms. For instance, left-onset PD 
(LPD) often show poorer visual memory and visuospatial impairments 
(Amick et al., 2006; Verreyt et al., 2011), more frequent hallucinations 
(Stavitsky et al., 2008), and a higher prevalence of rapid eye movement 
sleep behavior disorder (Baumann et al., 2014). In contrast, right-
onset PD (RPD) is associated with poorer verbal memory and 
language task impairments (Amick et al., 2006; Verreyt et al., 2011), 
apathy (Harris et  al., 2013), and a higher risk of impulse control 
behaviors (Phillipps et al., 2020). These clinical differences highlight 
the potential impact of PD lateralization on non-motor symptoms, 
possibly reflecting underlying brain structure variations. However, the 
mechanisms involved in PD asymmetry have not yet been elucidated.

Structural magnetic resonance imaging (MRI) studies offer 
preliminary evidence for the lateralization of PD. For example, LPD 
patients show reduced gray matter volume in the right middle frontal 
gyrus and precuneus (PCUN), which are closely linked to visuospatial 
memory impairment (Lee et al., 2015). Additionally, LPD patients 
show cortical thinning in motor-related areas of the left hemisphere 
(Kim et al., 2014). Conversely, studies on cortical complexity in RPD 
patients have revealed decreased mean fractal dimension and mean 
sulcal depth in the left superior temporal sulcus compared to LPD 
patients (Zhang et al., 2021). Although these findings provide some 
insight into brain structure changes related to PD lateralization, 
limited research has focused on cortical surface area (CSA) and 
cortical thickness (CT). Surface-based morphometry (SBM) tools 
such as FreeSurfer can accurately quantify CSA and CT (Goto et al., 
2022). CSA indicates the unfolding of cerebral cortex, while CT 
reflects the density and distribution of neurons (Winkler et al., 2018). 
Joint analysis of CSA and CT may provide new insights into cortical 
changes associated with PD asymmetry.

Moreover, PD involves altered connections between various brain 
regions, it can also be considered a brain network disorder (Canu 
et al., 2015; Wang M. et al., 2016; Ji et al., 2018). The asymmetry in PD 
may result from the unequal degeneration of midbrain dopaminergic 

neurons, but it remains unknown how this localized structural 
damage leads to abnormalities in the entire brain network (Li et al., 
2020). Structural covariance networks (SCNs) provide an effective 
means to explore the lateralization of PD from a network perspective 
by revealing coordinated morphological variations across brain 
regions (Vijayakumar et al., 2021). Studies have reported increased 
clustering coefficient and path length in SCNs of PD patients 
compared to healthy controls, suggesting network-level abnormalities 
associated with disease progression (Pereira et al., 2015; Zhang et al., 
2015; Xu et al., 2017; Wu et al., 2018). Despite these findings, SCNs 
related to the lateralization of PD remain poorly understood.

Therefore, this study aims to analyze cortical structural changes 
in LPD and RPD patients using the SBM approach and to investigate 
differences in brain network topology between the two groups 
through SCNs analysis. We  expect that these investigations will 
provide new insights into the mechanisms underlying the 
lateralization of PD.

Materials and methods

Participants

This study was approved by the local ethical committee of the First 
Affiliated Hospital of Zhengzhou University. In compliance with the 
Declaration of Helsinki, written informed consent was obtained from 
all subjects before participation. The inclusion criteria were as follows: 
(1) no significant cognitive impairment assessed by the Mini-Mental 
State Examination (MMSE); (2) right-handedness; and (3) no history 
of other psychiatric or neurological diseases. Subjects were excluded 
if they (1) had other diseases and treatments that could potentially 
affect brain function, such as atypical parkinsonism, cerebral trauma, 
stroke, and other diseases of the neurological system; (2) had 
contraindications to MRI or were unable to cooperate with an MRI 
scan and clinical assessments. All PD patients underwent assessment 
in a practically defined “off ” state, achieved by withholding anti-
parkinsonian medications for 12 h overnight (Espay et  al., 2012), 
except during MRI acquisition. PD patients were divided into LPD 
and RPD groups based on the side of motor symptom onset. This 
classification was confirmed through retrospective chart reviews, 
patient self-reports, and early-stage clinical evaluations by experienced 
neurologists at our institution.

