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Background: The NeuroArtP3 (NET-2018-12366666) is a multicenter study

funded by the Italian Ministry of Health. The aim of the project is to identify

the prognostic trajectories of Alzheimer’s disease (AD) through the application

of artificial intelligence (AI). Only a few AI studies investigated the clinical

variables associated with cognitive worsening in AD. We used Mini Mental State

Examination (MMSE) scores as outcome to identify the factors associated with

cognitive decline at follow up.

Methods: A sample of N = 126 patients diagnosed with AD (MMSE >19) were

followed during 3 years in 4 time-points: T0 for the baseline and T1, T2 and T3

for the years of follow-ups. Variables of interest included demographics: age,

gender, education, occupation; measures of functional ability: Activities of Daily

Living (ADLs) and Instrumental (IADLs); clinical variables: presence or absence

of comorbidity with other pathologies, severity of dementia (Clinical Dementia

Rating Scale), behavioral symptoms; and the equivalent scores (ES) of cognitive

tests. Logistic regression, random forest and gradient boosting were applied on

the baseline data to estimate the MMSE scores (decline of at least >3 points)

measured at T3. Patients were divided into multiple splits using di�erent model

derivation (training) and validation (test) proportions, and the optimization of the

models was carried out through cross validation on the derivation subset only.

The models predictive capabilities (balanced accuracy, AUC, AUPCR, F1 score

and MCC) were computed on the validation set only. To ensure the robustness

of the results, the optimization was repeated 10 times. A SHAP-type analysis was

carried out to identify the predictive power of individual variables.

Results: The model predicted MMSE outcome at T3 with a mean AUC of

0.643. Model interpretability analysis revealed that the global cognitive state

progression in AD patients is associated with: low spatial memory (Corsi

block-tapping), verbal episodic long-term memory (Babcock’s story recall) and

working memory (Stroop Color) performances, the presence of hypertension,

the absence of hypercholesterolemia, and functional skills inabilities at the IADL

scores at baseline.
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Conclusion: This is the first AI study to predict cognitive trajectories of

AD patients using routinely collected clinical data, while at the same time

providing explainability of factors contributing to these trajectories. Also, our

study used the results of single cognitive tests as a measure of specific cognitive

functions allowing for a finer-grained analysis of risk factors with respect to the

other studies that have principally used aggregated scores obtained by short

neuropsychological batteries. The outcomes of this work can aid prognostic

interpretation of the clinical and cognitive variables associated with the initial

phase of the disease towards personalized therapies.

KEYWORDS

Alzheimer dementia, mild cognitive impairment, MMSE, machine learning, random

forest, SHAP analysis

1 Introduction

Alzheimer’s Dementia (AD) represents a major cause of
disability and mortality for 44 million people worldwide and
this number is expected to triple as the population ages by
2050 (Lane et al., 2018). Although AD is recognized by the
World Health Organization as a global public health priority,
the first pharmacological treatments have not yet been accepted
and introduced into guidelines by all the competent agencies
in the world. Also, despite the monoclonal antibodies, used to
treat amyloid accumulation in early AD, have recently received
approval from American Food and Drug Administration (US-
FDA), the relationship between cognitive benefit and side effects
is still controversial (Cummings et al., 2024). For these reasons
the identification of factors which might influence the cognitive
trajectories of the disease could be crucial for a preventive therapy
sought for AD.

Clinical consensus is consistent in considering AD a syndrome
characterized by a continuum of clinical and biological phenomena
rather than three distinct clinically defined entities known as
preclinical AD, mild cognitive impairment (MCI) and dementia
(McKhann et al., 2011; Dubois et al., 2016; Jack Jr. et al., 2018).
More specifically, patients progress from normal cognition to
MCI due to AD, and subsequently experience an increase in the
severity of AD dementia (mild, moderate, and severe) (Sperling
et al., 2011). However, accurate prediction of AD trajectories
over time still remains a challenging task due to the complicated
characteristics of the disease progression. Within this continuous
process, many factors might present an additive effect on cognition
contributing to AD cognitive worsening, but the interplay between
these variables is still not well understood. For example, despite
the extensive evidence showing the crucial role of amyloid in
driving cognitive decline, this finding does not fully explain the
complexity of late-life cognitive deterioration (Jagust et al., 2023).
In fact, due to the different combinations between biomarker
profiles and cognitive stages in which AD occurs, it is still unclear
whether the cognitive deficit is attributable to AD alone or to other
potential comorbidities (Jack Jr. et al., 2018). These includes early
life risk factors, such as years of education (Xu et al., 2016), and
some midlife and later life components, including brain injury
(Li et al., 2017), hypertension (McGrath et al., 2017), diabetes

