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Aging is accompanied by a decline in cognitive functions, including spatial memory, 
yet significant variability exists in the learning abilities of older individuals. Using a 
large cohort of aged and young male mice, we employed spatial discrimination 
testing in an 8-arm radial maze to investigate age-related differences in performance 
in spatial learning and to categorize individual memory phenotypes within the aged 
population. Despite a general learning ability across groups, aged mice showed 
slower acquisition rates compared to young counterparts, highlighting age-related 
cognitive difficulties in establishing or discriminating spatial representations. By 
modeling individual learning curves, we classified aged mice into two subgroups—
normal learners (NL) and slow learners (SL)—based on learning speed. SL mice 
demonstrated significantly delayed spatial memory acquisition compared to NL 
and young mice, suggesting pronounced heterogeneity in cognitive aging. This 
method provides a robust framework to explore the neurobiological underpinnings 
of learning deficits and may inform the development of targeted interventions to 
mitigate age-related memory decline.
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1 Introduction

Aging is associated with a progressive decline in both physical and cognitive functions, 
even in healthy individuals. Memory performance is particularly affected by these age-related 
changes, becoming evident in daily functioning (Cohen et al., 2019). However, it is important 
to note that the different types of memory do not undergo the same degree of disruption due 
to aging (Nilsson, 2003; Richmond and Burnett, 2022; Tran et al., 2021). Working memory 
and spatial memory, in particular, exhibit pronounced deficits in healthy older adults 
compared to their younger counterparts (Castillo Escamilla et al., 2023; Fernandez-Baizan 
et al., 2020; Newman and Kaszniak, 2000; Reinoso Medina et al., 2025; Wilkniss et al., 1997). 
While there are mixed results regarding sex differences, a recent study pointed out that males 
may be more prone to age-related decline in spatial memory (Febo et al., 2020; Gazova et al., 
2013). While spatial memory shows a steady age-related decline (Fernandez-Baizan et al., 
2020; Gazova et al., 2013), individual differences within the older adult population exist 
(Castillo Escamilla et al., 2023; Reynolds et al., 2019; Zhong et al., 2017). This variability 
suggests that a subgroup of older adults may be more prone to cognitive decline, potentially 
due to a combination of genetic susceptibility and environmental factors.
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Individual differences in spatial memory abilities are also well-
documented among both aged mice and rats (Drapeau et al., 2007; 
Gallagher et al., 1993; Newman et al., 2017). For instance, in the 
water maze, some aged rats exhibit significant deficits in spatial 
reference memory, while others perform comparably to younger 
animals, displaying no noticeable impairment. This effect is 
sex-independent since both females and males show a similar 
distribution of individual differences (Koh et al., 2022). It is further 
essential to recognize that different memory systems demonstrate 
varying degrees of susceptibility to aging (Chong et  al., 2023; 
Drapeau et  al., 2007; Gazova et  al., 2013; Ladyka-Wojcik et  al., 
2021) and the underlying correlates of cognitive decline may differ 
between normal cognitive aging, impaired cognitive aging, and 
young adults in both rodents (Gallagher et al., 1993) and humans 
(Reynolds et al., 2019).

Investigating individual differences provides a valuable 
framework for understanding the neurobiological substrates 
associated with learning and memory impairments during aging. 
Our study characterized the cognitive performance of a large cohort 
of aged male mice submitted to spatial discrimination training in 
an 8-arm radial maze, comparing their performance to that of 
young adults. Although aged mice were able to learn the location of 
baited arms in the maze, we identified two distinct subgroups based 
on their speed of learning: normal (speed comparable to that of 
young mice) and slow learners. This categorization highlights the 
variability in cognitive performance within the aged population and 
introduces a novel tool for identifying individual differences in 
cognitive abilities. By pinpointing the cognitive characteristics of 
these aged subgroups, the underlying neurobiological mechanisms 
that contribute to variations in memory performance and cognitive 
aging can be further investigated. This research may lead to targeted 
interventions to mitigate memory decline in aging populations.

2 Materials and equipment

2.1 Materials and reagents

 • Food pellets (dustless precision pellets rodent, 20 mg, BioServ, 
NJ, USA).

 • Male C57BL/6 J mice (n = 18 aged 4–6 months for the young 
group and n = 111 aged 21–22 months for the older group), were 
obtained from the Janvier breeding center (Le Genest-St-Isle, 
France). Mice are housed in collective cages, with five mice per 
cage, and are provided with food and water ad libitum in a 
climate-controlled animal facility (22–23°C) with a 12-h artificial 
light–dark cycle (7 a.m. to 7 p.m.). Mice should be isolated and 
handled daily for 3 min, one week prior to the experiment. After 
isolation, they undergo food restriction to reach 85–90% of their 
initial ad libitum weight, continuing until the end of pretraining 
and training. All experimental protocols are conducted during 
the light phase (7 a.m. to 7 p.m.) of the light–dark cycle. 
Experimental procedures complied with official European 
Guidelines for the care and use of laboratory animals (directive 
2010/63/UE) and were approved by the ethical committee of the 
University of Bordeaux (protocol A50120159).

 • Ethanol 30%.

2.2 Equipment

2.2.1 8-arm radial maze
The maze was made of grey PVC and consisted of a central 

platform (30 cm in diameter) with eight identical arms (62 cm long, 
12 cm wide) extending outward in a symmetrical fashion (between 
arm angle of 45°) (Imetronic, Marcheprime, France). Each arm 
entrance was equipped with an automatic sliding door, remotely 
controlled via software by the experimenter from an adjacent room. 
Rewards, consisting of small dry milk pellets (one single 20 mg 
pellet per baited arm), were placed at the distal end of the chosen 
arms. Additionally, fixed distal cues were positioned on the walls of 
the experimental room (Hadzibegovic et  al., 2025; Kohler 
et al., 2022).

