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Background: Alzheimer’s disease (AD) progression is characterized by persistent 
neuroinflammation, where pyroptosis—an inflammatory programmed cell 
death mechanism—has emerged as a key pathological contributor. However, 
the molecular mechanisms through which pyroptosis-related genes (PRGs) 
drive AD pathogenesis remain incompletely elucidated.

Methods: We integrated multiple transcriptomes of AD patients from the GEO 
database and analyzed the expression of PRGs in combined datasets. Machine 
learning algorithms and comprehensive bioinformatics analysis (including 
immune infiltration and receiver operating characteristic (ROC)) were applied 
to identify the hub genes. Additionally, we  validated the expression patterns 
of these key genes using the expression data from AD mice and constructed 
potential regulatory networks through time series and correlation analysis.

Results: We identified 91 PRGs in AD using the weighted gene co-expression 
network analysis (WGCNA) and differentially expressed genes analysis. By 
application of the protein–protein interaction and machine learning algorithms, 
seven pyroptosis feature genes (CHMP2A, EGFR, FOXP3, HSP90B1, MDH1, 
METTL3, and PKN2) were identified. Crucially, MDH1 and PKN2 demonstrated 
superior performance in terms of immune cell infiltration, ROC curves, and 
experimental validation. Furthermore, we constructed the long non-coding RNA 
and mRNA (lncRNA-mRNA) regulatory network of these characteristic genes 
using the gene expression profiles from AD mice at varying ages, revealing the 
potential regulatory mechanism in AD.

Conclusion: This study provides the first comprehensive characterization of 
pyroptosis-related molecular signatures in AD. Seven hub genes were identified, 
with particular emphasis on MDH1 and PKN2. Their superior performances were 
validated through comprehensive bioinformatic analysis in both patient and 
mouse transcriptomes, as well as the experimental data. Our findings establish 
foundational insights into pyroptosis mechanisms in AD that may inform novel 
treatment strategies targeting neuroinflammatory pathways.
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1 Introduction

Alzheimer’s disease (AD) represents the most prevalent 
neurodegenerative disorder, clinically manifested by progressive 
deterioration of memory functions (Hodson, 2018). Disease 
progression is accompanied by a constellation of neurological deficits, 
including language impairment, affective disturbances, spatial 
disorientation, and behavioral abnormalities (Gonzales et al., 2022). 
The age of onset of AD is predominantly above 65 years, and with the 
increasing trend of global population aging, its prevalence is expected 
to rise (Raggi et al., 2022). Current therapeutic limitations underscore 
the urgent need for novel treatment targets, as no therapies exist to 
halt or reverse AD pathogenesis.

Neuronal dysfunction and loss constitute fundamental 
contributors to AD-associated cognitive decline. Two pathological 
hallmarks, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), 
precede clinical symptom onset (Mattson, 2004). It has been 
demonstrated that Aβ accumulation triggers microglial activation, 
initiating neuroinflammatory cascades that culminate in neuronal 
death (Podlesny-Drabiniok et al., 2020; Leng and Edison, 2021). These 
evidence suggest that inflammation-mediated neuronal demise may 
represent a critical therapeutic target. Pyroptosis is a novel pattern of 
programmed cell death (PCD) characterized by inflammatory 
necrosis that has been confirmed in recent years (Rao et al., 2022). A 
multitude of studies have demonstrated that pyroptosis plays a role in 
the progression of neurological, metabolic, cardiovascular, and 
infectious diseases (Hu et al., 2022; Moonen et al., 2023; Yarovinsky 
et  al., 2023; Wei et  al., 2022; Al Mamun et  al., 2024). Classical 
pyroptosis involves inflammasome-mediated caspase-1 activation, 
leading to gasdermin D (GSDMD) cleavage and pore formation in cell 
membranes (Shi et al., 2015). This process facilitates the release of 
pro-inflammatory cytokines IL-1β and IL-18, driving 
neuroinflammation (Rao et al., 2022).

