
TYPE Original Research

PUBLISHED 11 July 2025

DOI 10.3389/fnagi.2025.1566247

OPEN ACCESS

EDITED BY

Youngkyoo Jung,

University of California, Davis, United States

REVIEWED BY

Feng-Tao Liu,

Fudan University, China

Fangda Leng,

University of California, San Francisco,

United States

*CORRESPONDENCE

Qinyong Ye

unionqyye8@�mu.edu.cn

Xiaochun Chen

chenxc998@�mu.edu.cn

RECEIVED 24 January 2025

ACCEPTED 16 June 2025

PUBLISHED 11 July 2025

CITATION

Lu J, Cai G, Xiao N, Zheng K, Ye Q and Chen X

(2025) Cerebellar MRI-based radiomics

models for identifying mild cognitive

impairment: a retrospective multicenter study

in Southeast China.

Front. Aging Neurosci. 17:1566247.

doi: 10.3389/fnagi.2025.1566247

COPYRIGHT

© 2025 Lu, Cai, Xiao, Zheng, Ye and Chen.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Cerebellar MRI-based radiomics
models for identifying mild
cognitive impairment: a
retrospective multicenter study
in Southeast China

Jianping Lu1,2,3, Guoen Cai1,2,3, Naian Xiao4, Kunmu Zheng5,

Qinyong Ye1,2,3* and Xiaochun Chen1,2,3*

1Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China, 2Institute of

Clinical Neurology, Fujian Medical University, Fuzhou, China, 3Fujian Key Laboratory of Molecular

Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China, 4Department of

Neurology, The Third Hospital of Xiamen University, Fuzhou, China, 5Department of Neurology, The

First A�liated Hospital of Xiamen University, Fuzhou, China

Objective: This study aimed to investigate the role of cerebellar magnetic

resonance imaging (MRI) features in identifying mild cognitive impairment (MCI).

Methods: This retrospective multicenter study included patients with MCI,

patients with Alzheimer’s disease (AD), and healthy controls (HCs) from

three tertiary hospitals in China (January 2022–December 2023). Cerebellar

and hippocampal radiomics features were extracted from T1-, T2-, and

T2-FLAIR-weighted MRI. A sparse representation classifier was developed using

10-fold cross-validation and was validated on independent datasets. Diagnostic

performance was assessed through sensitivity, specificity, and ROC-AUC values.

Results: A total of 87 patients with MCI, 109 patients with AD, and 55 healthy

controls (HCs)matched by gender and agewere included formodel construction

and validation. Additionally, 13 patients with MCI and 26 patients with AD

were included for external validation. The 10-fold cross-validation accuracy and

ROC AUC for identifying cognitive impairment (CI) in the training set using a

combination of cerebellar T1, T2, and T2-FLAIR weighted images were better

than those of hippocampal models (91.0% vs. 86.8%, 0.943 vs. 0.931). The

accuracy and ROC AUC in the independent test set were similar (89.3% vs.

89.3%, 0.908 vs. 0.906). The 10-fold cross-validation accuracy and ROC AUC

for identifying MCI in the training set, using a combination of cerebellar T1, T2,

and T2-FLAIR weighted images, were similar to those of hippocampal models

(85.2% vs. 83.7%, 0.877 vs. 0.905). Furthermore, the results were consistent with

the external validation set (89.7% vs. 93.1%, 0.962 vs. 0.974).

Conclusion: Cerebellar MRI radiomics models exhibit diagnostic accuracy

comparable to hippocampal models for identifying CI and MCI, supporting the

cerebellum’s role in detecting early cognitive dysfunction. These findings provide

novel insights into cerebellar contributions to AD pathophysiology and o�er

potential biomarkers for clinical application.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease

characterized by varying degrees of cognitive impairment (CI). The

primary clinical manifestations of AD include progressive memory

loss, aphasia, decline in executive functions, and psychiatric

symptoms including hallucinations and apathy. Ultimately, the

disease leads to a complete loss of self-care ability (Tzourio-

Mazoyer et al., 2002). In 2011, the National Institute on Aging–

Alzheimer’s Association proposed new diagnostic guidelines for

AD. These guidelines categorize AD into three stages: dementia

due to AD, mild cognitive impairment (MCI) due to AD, and

preclinical AD. The revised diagnostic criteria also incorporate

structural, functional, andmolecular imaging biomarkers (Vallières

et al., 2015). Notably, both MCI and preclinical AD are considered

early stages of CI and have a high risk of progressing to AD (Wu

et al., 2018). Effective treatment for MCI and preclinical AD can

help patients maintain their autonomy, stop disease progression,

and improve future outcomes (Wu et al., 2019). Therefore, it is

important to identify MCI as early as possible. Currently, the

clinical diagnosis of MCI is mainly based on clinical history,

psychiatric evaluation, and neurological examination, which is

more subjective and may not accurately determine the stage of the

disease accurately.

Magnetic resonance imaging (MRI) technology can non-

invasively visualize the brain with high resolution. Due to its

advantages of non-invasiveness, non-ionization, non-radiation,

and affordable price, it has become the primary imaging diagnostic

method forMCI diagnosis (Chandra et al., 2019). However, doctors

have limited ability to identify small lesions based on visual

images during MRI diagnosis. Radiomics was first proposed by

Lambin in 2012 and is a new method that integrates medicine

and computer science (Lambin et al., 2012). It can extract

quantitative image features from standard images and reflect the

heterogeneity of diseases through these features. Previous studies

have demonstrated that MRI radiomics features of the entorhinal

cortex and amygdala can accurately identify MCI at an early stage

(Park et al., 2023; Betrouni et al., 2020; Wang et al., 2024; Du et al.,

2023).

The role of the cerebellum in CI is an area of research that

has received significant attention. Traditionally, the cerebellum

was considered to be primarily involved in the regulation of

motor function; however, a growing body of research suggests

that the cerebellum also plays an important role in cognitive

function. The cerebellum is closely connected to the cerebral

cortex and affects cognitive functions such as motor coordination,

learning, and memory. In recent years, researchers have conducted

in-depth studies on the role of the cerebellum in CI using

neuroimaging techniques. It has been found that cerebellar damage

or abnormality is associated with some cognitive dysfunctions, such

as learning disabilities, attention deficits, and memory disorders

(Villemagne et al., 2013; Lin et al., 2024). It has also been shown that

the cerebellum is involved in functions such as emotion regulation

and social cognition (Hoche et al., 2018; Cheng et al., 2022; Rudolph

et al., 2023). Increasingly, studies are being devoted to exploring

the role of the cerebellum in CI. The development of radiomics has

provided researchers with an additional tool to elucidate the role

of the cerebellum in CI. Therefore, this study aimed to investigate

whether cerebellar MRI-based radiomics features can identify CI,

especially MCI.

Methods

Data from patients with MCI, patients diagnosed with

Alzheimer’s disease (AD), and healthy controls (HCs) matched by

gender and age were collected retrospectively from January 2022

to December 2023 at Fujian Medical University Union Hospital.

Additionally, data from MCI and AD patients, collected from

The First Affiliated Hospital of Xiamen University and The Third

Hospital of Xiamen from January 2022 to December 2023, were

used to validate the model for identifying MCI. All patients

underwent brain MRI, which included T1, T2, and T2-FLAIR-

weighted imaging. This study was reviewed and approved by the

Ethics Committee of Union Hospital of Fujian Medical University

(Approval No. 2025KY014).

Inclusion criteria: AD was diagnosed according to the National

Institute of Neurological and Communicative Disorders and

Stroke-Alzheimer’s Disease and Related Disorders Association

(NINCDS-ADRDA) criteria (Dubois et al., 2007). The clinical

diagnostic criteria for MCI include (1) cognitive impairment

reported by patients, informants, or experienced clinicians;

(2) one or more cognitive impairments identified through

neuropsychological tests; (3) slight impairment in performing

complex instrumental daily activities, while continuing to manage

independent daily living; and (4) not meeting the diagnostic criteria

for AD.