(Yen et al., 2022), depression (Singh-Manoux et al., 2017; Wang
et al., 2018) and cerebrovascular diseases (Wang et al., 2018, Xia
et al., 2020, Rundek et al., 2023; see also the 14 risk factors model
by Livingston et al., 2024). As the disease progresses, individuals
with pathological evidence of AD, but cognitively normal, named
“preclinical AD” patients (Morris et al., 2009; Vos et al., 2013),
might suffer from cognitive decline that is detectable by sensitive
neuropsychological measures (Albert et al., 2011). In particular,
cognitive tasks assessing memory deficits as semantic, episodic
memory and executive functions, might be sensitive in predicting
future clinical AD (Amieva et al., 2008; for reviews see review:
Twamley et al., 2006; Salmon, 2012; Mortamais et al., 2017).
According to these assumptions, it might be of great importance
to identify factors influencing the worsening of the disease and on
which we can act promptly.

Artificial intelligence (AI) models might play a significant role
in this context, due to their ability in leveraging massive amounts
of data and uncovering intricate patterns and relationships that
might be missed by traditional statistical methods. Several studies
applied AI models on patients data to highlight the role of
different factors in AD diagnosis and progression, focusing mainly
on neuroimaging data, such as structural Magnetic Resonance
Imaging (MRI) (e.g., Zeng et al., 2018; Lahmiri and Shmuel, 2019),
functional MRI (fMRI) (e.g. Sheng et al., 2019), Positron Emission
Tomography (PET) (e.g. Peng et al., 2019) and Single-photon
Emission Computerized Tomography (SPECT) (e.g. Segovia et al.,
2010; for a review see Tanveer et al., 2020).

In recent literature, most of the studies aimed at modeling
AD progression used data based on standardized publicly available
multimodal dataset (Kumar et al., 2021). Several recent studies
applied AI to electronic health records (EHRs) to predict AD
progression showing the predictive value of neuropsychological
data on cognitive decline (Zhu et al., 2016; Fisher et al., 2019;
Dansson et al., 2021). However, despite the use of big dataset
and highly accurate model performance, these studies did not
explore the contribution of individual cognitive tests to the
diagnostic outcome. For example, the brief neuropsychological
assessment named Alzheimer’s Disease Assessment Scale (ADAS-
Cog) (Rosen et al., 1984) included in several EHRs might not
be as predictive as the performance at individual cognitive tests
used in in-depth cognitive evaluation. In general, for precision
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medicine, it may be appropriate when the screening tests, such
as the Mini Mental State Examination (MMSE) (Folstein et al.,
1975), are followed by a wider comprehensive battery of tests,
administered by expert neuropsychologists and measuring specific
cognitive abilities (Riello et al., 2021) as described by the European
diagnostic workflow (Frisoni et al., 2024). The aim of this study
is to identify which factors are associated with worsening MMSE
scores at 3-year follow-up, represented by demographic, clinical,
functional and cognitive variables. The MMSE is one of the most
widely used screening tests in clinical practice to assess the global
cognitive functioning, is used as an indicator of dementia onset
(Arevalo-Rodriguez et al., 2015; Riello et al., 2021) and can provide
useful data for the rate progression of the cognitive decline (Chow
et al., 2006). We expect these results might be useful for the
realization of a personalized approach aiming to reduce cost,
increase effectiveness of disease treatment and optimize care.