Emerging evidence positions pyroptosis as a potential therapeutic 
target in AD. A recent review outlines the clues of Aβ accumulation-
induced NOD-like receptor family pyrin domain-containing proteins 1 
and 3 (NLRP1 and NLRP3) inflammasome-dependent pyroptosis in 
AD (Hu et al., 2024). Experimental reduction of NLRP1 or caspase1 
expression in APP/PS1 (an AD model) mice attenuated the Aβ 
deposition, reduced neuronal pyroptosis, and improved cognitive 
deficits (Tan et  al., 2014; Flores et  al., 2022). NLRP3 has also been 
identified as a contributing factor in the development of AD pathology, 
with a main role in the mediation of microglia pyroptosis (Cai et al., 
2021; de Brito Toscano et  al., 2021). These studies indicate that 
pyroptosis could be  a promising direction of investigation and a 
potential therapeutic target for AD. In addition, the non-classical 
signaling pathway, apoptotic caspases-mediated pathway, and 
granzymes-mediated pathways have been recognized in pyroptosis (Wei 
et  al., 2022). The mechanisms mediated by these pathways are 
independent of the classical inflammasome complex and warrant 
further investigation in AD. Moreover, there is a lengthy interval 
between the persistence of neuroinflammation and the onset of 
cognitive impairment in AD (Gonzales et  al., 2022). Systematic 

identification of differentially expressed pyroptosis-related genes (PRGs) 
across disease stages could unveil molecular drivers of AD progression. 
Multi-transcriptomic integration combined with machine learning may 
provide novel insights into pyroptosis-mediated pathophysiology.

In this study, we conducted a comprehensive analysis of expression 
data from AD patients and normal controls across multiple GEO 
datasets. We employ weighted gene co-expression network analysis 
(WGCNA), differential expression analysis, gene function analysis, 
and machine learning algorithms to identify hub genes. The aberrant 
expression of these genes was confirmed by additional AD datasets, 
our AD mice dataset, and molecular experiments using AD mice. In 
addition, our dataset comprised the expression profiles of APP/PS1 
mice at different ages, which were analyzed to identify age-dependent 
expression profiles of the pyroptosis-AD hub genes and their potential 
regulatory networks. The complete workflow of the study is illustrated 
in Figure 1. We believe that our findings will contribute to advancing 
knowledge regarding the role of pyroptosis in AD.

2 Materials and methods

2.1 Data preparation and processing

The Gene Expression Omnibus (GEO) datasets ID we acquired 
and analyzed in this study were GSE28146 (Blalock et  al., 2011), 
GSE48350 (Berchtold et  al., 2008), GSE5281 (Liang et  al., 2007), 
GSE36980 (Hokama et al., 2014), and GSE242902 (Wu et al., 2024). 
The majority of these datasets comprise assays derived from human 
brain tissues, including the hippocampus and cortex. Given that the 
samples in these datasets originate from various brain regions, to 
guarantee the reliability of the data post-merging and analysis, 
we  selected the hippocampus, which is present in all datasets, for 
subsequent analysis. Among them, the datasets of GSE5281, 
GSE28146, and GSE48350 shared the same annotation platform 
GPL570, and we randomly chose one of them, GSE5281, for differential 
expression genes analysis. The remaining two datasets (GSE28146 and 
GSE48350) would be  combined into one dataset (containing the 
hippocampus of 41 AD patients and 51 control samples) for WGCNA 
analysis. The dataset GSE36980 was used to validate the signature 
genes by mapping ROC curves. Moreover, the dataset GSE242902 was 
our uploaded data containing a total of 18 samples of two mice groups; 
specifically, there are 3-, 6-, and 12-month-old APP/PS1 and wild-type 
(WT) mice (n = 3 per group). These data were used to provide multi-
species validation of AD through comparative analysis across humans 
and mice. The hippocampi of these mice were isolated for mRNA 
microarray, and the protocol was as described before (Wu et al., 2024).

2.2 Weighted gene co-expression network 
analysis (WGCNA)

Weighted gene co-expression network analysis was conducted on 
datasets GSE28146 and GSE48350 to identify gene modules highly 
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associated with AD. Specifically, the GSE28146 (containing the 
hippocampus of 22 AD patients and 8 control samples) and GSE48350 
(containing the hippocampus of 19 AD patients and 43 control 
samples) that shared the same platform GPL570 have been combined 
into one matrix for WGCNA analysis after removing batch effects 
using the removeBatchEffect function in the Limma R package. The 
genes with similar patterns were grouped into a module, which was 
then subjected to phenotypic analysis (i.e., disease). Finally, 
overlapping genes between significant modules and PRGs (from the 
GeneCards database) were identified using Venn diagrams.