Exclusion criteria were as follows: (1) poor image quality;

(2) layer thickness >5mm; (3) cognitive impairment due to

various causes including vascular issues, inflammation, toxicity,

pharmacogenetic factors, trauma, hydrocephalus, and tumors;

comorbid severe psychiatric disorders (e.g., schizophrenia) or

pre-existing psychiatric disorders that prevent patients from

performing the related examinations as required; inability to

complete the imaging examination due to claustrophobia or

significant physical limitations; (4) history of carbon monoxide

poisoning, chronic pain disorders, drug or alcohol dependency, or

severe disabilities that hinder cooperation with the examination;

(5) abnormal thyroid function, diabetes, severe heart failure,

coronary heart disease and other heart-related diseases, renal

failure, cirrhosis of the liver, history of malignant tumors, or other

serious conditions that impede cooperation with the examination

and treatment.

The T1, T2, and T2-FLAIR sequences were acquired on a GE

Signa HDxt 1.5T scanner with the following parameters (T1: TR

= 1,906.8ms, TE =20.0ms, slice thickness = 6mm, 18 slices,

flip angle =90◦; T2: TR = 4,500ms, TE =112ms, slice thickness

= 6mm, 18 slices, flip angle =90◦; T2-FLAIR: TR = 8,502ms,

TE =161ms, slice thickness = 1mm, 18 slices, flip angle =90◦).

For each volume of interest, a total of 57 radiomic features were

extracted using the MATLAB-based image texture analysis toolkit

(github.com/mvallieres/radiomics). These features can be divided

into 2 groups: (1) 18 intensity features: these features quantify the

density of the patch pair from the histogram of voxel intensities
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and (2) 39 texture features: textural features quantify the spatial

arrangement of the patch pair by using the gray-level co-occurrence

matrices (GLCM), gray-level run length matrices (GLRLM), gray-

level size zone matrix (GLSZM), and neighborhood gray-tone

difference matrix (NGTDM). The features are summarized in

Table 1.

The raw MRI images were first aligned with the standard

brain space. The cerebellum was divided into 26 brain regions

based on the AAL brain atlas; the name of each brain region

is shown in Table 1, and the specific definitions of the brain

regions were referred to Siddiqi et al. (2022). Finally, 18

grayscale and 39 texture features of each brain region image

were extracted using the MATLAB-based image texture analysis

toolkit (github.com/mvallieres/radiomics).

Radiological characteristics of each region of the cerebellum

were extracted and screened based on each modal MRI

T1, T2, and T2-FLAIR-weighted images. Based on the

radiological features identified by feature screening, a sparse

representation classifier based on non-parametric training

is built for disease classification and diagnosis. The sparse

representation classifier does not require parametric training of

the model during classification, which simplifies the complexity

of the model and can effectively inhibit model overfitting

(Shu et al., 2020).

The data were divided into a 10-fold cross-validation set and an

independent test set for model validation according to a ratio of 2:1.

We first carried out 10-fold cross-validation on the cross-validation

set. Then the entire cross-validation set was used as training data to

train the final model for the test set.

Considering a binary classification problem, the training set

has m+n samples, where m represents the number of samples in

the first category and n represents the number of samples in the

second category. The feature set of the training set samples can be

expressed as F = [f 11 , f
1
2 , · · · , f

1
m, f

2
1 , f

2
2 , · · · , f

2
n ], where the subscript

represents the sample number and the superscript represents the

class of the sample. The purpose of the classifier is to determine

the class of the test sample feature f according to the training set

sample feature F. For the sparse representation classifier, we first use

the training set sample feature to sparsely represent the test sample

feature f , that is, to solve the optimization problem of Equation 1.

β̂ = argmin
β

∥

∥f − Fβ
∥

∥

2

2
+ γ ‖β‖0 (1)

TABLE 1 The summary of 57 features.