2.2.2 Mouse videotracking
The camera should be positioned above the radial maze to 

enable tracking of the mouse. With the camera monitoring the 
mouse’s behavior, software can track the animal’s movements and 
count the number of entries into each arm. This reduces the need 
for manual recording, which can be time-consuming and prone 
to mistakes.

2.2.3 Software and datasets

 • Mouse Tracking Software (Poly, Imetronic, Marcheprime, 
France). This software tracks the movements of the mice as they 
enter and exit the maze arms. Custom programs are created for 
pretraining (habituation) and training phases.

 • GraphPad Prism (10.0) for statistical analysis of the results.

3 Procedure

Mouse home cages should be  placed in a designated room 
adjacent to the training area, allowing the animals a 15-min 
habituation period prior to the initiation of the testing protocol. 
Lighting in the room should be adjusted to a low intensity (~50 
lux), with stable distal cues maintained consistently throughout the 
pretraining and training phases. The maze should be cleaned with 
30% ethanol before and after each mouse to remove the smell that 
can affect the mouse’s exploration of the maze, and it should 
be dried well to eliminate any residual ethanol odor. Subsequently, 
the Imetronic software should be  launched, and the required 
protocol should be loaded. Start the camera to enable the software 
to track the mouse.

3.1 Food restriction

Mice should be  isolated and handled daily for 3 min, one 
week prior to the experiment. Isolation is necessary to accurately 
monitor food intake, as individual food quantities are adjusted 
according to each mouse’s body weight and weight loss during 
food restriction. This approach ensures that the mouse’s body 
weight remains within the 85–90% range of their initial ad 
libitum weight. After isolation, food restriction continues until 
the end of pretraining and training.
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3.2 First pretraining/habituation

On the first day of pretraining/habituation, open the tracking 
software and load the pretraining program P1 which will raise all 
doors to prevent access to the arms of the maze. Place a pellet at the 
center and the end of each arm. Gently carry the mouse to the center 
of the maze platform. Arms will be automatically open after 30 sec to 
allow the mouse to freely explore the maze for 10 min, records the 
sequence or visited arms and the program encourages the mouse to 
visit all arms by closing the doors of visited arms. The session ends 
once the mouse has visited all arms, ate the pellets and returned to the 
platform. Clean the maze with ethanol and replace the pellets for the 
next animal. Repeat the operation for all animals. This session is 
designed to associate the radial maze with food rewards.

3.3 Second pretraining/habituation

On the second day, open the tracking software and load the 
pretraining program P2. Place a pellet at the end of each arm only. 
Gently carry the mouse to the platform and allow it to explore the 
maze for 10 min. In contrast to P1, arms will not close after being 
visited, and the mouse can revisit arms without receiving additional 
food pellets. This session is designed to teach the mouse that the food 
is not refilled during the trial. Clean the maze and replace the pellets 
for the next mouse. Repeat the process for all mice.

3.4 Spatial discrimination

Place a pellet at the end of three arms only, spaced at 45, 90, and 135 
degrees (e.g., arms 1, 2, and 4, or arms 2, 3, and 5). Each mouse can have 
a different set of baited arms, with the condition that baited arms remain 
constant for a given mouse throughout training (Days 1–8). Gently 
place the animal in the center of the maze and start the trial with all 
eight doors opening simultaneously after 30 sec. After a visit to an arm, 
the doors close for 4 s to prevent the mouse from adopting a clockwise 
or counterclockwise motor strategy during arm exploration. Such a 
non-mnemonic strategy would minimize reliance on integrated spatial 
memory representations. Allow the mouse to explore the maze until it 
finds the three baits and returns to the central platform. Replace the 
pellets and allow a 1-min interval between trials. The arms must be clean 
between each trial to remove residual odors and prevent the animal 
from identifying those visited during previous trials. Each daily training 
session consists of six consecutive trials, repeated over a total of eight 
days of training, with same conditions maintained throughout each 
session. Return the mice in their home cages and to the animal housing 
room after the completion each of daily training session. Measure body 
weight and provide food, one hour after the transfer, in adjusted 
amounts to maintain appropriate body weight.

4 Data analysis

During the habituation period, the time spent in the maze can 
be compared to ensure that all groups of mice have similar levels of 
engagement and familiarity with the maze before the testing phase 

begins. This comparison can be  important to rule out potential 
differences in exploratory behavior that could influence performance 
during the testing trials.

4.1 Recording errors

For each trial, assess performance by recording the total number 
of errors defined as all visits to non baited arms and repeated visits to 
previously visited baited arms. Calculate the number of errors per 
session by averaging the number of errors across the six trials 
performed that day. Repeat this process from Day 1 to Day 8.

4.2 Analyzing raw errors

Use GraphPad Prism (10.0) to perform a two-way ANOVA with 
group (young vs. aged) and day (Day 1 to Day 8) as factors. Results are 
considered significant if the 95% confidence interval (p < 0.05) is reached.

4.3 Normalizing data

Normalize each animal data so that the number of errors on Day 
1 corresponds to 100%. Exclude animals with an average error 
percentage exceeding 62.5% during the last three days of training, 
which represents the percentage of errors an animal would do if it 
visited at least once each of the 8 arms. This threshold indicates that 
the animal may not have learned the task by the end of training and 
can be considered a non-learner. Nine aged and one young animal 
were excluded based on this criterion.