2.3 Differential expression gene (DEG) 
analysis

The data matrix of GSE5281 (containing the hippocampus of 10 AD 
patients and 13 control samples) was obtained from the GEO database 
for the DEGs analysis between AD patients and control people by the R 
package Limma. The data in the matrix has been subjected to a process 
of normalization and filtering using a quantification algorithm. DEGs 
between AD and control groups in hippocampus tissues were selected 
for identification by fold change and p-value, which were calculated by 
t-test, with the thresholds set at |fold change| > 2 and p-values <0.05. 
Volcanograms were plotted by https://www.bioinformatics.com.cn (last 
accessed on 10 October 2024), an online platform for data analysis and 
visualization (Tang et al., 2023). The differentially expressed mRNAs 
(DEmRs) or lncRNAs (DElncRs) between AD and control mice from 
the GSE242902 were obtained by the same calculation.

2.4 Identification and validation of the 
pyroptosis-related AD genes

The PRGs list was retrieved from the GeneCards database using 
the search term “pyroptosis.” Subsequently, intersection analysis was 
performed to identify the pyroptosis-related AD genes between (1) 
PRG candidates and DEGs obtained from the GSE5281 dataset, and 
(2) PRG candidates and module identified through WGCNA of 
merged datasets (GSE28146 and GSE48350). The resulting pyroptosis-
related AD candidate genes were subjected to hub gene identification 
through integrated analysis incorporating machine learning algorithms 
and protein–protein interaction (PPI) analysis. We  next plotted 
receiver operating characteristic (ROC) curves to assess the significant 
differences of these hub genes associated with pyroptosis between the 
AD and control in combined dataset and GSE36980 by using the R 
package ‘pROC’.

2.5 Protein–protein interaction (PPI) 
analysis

The PPI analysis was systematically constructed through the 
STRING database (version 10)1 with default parameters. Subsequent 
interactive visualization of the PPI network was performed using the 

1 https://cn.string-db.org/

FIGURE 1

The flowchart of the analysis process in this study.
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Chiplot platform.2 Stringent filtering criteria were applied to identify 
hub interactors: nodes with degree centrality exceeding 2 and combined 
interaction scores >0.9 were selected as key AD-associated genes.

2.6 Machine learning-driven hub gene 
identification

Three machine learning models, namely least absolute shrinkage 
and selection operator (LASSO), random forest (RF), and support 
vector machine (SVM), were employed to analyze the hub of these 
pyroptosis-related AD candidate genes using the R package “Glmnet” 
and “Caret.” The expression of the pyroptosis-related AD gene was 
de-batched and merged from the datasets GSE5281, GSE28146, and 
GSE48350. Consensus hub genes were derived through intersecting 
gene lists generated by the three algorithms and visualized via 
Venn diagrams.

2.7 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) was conducted to evaluate 
the trend in the distribution of genes from a pre-defined gene set in a 
table of genes sorted by phenotypic relevance to determine their 
contribution to the phenotype. In our study, we  used the Gene 
Ontology (GO) terms as the pre-defined gene sets. Batch-corrected 
composite datasets derived from GSE5281, GSE28146, and GSE48350 
were utilized for GSEA. Statistical significance was assessed by 
comparing the enrichment scores with the enrichment results 
generated by randomization of the gene set to derive a nominal 
p-value. The level of significance was determined by a normalized 
enrichment score (NES) > 0, p < 0.05.

2.8 Analysis of immune infiltration

Given the well-documented association between pyroptosis-AD 
genes and immune cell dynamics, we  investigated the relationship 
between PRGs and immune cell composition using the CIBERSORT 
algorithm. We uploaded the combined data of GSE5281, GSE28146, and 
GSE48350, which were used to analyze the immune cell infiltration. 
Then, the “Vioplot” software package was used to visualize the differences 
in immune cell infiltration between the AD and control groups. In 
addition, the “Corrplot” software package was used to demonstrate the 
Spearman correlation between immune cell and gene expression.