Feature category Feature name Feature number

Intensity: 18

Energy h-Energy Kurtosis Max

Mean absolute deviation Mean Media Min

Range Root mean square Skewness Standard-deviation

h-Uniformity Variance h-Mean h-Variance

h-Skewness h-Kurtosis

Texture: 39

GLCM Energy Contrast Correlation Homogeneity

Variance Sun average Entropy Dissimilarity

Short run emphasis Long run emphasis

GLRLM Gray-level nonuniformity Run-length nonuniformity

Run percentage Low gray-level run emphasis

High gray-level run emphasis Short run low gray-level emphasis

Short run high gray-level emphasis Long run low gray-level emphasis

Long run high gray-level emphasis Gray-level variance

Run-length variance Small zone emphasis

Large zone emphasis

GLSZM Gray-level nonuniformity Zone-size nonuniformity

Zone percentage Low gray-level zone emphasis

High gray-level zone emphasis Small zone low gray-level emphasis

Small zone high gray-level emphasis Large zone low gray-level emphasis

Large zone high gray-level emphasis Gray-level variance

Zone-size variance

NGTDM Coarseness Contrast Busyness Complexity Strength
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where β̂ is the sparse representation coefficient to be solved, γ is

the sparse constraint control term, usually set to 0.01. Equation 1

can be solved by the orthogonal matching pursuit algorithm

(Aharon et al., 2006). When the sparse representation coefficients

are obtained, we calculate the reconstructed residuals rc(f ) of each

class by Equation 2:

rc(f ) = f − Fδc(β̂), c = 1, 2 (2)

c represents the sample class, and δc(·) represents setting all

coefficients except the coefficient corresponding to the sample of

the c-the class to zero. Finally, the residuals of each class are

compared, and the class with the smallest residual is the class of

the test sample:

Id(f ) = argmin
c

rc(f ) (3)

Statistical methods

Statistical analyses were performed using the Statistical

Package for the Social Sciences (SPSS, version 20.0, IBM). An

independent samples’ t-test or chi-square test was used to test

statistical differences in characteristics between groups. Receiver

operating characteristic (ROC) curve; area under curve (AUC);

and sensitivity, specificity, positive predictive value, and negative

predictive value were utilized to evaluate the performance of

the model.

Results

A total of 196 patients with CI (CI group, 87 MCI and 109

AD) and 55 HCs (HC group) were included at the Fujian Medical

University Union Hospital and divided into training and testing

sets using a 10-fold cross-validation strategy in a 1:2 ratio. A total

of 1,482 and 1,026 features were extracted from cerebellar and

hippocampal MRI images, respectively. The accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV) of the 10-fold cross-training set for diagnosing CI

in the cerebellar and hippocampal T1 modality, T2 modality, T2-

FLAIR modality, and the combination of the three modalities are

shown in Table 2, and the ROC curves are shown in Figures 1, 2.

The accuracy, sensitivity, and specificity of the independent test set

are shown in Table 3. The ROC curve is shown in Figures 3, 4. The

model constructed by combining cerebellar MRI-radiomic features

of three modalities is more effective in diagnosing CI than the

model constructed by hippocampal MRI-radiomic features.

Eighty-seven patients with MCI (MCI group) and 109 patients

with AD (AD group), included from Fujian Medical University

Union Hospital, were used to construct a model for identifying

MCI. A total of 13 patients with MCI and 26 patients with

AD, who were included from the other 2 hospitals, were used

for further model external validation. The accuracy, sensitivity,

specificity, positive predictive value (PPV) and negative predictive

value (NPV) of the 10-fold cross-training set for diagnosing MCI

in the cerebellar and hippocampal T1 modality, T2 modality, T2-

FLAIR modality, and the combination of the three modalities are

shown in Table 4. The ROC curves are shown in Figures 5, 6. The

accuracy, sensitivity, and specificity of the independent test set

are shown in Table 5. The ROC curve is shown in Figures 7, 8.

The model constructed by combining cerebellar MRI-radiomics

features of three modalities could diagnose MCI as accurately as

the hippocampal.