4.4 Calculation of learning rate

The aim is to determine the amount of training needed by each 
mouse to reach half of their performance level achieved on Day 8– i.e., 
the “half-life” of the curve. Non-linear exponential regression on 
GraphPad Prism is used to model individual learning curves, 
smoothing any irregularities in performance. To assess the goodness 
of fit for the non-linear exponential regression, we used the coefficient 
of determination (R2), which is appropriate for non-linear models. 
Select animals with a coefficient of determination greater than 0.75 for 
further analysis. A coefficient of determination of 0.75 means that 75% 
of the variation in the data is explained by the fitted model, reflecting 
a satisfactory, though not perfect, match. This suggests that the model 
is generally a good predictor of the observed trends. If a stricter 
threshold (e.g., r > 0.85) were used, more animals would be excluded 
from the analysis, potentially reducing statistical power and 
introducing bias. The learning speed is represented by the “half-life” 
of the curve.

4.5 Group comparison

Perform a Shapiro–Wilk test to assess the normal distribution of 
the data. If the values are normally distributed, use a t-test to compare 

https://doi.org/10.3389/fnagi.2025.1567929
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Duffau et al. 10.3389/fnagi.2025.1567929

Frontiers in Aging Neuroscience 04 frontiersin.org

the learning speed between the young and aged groups. If not, use the 
non-parametric Mann–Whitney (M-W) test.

4.6 Revealing slow vs. normal aged learners

Divide the aged group into two based on the median to create 
“normal speed” and “slow speed” subgroups. Compare learning speed 
across the three groups (young, normal speed aged, slow speed aged) 
using a two-way ANOVA if the distribution is normal. If not, use the 
Kruskal-Wallis (K-W) test.

4.7 Distinguishing spatial reference and 
working memory errors during spatial 
discrimination learning

Solving the spatial discrimination task requires both spatial 
reference memory and working memory. These two memory forms 
can be  apprehended by scoring specific error types. A reference 
memory error was defined as the first visit to a non-baited arm within 
a trial, with a maximum of five errors per trial. Working memory 
errors were identified as repeated visits to the same arm during a trial. 
However, since reference memory enables the avoidance of non-baited 
arms, only re-entries into baited arms were considered true working 
memory errors. Thus, repeated visits to baited arms within a trial were 
scored as working memory errors.

5 Results

5.1 Age-related changes in spatial learning 
and memory in the 8-arm radial maze

During the second day of habituation (P2), young and aged mice 
spent a similar amount of time in the maze (570.3 s ± 116.9 versus 
575.6 s ± 42.44 respectively; M-W, U = 282, p = 0.25). Further, both 
young and aged mice managed to learn the positions of the baited 
arms over 8 days of training. However, a two-way ANOVA revealed 
an effect of age [F(1,127)  = 5.99; p  = 0.016] and testing days 
[F(7,889) = 89.71; p < 0.0001] on learning performance. There was a 
significant interaction between age and days [F(7,889) = 2.73; p = 0.019], 
indicating that young mice acquired the correct arm choices faster 
than aged mice. While both groups improved their performance over 
time, young mice demonstrated quicker adaptation to the task, with 
notable differences on specific days (day 3 and day 4; Figures 1A,B). 
The total number of errors committed on the first and last day of 
training did not differ between the groups [F(1,127) = 0.13; p = 0.72; 
Figure 1C], suggesting that both groups started with a similar baseline 
of errors and that no confounding factors, such that a performance 
effect in aged mice, influenced learning progression. This absence of 
a difference in errors on the last day of testing further supports the 
conclusion that both young and aged mice successfully learned the 
task, although younger mice had a faster spatial memory acquisition 
rate than older mice, highlighting age-related differences in processing 
spatial memory representations.

FIGURE 1

Age-related differences in spatial discrimination learning in the 8-arm radial maze. (A) Schematic illustration of the 8-arm radial maze highlighting 
baited and non-baited arms, as well as the total number of errors scored when an animal enters non-baited arms and re-enters a previously visited 
baited arm. (B) Memory performance is expressed as the mean total number of errors (±SEM) over six daily trials during the eight training days. (C) Total 
errors (±SEM) during the first and last training sessions. Statistical analysis: *p < 0.05, ****p < 0.0001, n = 18 to 111.
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5.2 Modeling learning speed using 
nonlinear exponential regression to assess 
age-related differences in spatial learning

We further examined individual mouse learning curves after 
normalizing the data by setting the number of errors on day 1 as 
100% of the errors made (Figure 2A). These adjustments smooth 
the reduction of interindividual differences while making learning 
more salient, facilitating the discrimination of individuals who may 
not have learned the task by the end of the training. Two 
representative learning curves, one shown in orange and the other 
in green, demonstrate how learning curves could vary in the 
population (Figure 2B). The solid lines represent the actual learning 
curves, which exhibited considerable variation across sessions, 
complicating the calculation of a precise learning rate. To address 
this, we  applied a nonlinear exponential regression method to 
model the learning curve for each mouse (Figure 2A). A coefficient 
of determination R2 test was calculated to verify that the modeled 

curves accurately represented the actual learning data. The R2 values 
for each individual in both the young and aged groups are shown 
in Figure 2C. Based on a selection criterion (R2 > 0.75), only mice 
above the threshold (Figure 2C) were selected for further analyses. 
In the example in Figure 2B, only the mouse represented by the 
green lines met this threshold and was selected for further analysis 
to determine its learning rate. Out of the 111 aged animals, 9 failed 
to learn the task, and 34 (representing 33.3% of the animals) were 
excluded from the analysis due to an R2 value below the chosen 
threshold. In contrast, only 1 young animal out of 18 failed to learn 
the task, and 3 (representing 17.4% of the animals) were excluded 
for not meeting our R2 criteria. The learning speed, measured for 
each mouse by the number of days to reach half of its performance 
level achieved on Day 8, is shown in Figure 2D as a function of age. 
A Mann–Whitney test indicated that aged mice took significantly 
longer to reach this criterion compared to young mice (M-W, 
U = 236, p = 0.012), supporting the conclusion that aging affects the 
rate of spatial learning (Figure 2D).