2.9 Convergent functional genomics (CFG) 
analysis

Convergent functional genomics (CFG) framework was applied 
to prioritize AD candidate genes through the AlzData integrative 
database (Xu et al., 2018). AlzData is a one-step database of current 
AD data and could serve as an in-depth integrating system to integrate 

2 https://www.chiplot.online/

data of different levels and generate a prioritized gene list for further 
characterization. The CFG method can verify the effectiveness and 
confirm the AD hub genes based on the four pieces of evidence 
defined by the database. At the same time, the database can provide 
gene expression and comparison results in different brain regions by 
integrating multiple datasets. The platform’s cross-dataset validation 
capability further strengthened the biological credibility of identified 
AD hub genes.

2.10 Quantitative polymerase chain 
reaction (qPCR)

Following machine learning-based identification, pyroptosis-
related AD hub genes were experimentally validated using the 
hippocampus from AD mouse models via qPCR. Primer sequences 
(Supplementary Table S1) were synthesized by Sangon Biotech 
(Shanghai, China). Total RNA was extracted from hippocampal tissues 
using the RNA Isolation Kit (DP501, Tiangen, China), followed by 
first-strand cDNA synthesis with 1 μg high-quality RNA using the 1st 
Strand cDNA Synthesis Kit (11141ES60, Yeason, China). Quantitative 
PCR amplification was performed using the qPCR Mix (11201ES08, 
Yeason, China). glyceraldehyde -3-phosphate dehydrogenase 
(GAPDH) served as the endogenous control, with target gene 
expression quantified using the 2-△△CT method. All reactions were 
conducted in triplicate to ensure technical reproducibility.

2.11 Western blot (WB)

Western blot (WB) was performed to ascertain gene alterations at 
the protein level in AD mice compared to WT controls, as previously 
described (Wu et al., 2025). Hippocampal tissues were homogenized in 
ice-cold radioimmunoprecipitation assay (RIPA) buffer (P0013C, 
Beyotime, China) supplemented with 1 mM phenylmethylsulfonyl 
fluoride (PMSF; 9 μL per 1 mg tissue). After centrifugation at 12,000 × g 
for 5 min at 4°C, supernatants were collected for protein quantification. 
Equal amounts of protein (30 μg/lane) were separated by 10% sodium 
dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) and 
transferred onto poly (vinylidene fluoride) (PVDF) membranes. 
Membranes were blocked with QuickBlock Western blocking buffer 
(P0252, Beyotime, China) for 15 min at room temperature, followed by 
overnight incubation at 4°C with primary antibodies: anti-EGFR 
(1:1000; A00023, Boster), anti-HSP90B1 (1:1000; PB0670, Boster), anti-
MDH1 (1:1000; A04262, Boster), anti-PKN2 (1:1000; A19746, 
Abclonal), and anti-GAPDH (1:20,000; 60,004-1-Ig, Proteintech). The 
membranes were incubated with the corresponding secondary 
antibodies for 1 h at room temperature the next day. Protein bands were 
visualized using enhanced chemiluminescence (ECL) reagents (P0018, 
Beyotime, China) and scanned by the Tannon chemiluminescence 
imager and measured using the ImageJ software.

2.12 Construction of transcription factors 
and miRNA regulatory networks

The prediction of target microRNAs (miRNAs) was conducted 
using multiple computational platforms including TargetScan, 
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miRDB, DIANA tools, and miRwalk (McGeary et al., 2019; Chen 
and Wang, 2020; Paraskevopoulou et al., 2013; Sticht et al., 2018). 
The specific screening criteria employed were as follows: miTG 
score in DIANA > 0.7 for predicted genes, binding p in miRwalk > 
0.8, Target Score in miRDB > 80, and all genes in TargetScan. 
Candidate miRNAs required co-prediction by at least three 
platforms. The mRNA-miRNA interaction network was constructed 
using Cytoscape (version 3.10.2). Transcription factor (TF) 
prediction was performed through KnockTF, ENCODE, and ChIP-
Atlas databases (Feng et al., 2020; Consortium EP, 2011; Zou et al., 
2024), with final TF candidates identified through database 
intersection. Regulatory relationships were visualized via Cytoscape.