2 Materials and methods

2.1 Data Collection

This is a multi-center, retrospective, observational study
involving patients admitted to the local healthcare trust - Azienda
Provinciale per i Servizi Sanitari (APSS) of Trento (Italy) and
the IRCCS (Scientific Institute for Research, Hospitalization, and
Healthcare) San Martino Hospital of Genoa (Italy). Data selected
for this study was collected as part of the standard routine practice.
The centers collected data from patients diagnosed with AD at
MCI or early dementia stages, in accordance with established
diagnostic criteria (Albert et al., 2011; McKhann et al., 2011),
providing longitudinal follow-up from the diagnosis/recruitment
(baseline). Data were therefore collected at different timepoints,
namely at baseline visit (T0) and at three subsequent follow-ups
(FU) (at 12, 24, and 36 months, T1-T2-T3). Inclusion criteria
were: (1) MMSE >19; (2) Patients who received a diagnosis of
AD between May 2006 and August 2020. All AD patients met
the criteria for probable AD with at least intermediate likelihood
based on (Albert et al., 2011; McKhann et al., 2011). In details,
our patients (N = 126) met the core clinical criteria (decline
from previous level of functioning, gradual onset over months,
evidence of lower performance in one or more cognitive domains
with amnestic and non-amnestic presentations, not explained
by delirium or other major neurodegenerative or psychiatric
disorders) and the presence of neuronal injury imaging data (data
from structural MRI and/or from [18F]FDG PET). Furthemore,
62.7% of patients was also considered at high likelihood of
AD since they presented positive amyloid biomarkers from
Amyloid-PET with specific tracers and/or cerebrospinal fluid
(CSF) assessment of amyloid isoforms (Aβ42/Aβ40 ratio), also in
accordance with the proposed AT(N) research framework (Jack Jr.
et al., 2018). Variables of interest were decided on the basis of
the retrospective available data in the two centers. Data collected
were grouped into the following categories: (1) Demographic
variables including: age, education, gender and working position;
(2) Clinical features: duration of the disease, family history for
a group of diseases, presence or absence of habits (alcohol and
smoking self reported habits) in the past and at diagnosis, presence

or absence of comorbidities (hypertension, hypercholesterolemia,
head trauma, diabetes, heart disease, liver disease, thyroid
disease, tumors, cerebrovascular disease) assessed by specialists
according to the national guide-lines, severity of dementia at the
Clinical Dementia Rating Scale (CDR) (Morris, 1993), presence
or absence of motor aspects (falls, dysphagia, parkinsonism
as apraxia or pyramidal signs), assessed by the neurologists
involved in the study through the neurological examination,
presence or absence of behavioral symptoms (depression, apathy,
hallucinations/delusions, aggression, disinhibition/inadequate
behavior, specific sleep-wake rhythm disorders) collected from
the administration of the Neuropsychiatric Inventory (NPI;
Cummings, 1997), and pharmacological therapy; (3) measures of
functional daily abilities evaluated by the Activities of Daily Living
(ADLs) (Katz et al., 1963) and Instrumental activities (IADLs;
Lawton, 1969) and, (4) Cognitive data: in the form of equivalent
scores (ES) of the neuropsychological assessment covering the
following domains: general cognitive functioning measured by
the MMSE and the Montreal Cognitive Assessment (MoCA;
Nasreddine et al., 2005); memory functions examined by the
Forward Digit Span and the Corsi block-tapping test (Monaco
et al., 2013), the Rey Auditory Verbal Learning Test (RAVLT;
Carlesimo et al., 1996) and the Babcock’s Story Recall Test (BSRT;
Novelli et al., 1986), language assessed by the semantic verbal
fluency test (Novelli et al., 1986), attention investigated by the
Trail Making test A-B (Amodio et al., 2002), executive functions
measured by the phonological verbal fluency test (Carlesimo et al.,
1995) and the Stroop Color and Word Test (SCWT; Barbarotto
et al., 1998) and visuospatial abilities assessed by the Clock Drawing
Test (CDR; Caffarra et al., 2011). For additional information about
the collected variables, see Supplementary Table S1.

2.2 Data processing

The outcome variable, namely the presence of global cognitive
impairment, was defined as a decrease of at least 3 points at the
MMSE test score measured at the 3 years follow-up (Zhu et al.,
2016).