FIGURE 2

Modeling learning speed using nonlinear exponential regression to assess age-related differences in spatial learning. (A) Normalized learning curves for 
groups of aged and young mice during the spatial learning task in the 8-arm radial maze. Data for each animal were normalized to 100% on the first 
day (±SEM). Statistical analysis: *p < 0.05, n = 17 to 102. (B) Examples of individual learning curves for two mice, one in orange and the other in green. 
The solid lines represent their actual learning curves, making the learning rate difficult to calculate due to performance variations across days. 
Therefore, we modeled a learning curve for each mouse using the nonlinear exponential regression method. A fit test was performed to ensure that 
the modeled curves (dotted lines) accurately represent the actual learning curves. Half-life represents the number of days corresponding to 50% of the 
normalized total number of errors. (C) Representation of the R2 values for each individual in the groups of aged and young mice. Based on the 
selection criterion (R2 > 0.75), only the “green mouse” in (B) met the criterion and was selected to determine its learning rate. (D) Learning speed as a 
function of mouse age (±SEM), measured by the number of sessions required to reach the half performance criterion. Aged mice took longer to reach 
this criterion, indicating a slower learning speed than young mice. The dotted line presents the median performance of young animals. Statistical 
analysis: *p < 0.05, n = 14 to 59.
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5.3 Learning speed in subgroups of aged 
mice reveals slow and normal learners

We identified slow learners (SL) and normal learners (NL) 
within the aged group based on the median performance of the 
young group. Specifically, aged mice that reached 50% 
performance below the median of the young group’s performance 
were classified as NL, while those that reached 50% performance 
above the median were classified as SL. A Kruskal-Wallis test 
revealed that SL mice took significantly longer to reach the 50% 
performance criterion compared to young mice and NL (K-W, 
χ2 = 50.13, p < 0.0001, Figure 3A), indicating a slower learning 
speed in this group. There was no significant difference between 
the young and NL groups. Further, the analysis of normalized 
learning curves for NL and SL aged mice and young mice with a 
two-way ANOVA revealed that SL mice made more errors 
compared to both young and NL mice [F(2,70) = 24.97; p < 0.0001; 
Figure 3B]. This difference in error rates is not due to differences 
in maze exploration, as no significant differences in time spent 
exploring the maze were observed between young, NL and SL 
groups during the second habituation period (570.3 s ± 116.9 
versus 576.3 s ± 55.56 versus 575.1 s ± 63.21 respectively; K-W, 
χ2 = 1.71, p = 0.42). In addition, a Chi-square analysis revealed no 
significant differences in the distribution of testing for NL and SL 
across three time periods: morning (7 a.m. to 11 a.m.), midday 
(11 a.m. to 3 p.m.), and afternoon (3 p.m. to 7 p.m.; 
Supplementary Figure 1) for days with either no difference (Day 
1 and Day 8; Chi-square, Day 1: χ2 (2, N = 59) = 0.04, p = 0.98; 
Day 8: χ2 (2, N = 59) = 0.98, p = 0.61) or a significant difference 
in memory performance (Day 4: χ2 (2, N = 59) = 0.14, p = 0.93). 
These results suggest that exploration and time of day when the 
mice were tested do not explain the observed differences in the 
speed of learning between NL and SL.

5.4 Spatial reference and working memory 
performance in aged normal and slow 
learners

Our training procedure in the 8-arm radial maze enables us to 
identify two main types of errors, namely reference and working memory 
errors, which are not underlined by the same memory systems. We first 
examined working memory errors (Supplementary Figures  2A–C). 
While young and aged mice progressed over training days (two-way 
ANOVA, main effect of days: F(5.204, 385.1) = 42.29, p < 0.0001), there was a 
significant group effect [F(2, 74) = 4.47, p < 0.01] with a significant group x 
days interaction [F(14, 518) = 3.95; p < 0.0001], indicating that aged mice 
from both the NL and SL subgroups were slower in avoiding repeated 
visits into baited arms (Supplementary Figure 2B). Accordingly, a higher 
number of cumulative working memory errors was observed in NL 
(Tukey’s multiple comparison test: p = 0.0002) and SL subgroups of aged 
mice (Tukey’s multiple comparison test: p = 0.0018) compared to young 
mice (Supplementary Figure 2C). Also, numbers of working memory 
errors committed by NL and SL aged mice were similar, as revealed by a 
two-way ANOVA [F(1, 57) = 0.098, p = 0.76; Supplementary Figure 2B]. 
Numbers of cumulative working memory errors on Day 4 for NL and SL 
subgroups were also comparable (Tukey’s multiple comparison test: 
p = 0.79; Supplementary Figure 2C). The performance of all groups was 
similar on Day 1, thus ruling out a performance effect due to aging (Post-
hoc Šídák’s multiple comparisons test: NL versus SL: t(54.87) = 2.59, 
p = 0.10; NL versus Y: t(39.26) = 2.59, p = 0.27; SL versus Y: t(32.91) = 0.11, 
p > 0.99).

We next examined the progression of reference memory errors 
made by young mice and NL and SL subgroups of aged mice 
(Supplementary Figures  2D–F). While young and aged mice 
progressed over training days (two-way ANOVA, main effect of days: 
F(4.711, 348.6) = 155, p < 0.0001), there was no significant group effect [F(2, 