2.13 Time series analysis and construction 
of lncRNA regulatory network

Time-dependent regulatory patterns of pyroptosis-related AD 
genes in APP/PS1 mice were analyzed using longitudinal expression 
profiles of target mRNAs and differentially expressed lncRNAs 
(DElncRNAs). DElncRNAs with mean normalized expression <6 were 
excluded. All the genes used for analysis were clustered into six groups 
by Mfuzz, a R package used for time series analysis, according to the 
expression profiles from the 3-, 6-, and 12-month-old AD mice 
(Kumar and EF, 2007). DElncRNAs co-clustered with mRNAs were 
designated as potential regulators. Correlation analysis was performed 
based on the gene expression to carry out the correlationship between 
mRNA and DElncRs using the Corrplot package. The p-value < 0.05 
and |Corr. p-value| > 0.6 between two transcripts should be considered 
as highly correlation. The final lncRNA-mRNA regulatory network 
was visualized through Cytoscape.

2.14 Animals

The APP/PS1 mice (RRID: MMRRC_034832-JAX) carry two 
transgenes with AD-linked mutations: a chimeric mouse/human APP 
with the Swedish mutation and human PSEN1 lacking exon 9 (dE9) 
was provided by He et  al. (2021). Amyloid plaque pathology was 
confirmed by immunohistochemistry at 6 months of age (Minkeviciene 
et al., 2008). Age-matched WT littermates were used as controls. All 
mice were bred, reared, and housed under a 12/12 h light cycle, with 
lights on at 8:00 am in the Laboratory Animal Center of North Sichuan 
Medical College in accordance with the institutional guidelines for the 
Care and Use of Laboratory Animals. All animal experiments were 
approved by the Ethics Committee of North Sichuan Medical College.

2.15 Statistical analysis

The data presented in the text and figures were analyzed using 
GraphPad Prism software, version 9.0, and expressed as the means ± 
standard error of the mean (SEM). For pairwise comparisons, an 
unpaired two-tailed Student’s t-test was applied based on the 
normality results. The level of significance was set at *p < 0.05, 
**p < 0.01, and ***p < 0.001. All behavioral and molecular assessments 
were conducted in a blinded manner by independent investigators 
unaware of experimental group assignments.

3 Result

3.1 WGCNA identifies AD-associated 
co-expression modules

Weighted gene co-expression network analysis was utilized to 
investigate gene modules associated with AD. The GEO datasets 
GSE28146 and GSE48350, generated on the same annotation 
platform, were combined into a matrix for subsequent WGCNA 
analysis following the elimination of batch effects. The combined 
dataset included 41 samples from AD patients and 50 from normal 
controls. Quality control assessment of the integrated dataset was 
visualized through boxplots (Figure 2A), confirming comparable 
expression distributions across batches. Next, the scale-free fit 
indices and average connectivity were evaluated under different 
soft threshold powers, with β = 5 being selected as the most 
appropriate parameter (Figure 2B). In the following dynamic tree 
algorithm, the threshold was set to a truncation height of 0.75, and 
the minimum number of genes per module was set to 100, which 
ultimately yielded 10 different co-expressed gene modules 
(Figure 2C). Module–trait relationships were evaluated by Pearson 
correlation analysis between module eigengenes and AD clinical 
phenotypes (Figure 2D). Statistical analysis revealed that the blue 
module, containing 2,385 genes, exhibited the strongest correlation 
with AD (Supplementary Table S2), establishing it as the most 
biologically relevant module for downstream investigation.

3.2 Identification and functional analysis of 
DEGs in AD dataset

Differential expression analysis was performed on hippocampal 
tissue samples from the GSE5281 dataset to identify AD-associated 
genes. After quality control verification via principal component 
analysis (PCA) and boxplots (Supplementary Figures S1A,B), 1,063 
DEGs, of which 500 genes were upregulated and 563 genes were 
downregulated, were identified under thresholds of the fold change 
(FC) > 2 and p-values <0.05 (Figure  3A and 
Supplementary Table S3). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway results revealed that these DEGs were 
enriched in the pathways of neurodegeneration-multiple diseases, 
such as Parkinson’s or Alzheimer’s disease, and the pathways of 
cellular processes, such as apoptosis and autophagy (Figure 3B). 
Gene ontology (GO) analysis suggested that DEGs were enriched 
concerning neuron projection development, synapse, and 
transcription factor binding (Supplementary Figure S1C).