Before being parsed by predictive models, the collected
variables included in this study underwent a common
preprocessing phase. The first step was to remove variables
with more than 30% of missing values, no variability or with
less than 10% of samples in the minority class. Features with
a high proportion of missing values, no variability or highly
unbalanced, in fact, may not provide reliable information,
potentially introducing noise in the training process and limiting
the overall performance of machine learning models. For the
remaining predictors, missing values were imputed with the
median for numerical variables, while for ordinal and categorical
variables the most frequent value was used. ADL and IADL scores
were considered as fraction between the number of preserved
and total number of tested activities. According to this definition,
ADL and IADL scores equal to 1 denote full independence, while
values smaller than 1 denote impairment in some functionalities
with smaller values denoting greater impairment. Before training
the models, dataset variables were normalized using a quantile
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transformer, a min-max scaler, an ordinal encoder and one hot
encoder for numerical, binary, ordinal and categorical features
respectively.

2.3 Model selection

To ensure optimal model selection, the full dataset was divided
into a derivation (training) and validation (test) set. The training set
was used to fit and optimizemodels, while the test set was employed
to evaluate models’ performance.

Since the train-test split selection might influence results due to
the intrinsic variability between different subsets, multiple dataset
partitions were used during the training process. This approach
enabled the assessment of the robustness and stability of the tested
algorithms: in fact, a model that performs consistently well across
different splits is more likely to be reliable and generalizable.
Therefore, starting from the whole dataset, four train-test splits
were created using different proportions (60%–40%, 70%–30%,
80%–20%, 90%–10%).

The performances of three machine learning models, namely
Logistic regression (LR), Random Forest (RF), and Gradient Boost
(GB) were compared. LR is a classic supervised machine learning
algorithm, mainly used for baseline binary classification problems
where the goal is to predict the probability that an instance belongs
to a given class or not. The logistic function is used to describe
the relationship between the independent variables and the selected
outcome. For each input, the model computes the probability that
a given input belongs to a certain class and then makes a prediction
based on a chosen threshold.

RF consists of several independently trained decision trees that
work together to provide a single output. A random subset of the
data set is used to build each tree to measure a random subset of
features in each partition. To make a prediction for a classification
task, the algorithm aggregates the results of all trees by voting. The
combination of randomness and collaborative decision-making
process, reduces the risk of overfitting and provides stable and
precise results.

GB is a powerful machine learning algorithm for classification
and regression tasks. Similarly to RF, this is a method that combines
the predictions of multiple weak learners to create a single, more
accurate strong learner (i.e. ensemble learning).

2.4 Parameters optimization

The hyperparameters of each model were optimized by means
of a randomized grid search procedure. This begins by defining a set
of possible values for each model’s hyperparameters. Subsequently,
a combination of these values is randomly selected, and the
model is trained and evaluated with and without Synthetic
Minority Over-sampling Technique (SMOTE; Chawla et al., 2002).
SMOTE is a method used to address class imbalance in ML
datasets and operates by generating synthetic samples for the
minority class, thereby artificially balancing class distribution. This
process was repeated 100 times for each model using the Optuna
hyperparameter optimization framework (Akiba et al., 2019) in a

three-fold stratified cross validation setting, repeated three times.
The hyperparameter combination (with or without SMOTE) with
the highest Matthews Correlation Coefficient (MCC) score was
selected (Chicco and Jurman, 2023). MCC is a performance metric
that takes into account both true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN), providing a
comprehensive evaluation of the quality of binary classification.
This entire process was repeated 10 times for each ML model and
train-test split proportions, for a total of 40 grid search procedures
for each classifier. To evaluate the predictive performance of the
models several metrics were considered and computed on the test
set, such as: balanced accuracy, the area under the receiver operator
characteristic curve (AUC), the area under the precision-recall
curve (AUPRC), the F1 score and the MCC.

2.5 AI interpretability

To increase the interpretability of our results, Shapley
Additive exPlanations (SHAP) method (Lundberg and Lee,
2017) was applied to the best performing model and train-
test partition for each of the 10 iterations, to inspect the
predictive power of individual variables. SHAP method increases
the interpretability deconstructing each prediction into a sum of
individual contributions from each variable, emphasizing their
influence both at the instance level and throughout the entire
population split considered. For each variable, higher SHAP values
suggest a positive contribution to the model’s prediction of MMSE
decline at T3. Moreover, to understand which feature contributed
the most to models’ prediction, for each of the ten runs a
features importance ranking was performed, by sorting features for
decreasing SHAP values., i.e. for decreasing importance. Then, the
features present consistently in the first ten positions in at least 60%
of the runs were selected as most informative.