MRI data acquisition and preprocessing

Anatomical 3D T1-weighted fast field echo (FFE) MRI images 
were acquired on a 3 T Siemens Verio scanner (Siemens, Erlangen, 
Germany) using a 32-channel receive coil in the Department of 
Medical Imaging, The First Affiliated Hospital of Zhengzhou 
University. A memory foam padding was used to minimize head 
motion, and earplugs were used to reduce scanner noise. The MRI 
parameters were as follows: 218 sagittal slices, repetition time 
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(TR) = 1900 ms, echo time (TE) = 2.93 ms, thickness = 1.0 mm, no 
gap, flip angle = 9°, matrix size = 256 × 256 reconstructed to 352 × 352 
over a 220-mm field of view, and voxel size = 0.625 × 0.625 × 1 mm3.

MRI data were preprocessed using FreeSurfer 7.4.1 to estimate 
CSA and CT (Dale et al., 1999; Fischl, 2012). FreeSurfer is open source 
software for accurate and automated human cortical thickness 
measurements and cross-subjects statistics based on cortical anatomy 
(Fischl and Dale, 2000). The suite offers both whole brain vertex-wise 
analysis, which localizes clusters across the whole cortical mantle and 
ROI-based analysis after automatically parcellating the cortex into 
regions based on standard anatomical and functional atlases. In short, 
image processing procedures included motion correction using the 
average of multiple volumetric images, skull and non-brain tissue 
stripping, automated Talairach transformation, subcortical white and 
deep grey matter segmentation, grey and white matter tessellation, 
automated topology correction, and surface deformation to optimize 
the grey/white and grey/cerebrospinal fluid boundaries. To ensure 
data quality, images were inspected for significant motion artifacts 
during preprocessing, and only those meeting quality standards were 
included for subsequent analysis. The quantitative measures of CSA 
and CT for cortical regions were defined using the Desikan atlas 
(Desikan et al., 2006).

Constructing structural covariance 
networks

The Brain Connectivity Toolbox was employed to construct the 
SCNs based on CSA and CT (Rubinov and Sporns, 2010). For each 
group, a 68 × 68 correlation matrix was constructed by calculating 
Pearson correlation coefficients between CSA or CT values of each 
brain region. To emphasize the strength of structural covariance 
regardless of direction, the absolute values of these coefficients were 
taken, and the resulting matrix was then converted into a binary 
adjacency matrix by thresholding to values of 1 or 0 (Figure  1). 
Thresholds were defined as a network sparsity range from 0.1 to 0.4 
(increments of 0.01), which ensured that LPD and RPD networks had 
the same number of nodes and edges at each density. The chosen 
sparsity range allows the small-world network architectures to 
be properly estimated, and the number of spurious edges in each 
network is minimized, as indicated in previous studies (Achard and 
Bullmore, 2007; He et al., 2007).

Graph-based network analysis

As measures of network integration, we calculated the normalized 
characteristic path length, defined as the shortest path length between 
all pairs of nodes, and global efficiency, which measures how efficiently 
information is communicated between nodes. To assess network 
segregation, we analyzed the normalized clustering coefficient which 
evaluates the influence of different paths based on the connection 
weights of the node’s neighbors, and local efficiency, defined as the 
number of connections in the neighborhood of a certain node divided 
by the maximum number of possible connections between the 
neighbors of this node. To evaluate the extent of network modular 
organization, we computed modularity, which quantifies the strength 
of division of a network into distinct functional modules or 

communities. Small-worldness, reflecting the balance between 
network integration and segregation, was also computed. To explore 
group differences in nodal network measures, we examined nodal 
degree, nodal efficiency, and nodal betweenness centrality.

Statistical analysis

The statistical analyses of demographic and clinical indices were 
conducted using the SPSS version 22.0 (SPSS Inc., Chicago, IL, 
United States). The normal distribution of the data was assessed by 
Shapiro–Wilk test. Group differences in age, years of education, age at 
onset, Unified Parkinson’s Disease Rating Scale motor section 
(UPDRS-III), Beck Depression Inventory (BDI), and levodopa 
equivalent daily dose (LEDD) were analyzed with unpaired two-tailed 
t-tests. The Mann–Whitney U test was used to analyze differences in 
disease duration, Parkinson’s Disease Questionnaire (PDQ-39), 
MMSE, and Hoehn and Yahr stage. A two-tailed p < 0.05 was 
considered statistically significant.