Given the established role of apoptosis or autophagy in AD 
pathogenesis (Zhang and Dai, 2024), we  hypothesized that 
pyroptosis—a gasdermin-mediated programmed cell death—might 
contribute similarly. A total of 609 PRGs were obtained from the 
GeneCards database, and then an intersection analysis was conducted 
to ascertain the overlap between the 609 PRGs and 1,063 DEGs or the 
2,385 blue module genes from WGCNA. Cross-analysis identified 91 
PRGs in AD, and it was noteworthy that four genes (EGFR, NDUFA13, 
PKN2, and SUZ12) were presented in both the DEGs and the disease 
module of WGCNA (Figure 3C and Supplementary Figure S1D). The 
PPI network of the 91 pyroptosis-related AD genes was constructed 
using the String database and visualized by Chiplot (Figure 3D). Hub 
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genes were prioritized with degree centrality >2 and combined 
interaction scores >0.9, yielding 47 key pyroptosis-related AD genes 
(Supplementary Table S4). The hierarchical clustering of these genes 
demonstrated distinct expression patterns (Supplementary Figure S1E).

3.3 Multiple machine learning algorithms 
identify hub genes of pyroptosis in AD

To identify the hub genes with high diagnostic value among the 
91 pyroptosis-related AD genes, three machine learning algorithms 

(LASSO, SVM, and RF) were applied using the integrated dataset 
from GSE28146, GSE48350, and GSE5281. In the LASSO analysis, 
the c-index model was employed to assess the predictive capacity 
of the model. At λ = 7, the c-index exhibited the greatest 
magnitude, the coefficient demonstrated convergence to 0, and the 
partial likelihood deviance exhibited a tendency toward 0, 
indicating that the model exhibited optimal predictive efficacy 
(Figures 4A–C). In the RF model, the highest level of accuracy was 
achieved when the number of genes increased to 46 (Figure 4D). 
In the SVM algorithm for prediction, the minimum deviation 
between the predicted and actual values was observed when the 

FIGURE 2

Weighted gene co-expression network analysis (WGCNA) identifies AD-associated co-expression modules. (A) Boxplot analysis of two AD datasets 
(GSE28146 and GSE48350) before and after removal of batch effect. (B) Soft threshold powers analyzed by the unscaled fitting index (β) and average 
connectivity. (C) Dendrogram was generated using a hierarchical clustering method and dynamic tree algorithm. (D) Module-trait correlation heatmap 
showing associations between co-expression modules and AD clinical phenotypes. Red indicates positive correlation; blue denotes negative 
correlation.
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root mean square error (RMSE) reached its minimum and seven 
genes were used as features (Figure 4E). Consensus hub genes were 
defined as genes selected by ≥2 algorithms and intersected with 
PPI network-derived candidates, resulting in seven pyroptosis-AD 
hub genes: CHMP2A (the charged multivesicular body protein 
2A), EGFR (epidermal growth factor receptor), FOXP3 (forkhead 
box P3), HSP90B1 (heat shock protein 90 beta family member 1), 
MDH1 (malate dehydrogenase 1), METTL3 (methyltransferase 3), 
and PKN2 (serine/threonine protein kinase C-related kinase 2) 
(Figure 4F and Supplementary Table S4). Among them, CHMP2A 
was the only gene that appeared in all three algorithms; EGFR, 
FOXP3, MDH1, and PKN2 were shortlisted in the RF and SVM 
models, while HSP90B1 and METTL3 were selected in both RF 
and LASSO algorithms.