3 Results

3.1 Dataset and data preprocessing

Data collection resulted in a total of 126 patients: 25 patients
from the APSS of Trento and 101 patients from the IRCCS
Policlinico San Martino Hospital of Genoa.

During the preprocessing step the following variables were
discarded: alcohol habit, head trauma, diabetes, liver disease,
falls, dysphagia, parkinsonism as apraxia or pyramidal signs,
hallucinations/delusions, aggression, disinhibition/inadequate
behavior due to the low variability in the sample. At the same time,
among the cognitive tests, MoCA, Trail Making test A and B and
Clock Drawing were eliminated due to the high number of missing
values.

After the dataset preprocessing steps, a total of 28 remaining
features were selected for the upcoming model training phase,
comprising 4 demographic (gender, age at diagnosis, education and
occupation), 12 clinical (including: smoke habit and CDR scores;
comorbidities: hypertension, hypercholesterolemia, cardiopathy,
thyroidopathy, tumors and cerebrovascular disease; family history
of diseases and behavioral symptoms: depression, apathy and sleep
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TABLE 1 Demographic and clinical variables at baseline included in the

predictive model.

Category Variables No. (%)

Demographic
characteristics

Female 70 (55.5%)

Age at diagnosis 71.04± 7.10 years

Education years 10.16± 4.37 years

Occupation Elementary 24 (21.23%)

Medium-low 30 (26.54%)

Medium 36 (31.85%)

Medium-high 23 (20.35%)

Major 13 (11.50%)

N/A 13 (11.50%)

Smoking status Non-smoker 73 (56.34%)

Previous smoker 42 (33.33%)

Current smoker 11 (8.73%)

CDR Scores MCI (0) 101 (80.15%)

Mild (0.5) 25 (19.84%)

Moderate (1) 0

Comorbidities Hypertension 65 (51.58%)

Hypercholesterolemia 61 (48.41%)

Cardiopathy 16 (12.69%)

Thyroidopathy 19 (15.07%)

Tumors 20 (15.87%)

Cerebrovascular disease (Fazekas >1) 28 (22.22%)

Family history of
diseases

None 66 (52.38%)

Dementia 50 (39.68%)

Parkinson 5 (3.96%)

Multiple sclerosis 1 (0.79%)

Lateral amyotrophic sclerosis 0

Cerebral tumors 0

Psychiatric pathology 0

Other 6 (4.76%)

Behavioral
symptoms

Depression 74 (58.73%)

Apathy 31 (24.60%)

No sleep disorders 100 (79.36%)

Sleep behavior disorder 2 (1.58%)

Insomnia 23 (20.35%)

Functional
abilities

ADLs (6/6) 0.98± 0.07

IADLs (8/8) 0.88± 0.18

No., number; SD, standard deviation; CDR, Clinical Dementia Rating Scale; MCI, mild

cognitive impairment; ADLs/IADLs, Activities of Daily Living\ Instrumental.

disorders), 2 functional variables (ADL, IADL) (see Table 1) and 10
cognitive scores of the neuropsychological battery (for a detailed
list see Table 2).

TABLE 2 Neuropsychological variables at baseline included in the AI

model.

Variable ES scores mean (±SD),
patients no.

MMSE 25.91 (±2.65, n=126)

Digit span forward 2.76 (±1.34, n=126)

Corsi block-tapping test forward 1.72 (±1.28, n=125)

Immediate recall (RAVLT) 0.95 (±1.34, n=112)

Delayed recall (RAVLT) 0.76 (±1.24, n=113)

BSRT 0.87 (±1.25, n=112)

Semantic verbal fluency test 2.15 (±1.40, n=120)

Phonological verbal fluency 2.56 (±1.48, n=123)

SCWT: Color 2.21 (±1.32, n=98)

SCWT: Color Word 1.82 (±1.36, n=97)

ES, Equivalent Scores; SD, standard deviation;MMSE,MiniMental State Examination; RAVL,

Rey Auditory Verbal Learning Test; BSRT, Babcock’s Story Recall Test; SCWT, Stroop Color

Word Test.

3.2 Predictive variables

The aim of the current study was also to test the predictive
power of different machine learning models (LR, RF and GB) to
predict cognitive trajectories in AD patients, beyond highlighting
the variables associated with a MMSE worsening at T3.