74) = 2.091, p = 0.13] with a significant group x days interaction [F(14, 

FIGURE 3

Learning speed in subgroups of aged mice distinguishing slow learners (SL) from normal learners (NL). (A) Aged mice in the SL group took longer to 
reach the half performance criterion, indicating a slower learning speed compared to young mice. There was no difference between the young and NL 
groups. Statistical analysis: ****p < 0.0001, n = 14 to 30. (B) Normalized learning curves for NL and SL aged mice and young mice during the spatial 
learning task in the 8-arm radial maze. Data for each animal were normalized to 100% on the first day (±SEM). Statistical analysis: ****p < 0.0001, 
*p < 0.05, versus young mice; ¤¤¤¤p < 0.0001 versus NL mice; n = 14 to 30.
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518) = 2.45, p = 0.0024]. Close examination of the progression of 
reference memory errors made by young mice revealed a non-linear 
pattern. Their performance started to plateau after 4 days of training 
and stabilized thereafter (Supplementary Figure 2E). Post-hoc analyses 
indeed revealed that the number of reference memory errors on Day 
4 was significantly lower than on Day 3 (Sidak’s multiple comparison 
test: p = 0.013) and not different from Day 5 (Sidak’s multiple 
comparison test: p = 0.97). In contrast to NL mice, SL mice needed 
more training days to reach a level of task mastery comparable to that 
of young mice. Thus, the cumulated number of reference memory 
errors after 4 training days was higher in SL mice than in young mice 
(Tukey’s multiple comparisons test: p = 0.011) or in NL mice (Tukey’s 
multiple comparisons test: p = 0.014; Supplementary Figure  2F). 
Overall, the number of reference memory errors appears to 
discriminate between SL and NL subgroups of aged mice, suggesting 
that reference memory is more resistant to aging, contrary to 
working memory.

Last, since each daily training session consisted of six trials, intra-
session progression for young and SL and NL mice was also assessed 
by averaging and comparing the total number of errors on the first 
three and last three trials of the day (Supplementary Figure 3). The 
results revealed only slight variations between aged SL and NL mice 
when compared to young animals (two-way ANOVA, group effect: F(2, 

1,184) = 7.88, p = 0.0004). However, these variations are not sufficient to 
account for the performance differences observed between SL and NL 
subgroups over training days, suggesting that aging-induced slower 
learning is likely due to a combination of reduced intra-and inter-
session progression.

6 Discussion

In line with cognitive studies in aged humans, we  observed 
significant variability among aged mice submitted to spatial 
discrimination testing in the 8-arm radial maze. By analyzing the 
performance of a large cohort of aged mice, we developed a novel 
method based on statistical criteria to quantify and categorize memory 
deficits observed during spatial learning. Our analysis revealed that 
mice, regardless of age, were ultimately able to complete the task 
successfully, with no significant differences between young and aged 
mice by the final learning session. However, a closer examination 
highlighted that aging primarily slows the speed of learning rather 
than impairing the overall ability to learn (Barnes and 
McNaughton, 1985).

These findings differ from previous studies using other spatial 
learning paradigms (Drapeau et al., 2007; Gage et al., 1988; Haberman 
et al., 2017; Lund et al., 2004). In some of these earlier studies, the 
limited number of learning sessions may have prevented aged animals 
from fully demonstrating their learning capabilities. To better capture 
the nuances in learning speed, we developed a method that measures 
the amount of training required for animals to reach half of their 
performance level achieved upon training completion. This approach, 
grounded in nonlinear regression modeling, accounts for variability in 
performance, such as occasional errors in individual sessions. Using 
this method, we identified two distinct populations within the aged 
cohort: one group with learning speeds comparable to young mice 
(normal-speed learners) and another group with significantly slower 
learning speeds (slow learners). This reliable categorization tool 

provides a valuable framework for examining aging-related 
interindividual differences and offers potential for further unraveling 
the neurofunctional mechanisms underlying these differences. A 
similar approach could be applied to a larger cohort of young animals 
to determine whether the same observations emerge in a non-aged 
population. This would help exclude the possibility that the identified 
learning subgroups may not be  specific to aging but rather reflect 
inherent variability in learning abilities.

While variables such as visual acuity, motor function, or anxiety 
can influence performance in maze-based tasks, our results do not 
indicate that these factors systematically differed across groups. 
Notably, all groups began with comparable levels of memory errors on 
Day 1 and showed converging performance by Day 8. Furthermore, 
time spent in habituation, which could be sensitive to both anxiety 
and motor deficits, did not differ significantly between groups. These 
findings support the interpretation that the differences in learning 
trajectories, particularly between the slow and normal learner groups, 
primarily reflect variations in cognitive processing rather than 
non-cognitive impairments.

Because aging has been shown to influence circadian rhythms 
(Kondratova and Kondratov, 2012) which in turn can affect spatial 
memory performance (Morales-Delgado et al., 2018; Smarr et al., 
2014; Van Drunen and Eckel-Mahan, 2023; Winocur and Hasher, 
2004), future studies specifically interested in the potential effects of 
circadian rhythm could investigate its impact on memory performance 
in aged animals.

It is also possible to interpret the variability in learning speed 
observed among aged mice by differences in their strategies during 
spatial learning. Studies using the Morris water maze have shown that 
animals can adopt specific strategies to compensate for memory 
deficits. For instance, aged animals often perform comparably to 
younger ones when employing egocentric strategies (relying on their 
own orientation) but show pronounced deficits when required to use 
allocentric strategies [relying on external spatial cues—(Gage et al., 
1988; Lund et al., 2004)]. Similar trends are observed in humans, 
where strategic choices differ between young and older individuals 
and are closely linked to memory performance (Ariel et al., 2015; 
Burger et  al., 2017). Although our experimental approach cannot 
entirely rule out the possibility that aged slow and normal learners 
employ different strategies, we  minimized the use of egocentric 
strategies by closing the doors of the arms for four seconds between 
each arm visit. This intervention not only reduces the animals’ 
opportunity to rely on egocentric strategies but also encourages them 
to adopt an allocentric approach. Instead, they may have used 
allocentric strategies, which depend on spatial cues, and rely on an 
intact hippocampal network, while egocentric strategies are more 
dependent on the striatal network (Colombo et al., 2003; Packard and 
McGaugh, 1996). The hippocampus, a critical structure for spatial 
information processing, is particularly sensitive to aging and 
undergoes numerous structural and functional changes (Rosenzweig 
and Barnes, 2003; Shivarama Shetty and Sajikumar, 2017) that may 
have been more prominent in aged mice of the SL subgroup.