To assess group differences in CT and CSA, we conducted whole-
brain vertex-wise analysis using the graphical user interface of 
FreeSurfer known as QDEC (Query, Design, Estimate, Contrast) (van 
Eijndhoven et al., 2013; Bruno et al., 2017). We used a general linear 
model (GLM) to compare CSA and CT between LPD and RPD groups 
with age and sex as covariates. The Monte Carlo Null-Z Simulation 
was employed to control for multiple comparisons (10,000 iterations, 
cluster-forming p < 0.05, cluster-wise corrected p < 0.05). Then, 
partial correlation analyses were conducted separately for the LPD and 
RPD groups to investigate associations between the CSA and CT of 
regions showing significant group differences and clinical variables 
(age of onset, duration, MDS-UPDRS III, PDQ-39, BDI, MMSE, and 
LEDD), with age and sex as covariates. A significance threshold of 
p < 0.05 was adopted for these exploratory analyses, without 
correction for multiple comparisons.

To assess the statistical significance of group differences in all 
network parameters, we used a non-parametric permutation test with 
2,000 repetitions (He et  al., 2008; Zhang et  al., 2019). For each 
repetition, the corrected CSA and CT values of each subject were 
randomly reassigned to one of two new groups with the same number 
as the original LPD and RPD groups, and then the correlation matrices 
were recalculated for the two new groups. For the two new groups, 
network parameters were calculated and differences were compared 
at each sparsity. The area under the curve (AUC) was computed using 
the trapezoidal rule with a step size of 0.01 to integrate the group 
difference trajectories across all sparsity thresholds, summarizing 
cumulative differences over the entire density range (Zhang et al., 
2019). The statistical threshold was set at p < 0.05 for group differences 
in global network parameters. For regional network parameters, a 
p < 0.05 significance level was applied following false discovery rate 
(FDR) correction using the Benjamini-Hochberg method.

Results

Demographic and clinical characteristics

There were 50 cases in LPD group (1 excluded from 51 recruited 
due to image quality issues) and 49 cases in RPD group. The 
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demographic and clinical characteristics of participants are 
summarized in Table  1. Age, gender, disease duration, years of 
education, age at onset, MDS-UPDRS III score, PDQ-39 score, Hoehn 
and Yahr stage, MMSE score and BDI score were comparable between 
the two groups (p > 0.05; Table 1).

Group differences in CSA and CT

The whole-brain vertex-wise analysis revealed that compared to 
RPD patients, the LPD patients exhibited 4 clusters with significantly 
smaller CSA as follows: cluster 1 in the right hemisphere was primarily 
located in the supramarginal gyrus (SMG); cluster 2  in the right 
hemisphere was located in the PCUN; cluster 3 in the left hemisphere 
was mainly in the inferior parietal lobule (IPL); and cluster 4 in the left 
hemisphere was in the lingual gyrus (LING). All clusters were 

corrected using Monte Carlo simulations at p < 0.05 (Figure 2, Table 2). 
However, the vertex-wise comparisons with correction for multiple 
comparisons of CT found no differences between the two groups.

Correlation between morphometrical 
alterations and clinical variables

Partial correlation analyses, adjusted for age and sex, were conducted 
separately for the LPD and RPD groups to examine relationships 
between the CSA of the four regions with significant group differences 
(right SMG, right PCUN, left IPL, and left LING) and clinical variables 
(age of onset, duration, MDS-UPDRS III, PDQ-39, BDI, MMSE, and 
LEDD). In the LPD group, the CSA of the right PCUN was significantly 
positively correlated with MMSE score (r = 0.360, p = 0.01) (Figure 3). 
No other significant correlations were observed between the CSA of 

FIGURE 1

Correlation matrices with 68 × 68 for LPD and RPD groups based on cortical surface area (A,B) and cortical thickness (C,D). These matrices display the 
Pearson correlation coefficients between pairs of regions in the network. The color bar represents the absolute value of the Pearson correlation 
coefficients, indicating the strength of the connections.
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these regions and any clinical variables in the LPD group (p > 0.05). In 
the RPD group, no significant correlations were found between the CSA 
of the four regions and any clinical variables (p > 0.05). A summary of all 
tested correlations for both groups is provided in Supplementary Table S1.