The model achieving the best performance and higher stability
across all training sessions was RF with a 30% train-test split,
with an AUC of 0.643 ± 0.04 (Figure 1). This model was selected
due to its small variability across iterations and train-test splits
configurations, as shown in Supplementary Table S2, and served as
the reference for the interpretability analysis.

The SHAP analysis, performed to identify the most informative
variables consistently present across iterations (>60%), highlighted:
2 clinical, 1 functional and 3 cognitive variables with the highest
predictive impact at T3 (Figure 2). Interestingly, the significant
predictive variables affected cognitive performance differently.
Specifically, the decline of general cognitive abilities measured
by MMSE in AD patients was associated with the presence of
hypertension and the absence of hypercholesterolemia, also, with
impaired functional abilities (IADL <1, i.e. at least one impaired
functionality) and with low performances on the following
cognitive tests: the Corsi block-tapping test (ES <1), the BSRT (ES
<1), and the SCWT (ES <2).

4 Discussion

This study investigated the best AI model to identify
which variables, among a combination of demographic,
clinical, functional and neuropsychological factors, potentially
influence the risk of significant decline of global cognitive
functioning, as measured by MMSE in AD patients. Our results
demonstrated strong associations between clinical, functional and
neuropsychological variables and the MMSE scores at 3 years
FU. Patients suffering from hypertension experienced a decline
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FIGURE 1

Shapley Additive exPlanations (SHAP) analysis results for the best-performing model (Random Forest, using a 70-30% train-test split). Features that

consistently ranked within the top ten across at least 60% of runs are reported. For categorical variables (e.g. hypertension

and hypercholesterolemia), beeswarm plots are shown, where each point represents a SHAP value for a feature and an individual observation. Blue

points indicate low variable values, while red points indicate high values. For continuous variables (e.g., IADL score, Corsi block tapping test, Babcock

story recall, and Stroop color-word test), dependence plots are presented, with each point representing a feature score for an individual participant.

Higher SHAP values suggest a positive contribution to the model’s prediction of MMSE decline at T3.

in MMSE scores at T3. In addition, patients with significantly
poorer performance on the Corsi block-tapping test, on the
BSRT, and, on the SCWT, exhibited a more rapid cognitive
deterioration. In contrast, patients with hypercholesterolemia
and preserved functional instrumental abilities (IADL=1, i.e. full
independence) at baseline did not show cognitive worsening. These
findings suggest that some variables may serve as predictors of
global cognitive trajectories over time, acting either as a risk or a
protective factor for cognitive abilities.
In recent literature, several studies applied AI techniques to
investigate which variables influence the worsening of cognitive
performance over time in AD patients using clinical data.

In particular, Zhu et al., 2016, compared the performance of
different machine learning algorithms to predict the decline of
MMSE scores at 2-years FU. Their dataset included demographic
variables, genetic information and neuropsychological composite
measures of memory and executive functions. Later, Fisher et al.,
2019 examined which variables, including laboratory tests, clinical,
demographic and genetic data, together with cognitive test results,
predict cognitive worsening in MCI or AD patients over an 18-
month period. More recently, Dansson et al., 2021 applied similar
techniques to model patients’ cognitive trajectories at 2 and 4
years, by including demographic variables, biochemical-markers
(proteins, lipids, hormones), the CSF (Aβ42 and Aβ40) and
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FIGURE 2

ROC curves showing the performance of the Random Forest (RF) classifier across selected test set sizes (10%, 20%, 30%, and 40%). The True Positive

Rate is plotted against the False Positive Rate for each test size, with the Area Under the Curve (AUC) illustrating classifier e�ectiveness. Blue line

represents the mean ROC, the shaded gray area indicates variability across iterations, and the red dashed line corresponds to the line of

no-discrimination (AUC = 0.5).