Our novel statistical method offers an opportunity to refine future 
behavioral and biochemical studies on aged individuals. Previous 
studies have identified various biomarkers that differ between young 
and aged individuals by studying cognitive decline, particularly in 
spatial memory (Febo et  al., 2020; Foster, 2012; Jabès et  al., 2021; 
Myrum et al., 2022). By applying our method, researchers can more 
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precisely track the evolution of these biomarkers as individuals age, 
especially in the hippocampus, a critical structure for spatial tasks. 
Future studies integrating behavioral analyses with biological markers 
could shed light on how aging-related molecular changes correlate 
with learning efficiency and strategic choices. Such research would 
provide a more comprehensive understanding of cognitive aging, 
paving the way for targeted interventions to mitigate age-related 
memory decline.
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SUPPLEMENTARY FIGURE 1

Distribution of aged normal and slow learners tested at different times 
(morning, midday and afternoon) during the day. No significant differences 
were observed between normal and slow learners for three time periods: 
morning (7 a.m. to 11 a.m.), midday (11 a.m. to 3 p.m.), and afternoon (3 p.m. 
to 7 p.m.), indicating that testing time was not a confounding variable in our 
experiments. Bar graphs display the percentage of animals tested in each 
time window across D1, D4 and D8 training days.

SUPPLEMENTARY FIGURE 2

Differentiation between normal learners (NL) and slow learners (SL) in 
working and reference memory errors. (A) Schematic illustration of the 
8-arm radial maze, highlighting baited and non-baited arms, as well as the 
working memory errors that occur when an animal re-enters a previously 
visited baited arm. (B) Mean working memory errors (± SEM) across six daily 
trials during the eight training days. (C) Mean cumulative working memory 
errors over the first four training days (D1 to D4) with six daily sessions per 
mouse. Both SL and NL mice exhibit significantly more working memory 
errors compared to young mice. (D) Schematic illustration of the maze 
showing the reference memory errors that occur when an animal makes a 
first entry in a non-baited arm. (E) Mean reference memory errors (± SEM) 
over six daily trials during the eight training sessions. (F) Mean cumulative 
reference memory errors over the first four training days (D1 to D4) with six 
daily sessions per mouse. SL mice show significantly more reference 
memory errors compared to both NL and young mice, suggesting a 
preservation of cognitive performance through the retention of reference 
memory in NL. Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001; n = 14 
to 30.

SUPPLEMENTARY FIGURE 3

Age-related differences in the intra-session learning measured over the six 
daily trials during the eight training days. Mean total errors (±SEM) of the first 
vs. last three trials of the day, revealing only a slight variation between SL and 
NL compared to young mice. Statistical analysis: *p < 0.05, n = 14 to 30.

https://doi.org/10.3389/fnagi.2025.1567929
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1567929/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1567929/full#supplementary-material


Duffau et al. 10.3389/fnagi.2025.1567929

Frontiers in Aging Neuroscience 09 frontiersin.org

References
Ariel, R., Price, J., and Hertzog, C. (2015). Age-related associative memory deficits in 

value-based remembering: the contribution of agenda-based regulation and strategy use. 
Psychol. Aging 30, 795–808. doi: 10.1037/a0039818

Barnes, C. A., and McNaughton, B. L. (1985). An age comparison of the rates of 
acquisition and forgetting of spatial information in relation to long-term enhancement 
of hippocampal synapses. Behav. Neurosci. 99, 1040–1048. doi: 
10.1037//0735-7044.99.6.1040

Burger, L., Uittenhove, K., Lemaire, P., and Taconnat, L. (2017). Strategy difficulty 
effects in young and older adults’ episodic memory are modulated by inter-stimulus 
intervals and executive control processes. Acta Psychol. 175, 50–59. doi: 
10.1016/j.actpsy.2017.02.003

Castillo Escamilla, J., León Estrada, I., Alcaraz-Iborra, M., and Cimadevilla 
Redondo, J. M. (2023). Aging: working memory capacity and spatial strategies in a 
virtual orientation task. GeroScience 45, 159–175. doi: 10.1007/s11357-022-00599-z

Chong, H. R., Ranjbar-Slamloo, Y., Ho, M. Z. H., Ouyang, X., and Kamigaki, T. (2023). 
Functional alterations of the prefrontal circuit underlying cognitive aging in mice. Nat. 
Commun. 14:7254. doi: 10.1038/s41467-023-43142-0

Cohen, R. A., Marsiske, M. M., and Smith, G. E. (2019). Neuropsychology of aging. 
Handb. Clin. Neurol. 167, 149–180. doi: 10.1016/B978-0-12-804766-8.00010-8

Colombo, P. J., Brightwell, J. J., and Countryman, R. A. (2003). Cognitive strategy-
specific increases in phosphorylated cAMP response element-binding protein and c-Fos 
in the hippocampus and dorsal striatum. J. Neurosci. Off. J. Soc. Neurosci. 23, 3547–3554. 
doi: 10.1523/JNEUROSCI.23-08-03547.2003

Drapeau, E., Montaron, M.-F., Aguerre, S., and Abrous, D. N. (2007). Learning-
induced survival of new neurons depends on the cognitive status of aged rats. J. Neurosci. 
27, 6037–6044. doi: 10.1523/JNEUROSCI.1031-07.2007

Febo, M., Rani, A., Yegla, B., Barter, J., Kumar, A., Wolff, C. A., et al. (2020). 
Longitudinal characterization and biomarkers of age and sex differences in the decline 
of spatial memory. Front. Aging Neurosci. 12:34. doi: 10.3389/fnagi.2020.00034