Global network characteristics

The global network parameter changes and between-group 
differences for CSA and CT in the LPD and RPD patients across a 
sparsity range of 0.10 to 0.40 are shown in Figure 4. Both groups 
exhibited small-world properties in their SCNs, with a small-world 
index greater >1. For CSA-based networks, AUC analysis revealed that 
the normalized characteristic path length was significantly increased 
in LPD patients compared to RPD (p = 0.024), while the small-world 
index was significantly higher in RPD patients (p = 0.037). Conversely, 
for CT-based networks, AUC analysis revealed that the small-world 
index and global efficiency were significantly higher in LPD patients 
compared to RPD (p = 0.006 and p = 0.032, respectively). For the 
remaining global network parameters, no significant between-group 
differences were observed between LPD and RPD patients (all 
p > 0.05; Supplementary Figures S1, S2).

Regional network characteristics

We investigated the networks (sparsity = 0.01) for between-group 
differences in regional network measures, including nodal 
betweenness, nodal efficiency, and nodal degree. No significant 
differences in nodal characteristics were observed after correction for 

TABLE 1 Demographic and clinical data of study groups.

Characteristic LPD (N = 50) RPD (N = 49) p (LPD vs. RPD)

Age, years, mean ± SD 64.10 ± 7.957 62.90 ± 10.574 0.524

Gender, F / M 23 / 27 24 / 25 –

Education, years, (IR) 6.00 (6.00–9.00) 9.00 (6.00–9.00) 0.522

Age of onset, years, mean ± SD 55.98 ± 8.498 54.98 ± 10.209 0.597

Duration, years, (IR) 7.00 (5.00–10.00) 7.00 (5.00–10.00) 0.682

UPDRS-III, mean ± SD 55.38 ± 12.227 53.35 ± 15.098 0.463

MMSE, (IR) 27.00 (22.00–28.00) 27.00 (24.00–28.00) 0.780

PDQ-39, (IR) 68.50 (51.75–88.25) 73 (50.50–91.50) 0.629

BDI, mean ± SD 19.16 ± 11.601 18.24 ± 9.148 0.664

LEDD, mg, mean ± SD 822.470 ± 361.0314 813.286 ± 341.9414 0.897

Hoehn and Yahr, (IR) 3.00 (2.50–4.00) 3.00 (2.50–4.00) 0.515

LPD, left-onset Parkinson’s disease; RPD, right-onset Parkinson’s disease; UPDRS-III, Unified Parkinson’s Disease Rating Scale motor section; MMSE, Mini-Mental State Examination; PDQ-
39, Parkinson’s Disease Questionnaire; BDI, Beck Depression Inventory; LEDD, levodopa equivalent daily dose.

FIGURE 2

The brain regions with cortical surface area differences between the 
LPD and RPD groups (corrected using Monte Carlo Null-Z Simulation 
for p < 0.05). Blue (negative values) indicates a reduction in cortical 
surface area in the LPD compared to RPD group. SMG, 
supramarginal gyrus; PCUN, precuneus; IPL, inferior parietal lobule; 
LING, lingual gyrus.

TABLE 2 Significant clusters with altered cortical surface area in LPD versus RPD.

Brain regions Maximum vertex coordinate of significant clusters Size (mm2) P-value for CWP

MNIX MNIY MNIZ

Cortical surface area

LPD < RPD

 Right SMG 56.5 −19 17.3 9956.05 0.0001

 Right PCUN 7.6 −54.5 18.9 2781.66 0.0105

 Left LING −32.1 −50.4 -6.7 2335.01 0.0301

 Left IPL −40.2 −69.3 17.5 2328.80 0.0303

All clusters survived correction for multiple comparisons using a Monte Carlo simulation, resulting in a corrected cluster-wise p < 0.05. CWP, cluster-wise probability; LPD, left-onset 
Parkinson's disease; RPD, right-onset Parkinson's disease; SMG, supramarginal gyrus; PCUN, precuneus; LING, lingual gyrus; IPL, inferior parietal lobule.
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multiple comparisons in either CSA-based or CT-based networks 
between the two groups (p > 0.05; Supplementary Figure S3).