neuroimaging data (MRI and FDG-PET) as well as a wide range of
neuropsychological scores.
Compared to the existing literature, this is the first study predicting
cognitive trajectories of AD patients using clinical data only, while
at the same time providing explainability of factors contributing
to these trajectories. The implemented SHAP analysis, in fact,
allows not only to highlight the most important features associated
with cognitive decline, but also to unveil how feature values
contribute to model prediction. In particular, when applied to
neuropsychological tests and IADL, this process might allow the
detection of plausible test-specific cut-offs indicative of cognitive
decline.
Furthermore, the retrospective dataset considered in the current
work provides some crucial advantages compared to publicly
available repositories used in previous studies. As an example, the
close collaboration with the data collection team allowed for the
resolution of several data provenance issues that typically arise
during data analysis, such as inconsistencies across features or the
detection of outliers, thereby maximizing the amount of usable
data. Indeed, the literature indicates that potentially informative
electronic public datasets are susceptible to inaccuracies (Vyas et al.,
2021). In addition, to assess patients’ cognitive profile, scores from
individual neuropsychological tests were considered. Compared
to aggregated scores extracted from short neuropsychological test
batteries, this potentially allows for a finer-grained analysis of risk
factors.
Our study identified several neuropsychological variables that
predict significant declines in general cognitive functioning over
time. Specifically, low baseline performance in visuo-spatial
short-term working memory, assessed via the Corsi block-tapping
test, long-term verbal memory skills measured by the BSRT,
and executive function related to the inhibition of cognitive
interference, evaluated through the SCWT, were all associated with
deterioration at T3. The role of memory disorders as prodromal
symptoms of AD has been well established (Amieva et al., 2008;
Grober et al., 2008), therefore the presence of such impairments
at disease onset might be considered a foregone conclusion.

Cognitive assessment of visuo-spatial and verbal memory is
routinely employed in clinical settings to evaluate degenerative
diseases. The Corsi block-tapping test has been already recognized
as a crucial test for the diagnosis of AD differentiating patients
from controls at moderate stages (Guariglia, 2007). Additionally,
the story recall test has been shown to predict progression to
dementia in patients with MCI (Park et al., 2017), while the Stroop
test is commonly used to differentiate healthy aging from early AD
in elderly populations (Hutchison et al., 2010). Our results align
with existing literature, which indicates that episodic memory and
executive functions are the cognitive domains most susceptible to
deterioration in patients with early AD (for a review see Twamley
et al., 2006; Salmon, 2012; Mortamais et al., 2017).
Moreover, our results corroborate the significance of
neuropsychological data in predicting global cognitive
deterioration. Despite the heterogeneity of the variables studied,
Zhu et al. (2016) emphasized the importance of executive (ADNI-
EF) and memory (ADNI-MEM) components, while Fisher et al.
(2019) reported the significance of cognitive trials based on
immediate and delayed recall items belonging to the MMSE and
to the ADAS battery. Dansson et al. (2021) identifies the ADAS
and the TMT cognitive tests as strong predictors of cognitive
decline. However, none of these studies reported the significance
of the spatial memory test (Corsi block-tapping test), nor the
verbal memory test for structured material (BSRT) or the ability
of inhibiting cognitive interference (SCWT) in the prediction, as
we have found. Nevertheless, we must highlight that there is a
lack of uniformity in the neuropsychological data employed in the
cited literature; for instance, Zhu et al. (2016) utilized cognitive
scores as composite variables (e.g., ADNI-EF and MEM), while
Fisher et al. (2019) and Dansson et al. (2021) relied on short
neuropsychological batteries like the ADAS, which did not include
the Corsi span or Stroop tests.

Our analysis indicates that the baseline assessment of cognitive
functions can predict global cognitive decline over time, a
conclusion supported also by other studies applying AI algorithms
to clinical data from AD patients (Zhu et al., 2016; Fisher et al.,

Frontiers in AgingNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1565006
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Riello et al. 10.3389/fnagi.2025.1565006