Discussion

This study found that the diagnostic accuracy of CI based

on the three modalities of cerebellar T1, T2, and T2-FLAIR

imaging radiomic features was all over 80.0%, with a sensitivity

of 95.0% or higher, but poor specificity. However, the combined

diagnostic accuracy of the three modalities imaging radiomic

features for the CI training set reached 91.0%, with a sensitivity

of 99.2% and an improved specificity of 65.0%, even a bit better

than hippocampal. The area under the ROC curve was 0.943,

and the accuracy of the independent test set was also 89.3%,

with a sensitivity of 95.7% and a specificity of 60.0%. The area

under the ROC curve was 0.908. This study further demonstrated

that the combined diagnostic accuracy of cerebellar T1-, T2-

, and T2-FLAIR modality radiomic features for MCI reached

85.2%, sensitivity was 91.7%, specificity was 77%, ROC curve area

under was 0.877, similar to hippocampal and the model accuracy

of external validation reached to 89.7%, sensitivity was 92.3%,

TABLE 2 The e�cacy of training set based on cerebellar and hippocampal MRI radiomics for identifying CI.

Sequence Accuracy Sensitivity Specificity Positive predictive
value

Negative predictive
value

T1 0.850[0.847 0.852] vs.

0.820[0.818 0.823]

0.961[0.958 0.961] vs.

0.969[0.967 0.970]

0.500[0.491 0.505] vs.

0.333[0.322 0.338]

0.859[0.856 0.861] vs.

0.827[0.824 0.830]

0.800[0.788 0.802] vs.

0.765[0.749 0.770]

T2 0.802[0.799 0.804] vs.

0.832[0.828 0.834]

0.945[0.942 0.945] vs.

0.984[0.983 0.985]

0.350[0.342 0.356] vs.

0.333[0.325 0.338]

0.822[0.819 0.825] vs.

0.829[0.825 0.830]

0.667[0.647 0.669] vs.

0.867[0.860 0.877]

T2-Flair 0.886[0.886 0.890] vs.

0.850[0.847 0.852]

0.984[0.984 0.986] vs.

0.977[0.975 0.977]

0.575[0.570 0.585] vs.

0.436[0.428 0.442]

0.880[0.879 0.884] vs.

0.850[0.847 0.853]

0.920[0.916 0.927] vs.

0.850[0.839 0.854]

Combination 0.910[0.910 0.914] vs.

0.868[0.867 0.872]

0.992[0.991 0.993] vs.

1.000[1.000 1.000]

0.650[0.648 0.662] vs.

0.436[0.435 0.449]

0.900[0.900 0.904] vs.

0.853[0.852 0.857]

0.963[0.958 0.965] vs.

1.000[1.000 1.000]

[ ] indicates 95% confidence intervals.
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FIGURE 1

The ROC curve of training set based on cerebellar MRI radiomics for identifying CI.

FIGURE 2

The ROC curve of training set based on hippocampal MRI radiomics for identifying CI.

TABLE 3 The e�cacy of independent test set based on cerebellar and hippocampal MRI radiomics for identifying CI.

Sequence Accuracy Sensitivity Specificity Positive predictive
value

Negative predictive
value

T1 0.845 vs. 0.845 0.928 vs. 0.971 0.467 vs. 0.312 0.889 vs. 0.857 0.583 vs. 0.714

T2 0.810 vs. 0.869 0.913 vs. 1.000 0.333 vs. 0.312 0.863 vs. 0.861 0.455 vs. 1.000

T2-Flair 0.881 vs. 0.869 0.971 vs. 0.971 0.467 vs. 0.437 0.893 vs. 0.880 0.778 vs. 0.778

Combination 0.893 vs. 0.893 0.957 vs. 0.971 0.600 vs. 0.562 0.917 vs. 0.904 0.750 vs. 0.818

FIGURE 3

The ROC curve of independent test set based on cerebellar MRI radiomics for identifying CI.
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FIGURE 4

The ROC curve of independent test set based on hippocampal MRI radiomics for identifying CI.

TABLE 4 The e�cacy of training set based on cerebellar and hippocampal MRI radiomics for identifying MCI.