Discussion

To the best of our knowledge, this study is the first to investigate 
cortical morphometric alterations in CSA associated with the 

lateralization of PD. Additionally, this study is the first to reveal 
abnormal topological organization of SCNs between LPD and RPD 
patients. The results showed that LPD patients exhibited significantly 
smaller CSA in the right PCUN, right SMG, left IPL, and left LING 
compared to RPD patients. In our SCNs analysis, LPD patients 
exhibited increased normalized characteristic path length and decreased 
small-world index in CSA-based networks, while in CT-based networks, 
they showed increased small-world index and global efficiency 

FIGURE 3

The scatter plot shows a positive correlation between cortical surface area of the right precuneus cluster and MMSE score in the LPD group.

FIGURE 4

The group differences in network parameters of structural covariance networks based on CSA and CT within the range of 10–40% network sparsity 
include (A) and (C) small-worldness, (B) normalized characteristic path length, and (D) global efficiency. The upper and lower blue bands represent the 
95% confidence intervals, while the middle black line indicates the mean difference after 2,000 permutations. The red line represents the actual group 
difference, and if it falls outside the confidence interval, it indicates that the group difference is significant at the current threshold (p < 0.05). Positive 
values indicate LPD > RPD, and negative values indicate LPD < RPD. The subplots show the group differences in the AUC values for each measure of 
the SCNs.
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compared to RPD. No significant differences in nodal characteristics 
were observed in either CSA-based or CT-based networks between the 
two groups. These findings provide novel multiscale evidence for the 
mechanisms underlying symptom lateralization in PD.

Analysis of specific regional morphological 
changes

Previous studies have indicated that the right PCUN is involved 
in visuospatial memory and attention allocation, and its atrophy has 
been linked to cognitive impairments in PD (Noh et al., 2014; Mak 
et al., 2015; Aracil-Bolaños et al., 2019). In our research, LPD patients 
exhibited a significant reduction in the CSA of the right precuneus 
compared to RPD patients. Moreover, partial correlation analysis 
showed a positive relationship between the CSA of the right 
precuneus and MMSE score in LPD patients, suggesting that atrophy 
in this region might contribute to cognitive impairment. Additionally, 
a study using a resting-state structural connectome, constructed by 
integrating diffusion tensor imaging tractography with resting-state 
data, reported decreased degree centrality in the right PCUN of LPD 
patients (Zhang et al., 2022). This reduction in connectivity, reflecting 
a blend of structural white matter pathways and functional 
correlations, supports our findings of structural changes in the same 
region. These results suggest that the right PCUN could be  an 
important brain region for cognitive changes in LPD patients, 
offering new insights into the pathological mechanisms underlying 
cognitive impairments in PD.

Additionally, our study revealed that LPD patients exhibited 
reduced CSA in the right SMG, left IPL, and left LING compared to 
RPD patients. Structural changes in these regions may be associated 
with the occurrence of hallucinations in PD patients, a common 
non-motor symptom of the disease (Weil et al., 2016). Meta-analyses 
have demonstrated significant gray matter reductions in the right 
SMG and left LING in PD patients with hallucinations (Rollins et al., 
2019). Similarly, Goldman et al. reported markedly decreased gray 
matter volume in the left IPL of PD patients with hallucinations 
compared to those without hallucinations (Goldman et al., 2014). 
Additionally, Stavitsky et al. found that LPD patients are more prone 
to hallucinations than RPD patients (Stavitsky et al., 2008). Previous 
studies have shown that CSA is strongly correlated with gray matter 
volume and can reflect the extent of atrophy in specific brain regions 
(Winkler et al., 2010). In our study, the brain regions where LPD 
patients exhibited significant reductions in CSA correspond to the 
areas of gray matter loss reported in the aforementioned studies. This 
finding suggests that CSA reductions in these regions may be closely 
related to the occurrence of hallucinations in LPD patients. However, 
due to the lack of clinical data related to visual hallucinations, 
we  cannot further analyze the direct association between CSA 
changes in relevant brain regions and hallucinations.