Fernandez-Baizan, C., Arias, J. L., and Mendez, M. (2020). Spatial memory assessment 
reveals age-related differences in egocentric and allocentric memory performance. 
Behav. Brain Res. 388:112646. doi: 10.1016/j.bbr.2020.112646

Foster, T. C. (2012). Dissecting the age-related decline on spatial learning and memory 
tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ 
channels in senescent synaptic plasticity. Prog. Neurobiol. 96, 283–303. doi: 
10.1016/j.pneurobio.2012.01.007

Gage, F. H., Chen, K. S., Buzsaki, G., and Armstrong, D. (1988). Experimental 
approaches to age-related cognitive impairments. Neurobiol. Aging 9, 645–655. doi: 
10.1016/S0197-4580(88)80129-5

Gallagher, M., Burwell, R., and Burchinal, M. (1993). Severity of spatial learning 
impairment in aging: development of a learning index for performance in the Morris 
water maze. Behav. Neurosci. 107, 618–626. doi: 10.1037//0735-7044.107.4.618

Gazova, I., Laczó, J., Rubinova, E., Mokrisova, I., Hyncicova, E., Andel, R., et al. 
(2013). Spatial navigation in young versus older adults. Front. Aging Neurosci. 5:94. doi: 
10.3389/fnagi.2013.00094

Haberman, R. P., Koh, M. T., and Gallagher, M. (2017). Heightened cortical excitability 
in aged rodents with memory impairment. Neurobiol. Aging 54, 144–151. doi: 
10.1016/j.neurobiolaging.2016.12.021

Hadzibegovic, S., Nicole, O., Andelkovic, V., de Gannes, F. P., Hurtier, A., Lagroye, I., 
et al. (2025). Examining the effects of extremely low-frequency magnetic fields on 
cognitive functions and functional brain markers in aged mice. Sci. Rep. 15:8365. doi: 
10.1038/s41598-025-93230-y

Jabès, A., Klencklen, G., Ruggeri, P., Antonietti, J.-P., Banta Lavenex, P., and Lavenex, P. 
(2021). Age-related differences in resting-state EEG and Allocentric spatial working 
memory performance. Front. Aging Neurosci. 13:704362. doi: 10.3389/fnagi.2021.704362

Koh, M. T., McMahan, R. W., and Gallagher, M. (2022). Individual differences in 
neurocognitive aging in outbred male and female long-Evans rat. Behav. Neurosci. 136, 
13–18. doi: 10.1037/bne0000490

Kohler, J., Mei, J., Banneke, S., Winter, Y., Endres, M., and Emmrich, J. V. (2022). 
Assessing spatial learning and memory in mice: classic radial maze versus a new animal-
friendly automated radial maze allowing free access and not requiring food deprivation. 
Front. Behav. Neurosci. 16:1013624. doi: 10.3389/fnbeh.2022.1013624

Kondratova, A. A., and Kondratov, R. V. (2012). Circadian clock and pathology of the 
ageing brain. Nat. Rev. Neurosci. 13, 325–335. doi: 10.1038/nrn3208

Ladyka-Wojcik, N., Olsen, R. K., Ryan, J. D., and Barense, M. D. (2021). Flexible use 
of spatial frames of reference for object–location memory in older adults. Brain Sci. 
11:11. doi: 10.3390/brainsci11111542

Lund, P. K., Hoyt, E. C., Bizon, J., Smith, D. R., Haberman, R., Helm, K., et al. (2004). 
Transcriptional mechanisms of hippocampal aging. Exp. Gerontol. 39, 1613–1622. doi: 
10.1016/j.exger.2004.06.018

Morales-Delgado, N., Popović, N., De la Cruz-Sánchez, E., Caballero Bleda, M., and 
Popović, M. (2018). Time-of-day and age impact on memory in elevated plus-maze test 
in rats. Front. Behav. Neurosci. 12:304. doi: 10.3389/fnbeh.2018.00304

Myrum, C., Moreno-Castilla, P., and Rapp, P. R. (2022). ‘Arc’-hitecture of normal 
cognitive aging. Ageing Res. Rev. 80:101678. doi: 10.1016/j.arr.2022.101678

Newman, M. C., and Kaszniak, A. W. (2000). Spatial memory and aging: performance 
on a human analog of the Morris water maze. Aging Neuropsychol. Cognit. 7, 86–93. doi: 
10.1076/1382-5585(200006)7:2;1-U;FT086

Newman, E. L., Venditto, S. J. C., Climer, J. R., Petter, E. A., Gillet, S. N., and Levy, S. 
(2017). Precise spike timing dynamics of hippocampal place cell activity sensitive to 
cholinergic disruption. Hippocampus 27, 1069–1082. doi: 10.1002/hipo.22753

Nilsson, L.-G. (2003). Memory function in normal aging. Acta Neurol. Scand. 107, 
7–13. doi: 10.1034/j.1600-0404.107.s179.5.x

Packard, M. G., and McGaugh, J. L. (1996). Inactivation of hippocampus or caudate 
nucleus with lidocaine differentially affects expression of place and response learning. 
Neurobiol. Learn. Mem. 65, 65–72. doi: 10.1006/nlme.1996.0007

Reinoso Medina, L., Thrasher, C. A., and Harburger, L. L. (2025). Evidence for age-
related decline in spatial memory in a novel allocentric memory task. Aging 
Neuropsychol. Cognit. 32, 19–28. doi: 10.1080/13825585.2024.2344866

Reynolds, N. C., Zhong, J. Y., Clendinen, C. A., Moffat, S. D., and Magnusson, K. R. 
(2019). Age-related differences in brain activations during spatial memory formation in 
a well-learned virtual Morris water maze (vMWM) task. NeuroImage 202:116069. doi: 
10.1016/j.neuroimage.2019.116069

Richmond, L. L., and Burnett, L. K. (2022). “Chapter six—characterizing older adults’ 
real world memory function using ecologically valid approaches” in Psychology of 
learning and motivation. eds. K. D. Federmeier and B. R. Payne, vol. 77 (Cambridge, 
MA: Academic Press), 193–232.