Sequence Accuracy Sensitivity Specificity Positive predictive
value

Negative predictive
value

T1 0.735[0.731 0.737] vs.

0.714[0.713 0.718]

0.734[0.729 0.737] vs.

0.752[0.749 0.756]

0.736[0.730 0.739] vs.

0.667[0.665 0.674]

0.777[0.773 0.781] vs.

0.739[0.735 0.743]

0.688[0.682 0.690] vs.

0.682[0.681 0.689]

T2 0.709[0.706 0.712] vs.

0.735[0.729 0.735]

0.780[0.775 0.782] vs.

0.807[0.802 0.810]

0.621[0.616 0.627] vs.

0.644[0.636 0.645]

0.720[0.718 0.725] vs.

0.739[0.731 0.738]

0.692[0.686 0.695] vs.

0.727[0.723 0.733]

T2-Flair 0.791[0.789 0.794] vs.

0.745[0.742 0.747]

0.881[0.878 0.883] vs.

0.844[0.840 0.845]

0.678[0.676 0.685] vs.

0.621[0.617 0.626]

0.774[0.770 0.777] vs.

0.736[0.732 0.739]

0.819[0.817 0.825] vs.

0.761[0.755 0.763]

Combination 0.852[0.848 0.853] vs.

0.837[0.832 0.837]

0.917[0.913 0.918] vs.

0.945[0.941 0.944]

0.770[0.765 0.773] vs.

0.701[0.696 0.705]

0.833[0.829 0.835] vs.

0.798[0.794 0.800]

0.882[0.877 0.883] vs.

0.910[0.904 0.910]

[ ] indicates 95% confidence intervals.

FIGURE 5

The ROC curve of training test set based on cerebellar MRI radiomics for identifying MCI.

specificity was 66.7%, and the ROC curve area under was 0.962.

The results have significant clinical value in improving the ability of

MRI to identify MCI, providing necessary theoretical and practical

support for the early identification, intervention, and treatment

of CI.

Radiomics is a new method that integrates medicine and

computer science. It can reflect the heterogeneity of diseases

through image features and is characterized by low cost and

non-invasiveness. In traditional clinical diagnosis, doctors rely on

the visual interpretation of images and have a limited ability to

recognize small lesions. Radiomics can provide amore accurate and

objective basis for qualitative and quantitative analysis of diseases.

MRI radiomics have been applied in the diagnosis and prediction

of MCI, and there have been many results in this area of research

(Song et al., 2024; Yan et al., 2024). MRI radiomic features of the

entorhinal cortex and amygdala can accurately identify MCI early.

Whether MRI radiomic features of the cerebellum can accurately

identify MCI is not clear.

Patients collected from three tertiary hospitals in this

study underwent MRI imaging acquisition, radiomics feature
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FIGURE 6

The ROC curve of training test set based on hippocampal MRI radiomics for identifying MCI.

TABLE 5 The e�cacy of cross external validation based on cerebellar and hippocampal MRI radiomics for identifying MCI.

Sequence Accuracy Sensitivity Specificity Positive predictive
value

Negative predictive
value

T1 0.724 vs. 0.793 0.769 vs. 0.885 0.333 vs. 0.000 0.909 vs. 0.885 0.143 vs. 0.000

T2 0.793 vs. 0.828 0.885 vs. 0.846 0.000 vs. 0.667 0.885 vs. 0.957 0.000 vs. 0.333

T2-Flair 0.793 vs. 0.828 0.846 vs. 0.846 0.333 vs. 0.667 0.917 vs. 0.957 0.200 vs. 0.333

Combination 0.897 vs. 0.931 0.923 vs. 0.962 0.667 vs. 0.667 0.960 vs. 0.962 0.500 vs. 0.667

FIGURE 7

The ROC curve of cross external validation based on cerebellar MRI radiomics for identifying MCI.