2019; Dansson et al., 2021). Conversely, the existing literature
largely overlooks the association between spatial memory and
cognitive deterioration, with few studies incorporating spatial
memory assessments. Among the multiple studies considered in
the reviews by Twamley et al. (2006) and Salmon (2012), only
one included the Corsi span test, while Mortamais et al. (2017)
cited only two studies featuring it. In light of our findings, we
believe it would be important to include the span space score in
baseline neuropsychological assessments for MCI patients with
AD biomarkers, as it may enhance the prediction of cognitive
progression.
Regarding clinical comorbidities, the present study highlighted the
association between the presence of hypertension and cognitive
decline, measured as a drop of the MMSE score. Conversely,
an opposite pattern was found for hypercholesterolemia,
which might serve as a protective factor. The presence of
hypertension is consistently related with cognitive decline
and increased risk of dementia (Tzourio et al., 1999; McGrath
et al., 2017). However, few studies found an opposite pattern
(Wysocki et al., 2012; Streit et al., 2019), suggesting that
the association between blood pressure and brain cognitive
functions is intricate and might be modulated by study-specific
factors, such as study design, population characteristics, and
the specific cognitive domains assessed (Iadecola et al., 2016;
Sierra, 2020). Our dataset does not allow to inspect this issue
in greater detail, thus further research will be required to
clarify the role of hypertension in cognitive function among
elderly individuals.

Elevated cholesterol levels are a major risk factor for
cardiovascular disease, but their role in late-life cognitive function,
dementia and cognitive decline is less clear. For example, Liu
et al. (2021) found that long-term increases in higher total
cholesterol and non-high density lipoprotein cholesterol levels were
substantially associated with decreased risks of global cognitive
and memory function decline. More precisely, when measured
in late-life, elevated cholesterol levels show no association with a
worsening of cognitive functions, or even an inverse relationship
(van Vliet, 2012). Cholesterol, crucially, is an important component
of nerve cell membranes and participates in the metabolic
activities of nerve cells, it is essential for the formation and
maturation of synapses and plays an important role in the
regulation of signal transduction through its function as a
component of the cell membrane (van Vliet, 2012). Furthermore,
cholesterol stores a large amount of energy, which can provide
sustained energy to the brain, which is the most energy-
consuming organ of the body (Steiner, 2020). Therefore, the role
of cholesterol in brain protection might be different from its role in
cardiovascular diseases.

Lastly, the link between functional variables and cognitive
decline in older adults has not yet been fully elucidated in
the literature. Instrumental activities included in the IADLs
questionnaire involve skills requiring the recruitment of multiple
cognitive processes (e.g. houseworks, managing medications
and finances, driving), and thus more complex than basic
self-care activities measured by the ADLs questionnaires.
Limited functionality in IADLs were found in literature to be
predictive of dementia (Pérès et al., 2008), even in individuals

with normal cognitive performance at baseline (Di Carlo
et al., 2007). The SHAP analysis confirms that even a subtle
decline in IADLs, restricted to a single instrumental activity
(IADL <1), might be predictive of significant worsening in
cognitive abilities.

Despite these encouraging findings, it is important from a
methodological viewpoint to make some considerations. First,
while the sample size of the current study is sufficient to
achieve robust and reproducible results, it might not ensure the
generalizability of the model to external data. Additionally, as
our dataset is derived from two Italian hospitals, it may not
fully represent the broader AD population, potentially limiting
the model’s applicability to different clinical settings. Second,
the filtering process adopted in this study, while effective
in reducing the total number of features and inconsistencies,
may have led to the exclusion of potentially informative
variables due to strict thresholds for missing values, data
variability, and class imbalance. This could limit the model’s
ability to capture subtle but clinically relevant patterns. Lastly,
further analyses could be designed to try to enhance model
performance, such as different data preprocessing techniques
(different handling of missing values and normalization) or
ensemble methods to combine predictions from multiple diverse
machine learning algorithms.

5 Conclusions

Our findings highlight the clinical and cognitive variables
assessed at baseline that contribute to the deterioration
of overall cognitive function or serve as protective factors.
Identifying contributing factors of cognitive decline along the
AD continuum is essential for monitoring clinical progression
and evaluating the efficacy of treatments to slow or preserve
cognitive decline (GUIDANCE, 2018; Livingston et al., 2024).
These results emphasize the importance of examining specific
comorbidities, targeted cognitive domains, and impairments
in instrumental activities of daily living (IADL), in addition to
broader cognitive abilities, in both healthy and AD older adults.
These insights are fundamental for tailoring pharmacological
treatments with respect to comorbidities and for developing
potential rehabilitation intervention focused on specific cognitive
domains. Regarding limitations, further research is required
to evaluate the generalizability of our model across different
patient populations, despite the study’s multicentric nature.
Furthermore, inclusion of genetic and imaging data might have
improved the performance of the model, at the expense of
added complexity.
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