Alterations in global network parameters

There is increasing evidence suggesting that the 
pathophysiological mechanisms of PD are associated with 
abnormalities in cortical morphology and connectivity across 
widespread brain regions (Jankovic, 2008). SCNs analysis offers an 

effective means to explore PD from a network perspective by 
revealing co-variations in brain region morphology (Vijayakumar 
et al., 2021). In our SCNs analysis, we found that both LPD and RPD 
patients exhibit small-world topological properties in their SCNs. 
Small-world topology reflects an optimal balance between local 
segregation and global integration of structural covariation (Achard 
et al., 2006; Kaiser and Hilgetag, 2006). This finding is consistent with 
previous studies on SCNs in PD patients (Pereira et al., 2015; Zhang 
et al., 2015; Xu et al., 2017; Wu et al., 2018). However, the topological 
structures of CSA-based and CT-based networks showed significantly 
different patterns between LPD and RPD patients.

Our study revealed that in CSA-based networks, the normalized 
characteristic path length was significantly higher in LPD compared 
to RPD patients, while the small-world index was significantly higher 
in RPD than in LPD patients. The normalized characteristic path 
length reflects the compactness of covariance patterns across regions, 
with higher values indicating less coordinated structural covariation 
(Suo et al., 2021). This finding suggests that LPD patients exhibit 
more fragmented CSA covariation patterns, whereas RPD patients 
demonstrate better integration of structural covariance across cortical 
regions. Hall et al. found that PD patients with visual hallucinations 
showed altered structural covariance in vision-related networks (Hall 
et al., 2019). When contextualized with our observed CSA differences, 
these fragmented covariance patterns in LPD may reflect impaired 
neurodevelopmental coordination between key regions implicated in 
perceptual processing. This may imply that the fragmented covariance 
patterns observed in LPD patients are associated with the occurrence 
of hallucinations.

However, in CT-based networks, LPD patients exhibited 
significantly higher small-world indices and global efficiency 
compared to RPD patients. This suggests that CT-based networks in 
LPD patients display a more optimized topological organization, 
reflecting greater covariance integration across regions. This 
dissociation in network topology between CSA-based and CT-based 
networks reflects the distinct characteristics of these two 
morphological metrics. Previous studies have shown that CSA and 
CT are orthogonal components influenced by different genetic and 
biological processes, with independent patterns of change during 
aging and disease progression (Dickerson et al., 2009; Panizzon et al., 
2009; Storsve et  al., 2014). Similar dissociated morphological 
alterations have been observed in other diseases (Park et al., 2009; 
Abé et al., 2016). The findings of this study suggest that the changing 
trends in CSA and CT in PD may reflect distinct pathological 
processes, and their independently divergent nature deserves 
further investigation.

Preservation of regional network 
architecture

Notably, although global network parameters revealed 
lateralization-related differences, there were no significant intergroup 
differences in regional network metrics such as nodal efficiency, 
modularity, and clustering coefficients. This suggests that despite 
altered global integration patterns, the fundamental community 
architecture of SCNs remains preserved between LPD and RPD 
patients. Modularity reflects the degree to which a network is 
compartmentalized into distinct functional subsystems, while the 
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clustering coefficient quantifies local connectivity (Alexander-Bloch 
et al., 2013). The absence of differences in modularity or clustering 
coefficients implies that the lateralization of PD symptoms primarily 
affects the efficiency of information integration across distributed 
regions, rather than disrupting the organization of local communities. 
This observation is consistent with previous studies. For instance, 
Frigerio et  al. (2024) found that, although there were significant 
differences in global network parameters such as characteristic path 
length and global efficiency between patients with PD and healthy 
controls, no significant differences were observed in regional network 
metrics. This suggests that the local network structure of patients with 
PD is largely preserved. These findings suggest that PD-related 
lateralization may primarily target the coordination of large-scale 
network integration while preserving local structural 
covariance patterns.

Limitations

This study has several limitations that need to be  addressed. 
Firstly, the relatively small sample size may limit the generalizability 
of the results, and future studies with larger, earlier-stage cohorts are 
necessary to clarify how motor symptom laterality influences brain 
structure over time, distinct from overall disease progression. 
Secondly, SCNs analysis can characterize brain structure but fail to 
capture dynamic network changes. Therefore, integrating resting-state 
fMRI could address this limitation. Thirdly, the MMSE is not sensitive 
enough to assess specific cognitive domains, and thus future studies 
should include more detailed neuropsychological assessments. Finally, 
the calculation of network parameters relies on small-sample group-
level data, limiting individual-level analysis of clinical-
network relationships.