FIGURE 8

The ROC curve of cross external validation based on hippocampal MRI radiomics for identifying MCI.
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extraction, feature screening, and classification model building in

accordance with a standardized process to ensure standardization

and uniformity of data quality. Meanwhile, the study utilizes

a sparse representation-based method to select a few high-

resolution features for subsequent classification. The sparse

representation classifier requires no parameter training for the

model during classification, thereby simplifying the complexity of

the model and effectively inhibiting model overfitting. In addition,

the study conducted external validation after establishing the

diagnostic model.

When there is a lesion in the brain tissue, the texture of

MR images may change accordingly. Leandrou et al. (2020)

extracted texture features from normal controls (NC), MCI,

MCI that progressed to AD (MCI converters, MCIc), and AD

subjects and found statistically significant differences in the textural

features of the entorhinal cortex. The AUC was 0.710 for NC,

0.730 for MCI and MCIc, and 0.764 for MCI and AD, which

indicated that entorhinal cortical textural features could classify

and diagnose MCI. Zheng et al. (2022)achieved an accuracy

of 72.5% in classifying AD and MCI based on hippocampal

texture, and the accuracy for MCI and NC classification was

also 72.5%. MCI and NC were classified with an accuracy of

75%. Sivaranjini and Sujatha (2021) applied amygdala texture

characterization and found that AD was classified as amnestic

mild cognitive impairment (aMCI) with an accuracy of 0.81

and an AUC of 0.84, while aMCI was classified as NC with

an accuracy of 0.75 and an AUC of 0.80. This study identified

the value of cerebellar MRI imaging histology in diagnosing

MCI and classifying AD and MCI. These results indicate that

MRI texture analysis can quantitatively characterize tissues,

reflect their physiological and pathological stages, and reveal

information in the image that is not recognizable by the

naked eye.

The cerebellum has been thought to be associated with motor

control, and few studies have been conducted on the diagnosis

of CI and classification of AD and MCI based on cerebellar MRI

imaging histology. In recent years, with advances in neuroimaging

and neuropathological, the role of the cerebellum in cognitive

dysfunction has gradually been redefined. This study revealed that

the value of cerebellar-based multimodal MRI radiomic features

in the diagnosis of MCI and the classification of AD and MCI is

not inferior to, and may even be superior to, that of the internal

olfactory cortex, hippocampus, and amygdala, which provides

an important imaging biomarker for the diagnosis of MCI. In

2023, Smith (2023) demonstrated that the dentato-thalamo-cortical

pathway facilitates bidirectional communication between the

cerebellum and the prefrontal cortex. Disruption of this circuit is

correlated with deficits in executive function and working memory,

as evidenced by functional MRI (fMRI) studies showing cerebellar-

default mode network (DMN) decoupling preceding hippocampal

atrophy in early AD. Cryo-EM structural analyses reveal that

cerebellar Purkinje cells internalize tau fibrils originating from

temporoparietal cortices via prion-like mechanisms, triggering

synaptic loss in the granular layer (Parra Bravo et al., 2024). Single-

nucleus RNA sequencing reveals a 40% reduction in mitochondrial

complex IV activity in cerebellar neurons during MCI, preceding

hippocampal alterations (Bakooshli et al., 2023). These are

possible pathophysiological mechanisms of cerebellar involvement

in CI.

This study has several limitations. First, all patients were

included from different tertiary hospitals in Fujian. The

representative sample may be insufficient, thereby limiting

the generalizability of the findings to local memory clinics and

primary care. Second, the sample size used for validation needs to

be expanded to verify the versatility of the model we created. Third,

this study evaluates the diagnostic value of multimodal magnetic

resonance imaging of the cerebellum without the use of biomarkers

in combination with clinical symptoms.

In conclusion, this study has shown that multimodal magnetic

resonance imaging of the cerebellum has significant and high

diagnostic value in MCI in China. These findings may provide

a reference and direction for early diagnosis and intervention of

MCI. Future studies employing large-scale multicenter prospective

clinical protocols are needed to further clarify the impact

of multimodal magnetic resonance imaging of the cerebellum

in the Chinese population. Additional economic data are

required to be combined to assess the cost-effectiveness of

multimodal magnetic resonance imaging of the cerebellum in

clinical routine.
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