Rosenzweig, E. S., and Barnes, C. A. (2003). Impact of aging on hippocampal function: 
plasticity, network dynamics, and cognition. Prog. Neurobiol. 69, 143–179. doi: 
10.1016/s0301-0082(02)00126-0

Shivarama Shetty, M., and Sajikumar, S. (2017). “Tagging” along memories in aging: 
synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res. Rev. 35, 
22–35. doi: 10.1016/j.arr.2016.12.008

Smarr, B. L., Jennings, K. J., Driscoll, J. R., and Kriegsfeld, L. J. (2014). A time to 
remember: the role of circadian clocks in learning and memory. Behav. Neurosci. 128, 
283–303. doi: 10.1037/a0035963

Tran, T., Tobin, K. E., Block, S. H., Puliyadi, V., Gallagher, M., and Bakker, A. (2021). 
Effect of aging differs for memory of object identity and object position within a spatial 
context. Learn. Mem. 28, 239–247. doi: 10.1101/lm.053181.120

Van Drunen, R., and Eckel-Mahan, K. (2023). Circadian rhythms as modulators of 
brain health during development and throughout aging. Front. Neural Circuits 
16:1059229. doi: 10.3389/fncir.2022.1059229

Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., and Manning, C. A. (1997). 
Age-related differences in an ecologically based study of route learning. Psychol. Aging 
12, 372–375. doi: 10.1037/0882-7974.12.2.372

Winocur, G., and Hasher, L. (2004). Age and time-of-day effects on learning and 
memory in a non-matching-to-sample test. Neurobiol. Aging 25, 1107–1115. doi: 
10.1016/j.neurobiolaging.2003.10.005

Zhong, J. Y., Magnusson, K. R., Swarts, M. E., Clendinen, C. A., Reynolds, N. C., and 
Moffat, S. D. (2017). The application of a rodent-based Morris water maze (MWM) 
protocol to an investigation of age-related differences in human spatial learning. Behav. 
Neurosci. 131, 470–482. doi: 10.1037/bne0000219

https://doi.org/10.3389/fnagi.2025.1567929
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1037/a0039818
https://doi.org/10.1037//0735-7044.99.6.1040
https://doi.org/10.1016/j.actpsy.2017.02.003
https://doi.org/10.1007/s11357-022-00599-z
https://doi.org/10.1038/s41467-023-43142-0
https://doi.org/10.1016/B978-0-12-804766-8.00010-8
https://doi.org/10.1523/JNEUROSCI.23-08-03547.2003
https://doi.org/10.1523/JNEUROSCI.1031-07.2007
https://doi.org/10.3389/fnagi.2020.00034
https://doi.org/10.1016/j.bbr.2020.112646
https://doi.org/10.1016/j.pneurobio.2012.01.007
https://doi.org/10.1016/S0197-4580(88)80129-5
https://doi.org/10.1037//0735-7044.107.4.618
https://doi.org/10.3389/fnagi.2013.00094
https://doi.org/10.1016/j.neurobiolaging.2016.12.021
https://doi.org/10.1038/s41598-025-93230-y
https://doi.org/10.3389/fnagi.2021.704362
https://doi.org/10.1037/bne0000490
https://doi.org/10.3389/fnbeh.2022.1013624
https://doi.org/10.1038/nrn3208
https://doi.org/10.3390/brainsci11111542
https://doi.org/10.1016/j.exger.2004.06.018
https://doi.org/10.3389/fnbeh.2018.00304
https://doi.org/10.1016/j.arr.2022.101678
https://doi.org/10.1076/1382-5585(200006)7:2;1-U;FT086
https://doi.org/10.1002/hipo.22753
https://doi.org/10.1034/j.1600-0404.107.s179.5.x
https://doi.org/10.1006/nlme.1996.0007
https://doi.org/10.1080/13825585.2024.2344866
https://doi.org/10.1016/j.neuroimage.2019.116069
https://doi.org/10.1016/s0301-0082(02)00126-0
https://doi.org/10.1016/j.arr.2016.12.008
https://doi.org/10.1037/a0035963
https://doi.org/10.1101/lm.053181.120
https://doi.org/10.3389/fncir.2022.1059229
https://doi.org/10.1037/0882-7974.12.2.372
https://doi.org/10.1016/j.neurobiolaging.2003.10.005
https://doi.org/10.1037/bne0000219

	Normal and slow learners: a new discriminative method based on the speed of spatial learning in aged mice
	1 Introduction
	2 Materials and equipment
	2.1 Materials and reagents
	2.2 Equipment
	2.2.1 8-arm radial maze
	2.2.2 Mouse videotracking
	2.2.3 Software and datasets

	3 Procedure
	3.1 Food restriction
	3.2 First pretraining/habituation
	3.3 Second pretraining/habituation
	3.4 Spatial discrimination

	4 Data analysis
	4.1 Recording errors
	4.2 Analyzing raw errors
	4.3 Normalizing data
	4.4 Calculation of learning rate
	4.5 Group comparison
	4.6 Revealing slow vs. normal aged learners
	4.7 Distinguishing spatial reference and working memory errors during spatial discrimination learning

	5 Results
	5.1 Age-related changes in spatial learning and memory in the 8-arm radial maze
	5.2 Modeling learning speed using nonlinear exponential regression to assess age-related differences in spatial learning
	5.3 Learning speed in subgroups of aged mice reveals slow and normal learners
	5.4 Spatial reference and working memory performance in aged normal and slow learners

	6 Discussion

	 References