Conclusion

This study employed SBM and SCNs to investigate differences in 
cortical structural characteristics and brain network topological 
properties between LPD and RPD patients. The results revealed that 
LPD patients exhibited significant reductions in CSA in the right 
PCUN, right SMG, left IPL, and left LING, which may be linked to 
cognitive impairments and hallucinations among non-motor 
symptoms of PD. Moreover, divergent global network properties in 
CSA-based and CT-based networks suggest PD lateralization may 
influence the global organization of covariance patterns more than 
the local segregation into distinct communities. These findings offer 
new insights into the mechanisms of symptom lateralization in PD 
from the perspective of brain regional structure and 
network topology.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by The Human 
Scientific Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University. The studies were conducted in accordance with 
the local legislation and institutional requirements. The participants 
provided their written informed consent to participate in this study. 
Written informed consent was obtained from the individual(s) for the 
publication of any potentially identifiable images or data included in 
this article.

Author contributions

TX: Data curation, Formal analysis, Methodology, Software, 
Visualization, Writing – original draft, Writing – review & editing. 
ZD: Data curation, Formal analysis, Investigation, Writing – original 
draft. YY: Investigation, Software, Validation, Writing – original draft. 
WD: Data curation, Supervision, Writing – review & editing. ZM: 
Supervision, Validation, Writing – review & editing. HL: Supervision, 
Validation, Writing – review & editing. LL: Supervision, Validation, 
Writing – review & editing. MZ: Software, Supervision, Validation, 
Writing – review & editing. SZ: Supervision, Validation, Writing – 
review & editing. PY: Supervision, Validation, Writing – review & 
editing. XQ: Supervision, Validation, Writing – review & editing. ZZ: 
Data curation, Project administration, Writing – review & editing. 
FM: Funding acquisition, Project administration, Resources, 
Writing – review & editing. YJ: Conceptualization, Data curation, 
Funding acquisition, Investigation, Project administration, Resources, 
Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was supported 
by the Key Research and Development Program of Henan Province 
(241111310100).

Acknowledgments

The authors thank all the study participants.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

https://doi.org/10.3389/fnagi.2025.1564754
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnagi.2025.1564754

Frontiers in Aging Neuroscience 09 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnagi.2025.1564754/
full#supplementary-material

SUPPLEMENTARY FIGURE S1

The group differences in network parameters of structural covariance 
networks based on CSA within the range of 10%-40% network sparsity 
include (A) clustering coefficient, (B) global efficiency, (C) local efficiency, 
(D) normalized clustering coefficient, (E) characteristic path length and 
(F) modularity. The upper and lower blue bands represent the 95% 
confidence intervals, while the middle black line indicates the mean 

difference after 2,000 permutations. The red line represents the actual 
difference between groups, and if it falls within the confidence interval, it 
indicates that the group difference is not significant at the current 
threshold (p > 0.05). Positive values indicate LPD > RPD, and negative 
values indicate LPD < RPD. The subplots show the group differences in the 
AUC values for each measure of the SCNs.

SUPPLEMENTARY FIGURE S2

The group differences in network parameters of structural covariance 
networks based on CT within the range of 10%-40% network sparsity include 
(A) clustering coefficient, (B) local efficiency, (C) normalized clustering 
coefficient, (D) normalized characteristic path length, (E) characteristic path 
length and (F) modularity. The upper and lower blue bands represent the 
95% confidence intervals, while the middle black line indicates the mean 
difference after 2,000 permutations. The red line represents the actual 
difference between groups, and if it falls within the confidence interval, it 
indicates that the group difference is not significant at the current threshold 
(p > 0.05). Positive values indicate LPD > RPD, and negative values indicate 
LPD < RPD. The subplots show the group differences in the AUC values for 
each measure of the SCNs.

SUPPLEMENTARY FIGURE S3

Nodal network measures of CSA and CT based networks in the LPD and RPD 
groups. Each circle represents a brain region, with a total of 68 regions 
analyzed. The figure displays the distribution of nodal degree, betweenness 
centrality, and nodal efficiency, accompanied by p-values derived from 
permutation tests (all p > 0.05 after FDR correction). These p-values are 
mapped onto brain regions, with colors indicating the p-value range (blue: p 
= 0.1, red: p = 1).
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