3.4 Analysis of immune cell infiltration in AD

Gene set enrichment analysis revealed significant upregulation of the 
IMMUNE_RESPONE pathway in the AD group compared to the 
control (Figure 5A). Then, the CIBERSORT algorithm was employed to 
explore the immune microenvironment landscape of 22 immune 
infiltrating cells. Figure  5B illustrates the relative abundance of the 
immune infiltrating cells in AD and normal samples. The results of 
immune infiltration level revealed that eosinophils and dendritic cells 
were significantly downregulated in AD (p = 0.002, p = 0.024), whereas 
T cells follicular helper was upregulated in AD compared to the control 
(p = 0.028) (Figure 5C). Furthermore, to elucidate the interrelationships 
between these cells, a Pearson’s correlation analysis was conducted 
(Figure 5D), which provides insight into the complex network dynamics 

FIGURE 3

Identification and functional analysis of DEGs. (A) Volcano plot of DEGs in hippocampal tissues from GSE5281 (AD vs. control). (B) Bubble map of KEGG 
pathway enrichment analysis for DEGs, the enrichment scores, gene counts, and p-values were presented. (C) A Venn diagram of the gene list from 
pyroptosis, DEGs and WGCNA AD module genes, resulting in a total of 91 pyroptosis genes related to AD. (D) PPI network showed the interactions of 
the pyroptosis in AD. The names of the gene with connection degrees >2 or the combined scores > 0.9 were plotted, and the rest were not presented 
in the net.
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of the immune infiltrate in AD. These results confirmed the correlation 
between the pyroptosis-related genes and immune response.

3.5 Correlation analysis of the 
pyroptosis-AD hub genes and immune 
infiltration

The relationship between the seven pyroptosis-AD hub genes and 
the 22 immune cells was then investigated. Based on the correlation 
and significance of these relationships, correlation heatmap was 
produced (Figure  6A). The results evidenced a correlation and 

statistical significance (p < 0.01) in the four types of immune cells 
[mast cells activated, regulatory T cells (Tregs), macrophages M0, and 
T cells CD8]. Among the genes, MDH1 and FOXP3 were found to 
be  significantly correlated with multiple immune cell types 
(Figures 6B,I). Specifically, MDH1 was positively correlated with mast 
cells activated, regulatory T cells, and NK cells resting (Figures 6C–E) 
while exhibiting a negative correlation with T cells gamma delta, T 
cells CD4 memory activated, and macrophages M0 (Figures 6F–H). 
FOXP3 demonstrated a positive relationship with regulatory T cells 
(Tregs), macrophages M0, and T cells CD8 (Figures 6J–L). Conversely, 
it was negatively correlated with B cells memory, dendritic cells 
resting, and macrophages M2 (Figures 6M–O). These two genes both 

FIGURE 4

Identification of hub genes of pyroptosis in AD by machine learning. (A–C) The c-index model (A) and coefficients (B) and the partial likelihood 
deviances (C) of different genes varied with different log(lambda) in the LASSO algorithm. (D) Results of the RF algorithm: the accuracy was calculated 
as the number of genes changed. (E) The RMSE values in the SVM analysis. (F) Venn diagram intersecting LASSO, RF, SVM-derived genes, and PPI 
network candidates. LASSO, the least absolute shrinkage and selection operator; SVM, support vector machine; RF, random forest algorithm; PPI, 
protein–protein interaction.
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FIGURE 5

Assessment and visualization of immune cell infiltration. (A) GSEA was performed using the combined AD dataset (GSE28146, GSE48350, and 
GSE5281) with the GO terms as the gene set for enrichment. (B) The boxplot diagram illustrates the proportion of distinct immune cell types, whereas 
the heat map presents a summary of immune infiltration scores between AD patients and control. (C) The differences in immune infiltration of the 22 
immune cells between AD (red) and normal (blue) controls from the combined dataset and p-values were shown as *p < 0.05, **p < 0.01. (D) The heat 
map shows the correlation infiltration of innate immune cells by CIBERSORT.
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exhibited a positive correlation with regulatory T cells (Tregs). In 
addition, the remaining five genes were correlated with individual 
types of immune cells, as illustrated in their respective correlation 
plots (Supplementary Figure S2).

3.6 Validation of the pyroptosis-AD hub 
genes by the AD gene characterization and 
cross-platform expression

To ascertain the consistency of the seven pyroptosis-AD hub 
genes derived from machine learning algorithms with the 
characteristics of AD-related genes, the CFG method provided by the 
AlzData database was employed. This method quantifies gene-AD 

associations using a score from 0 to 5. A higher value indicates a 
greater relationship to AD. The results showed that the CFG values of 
EGFR and HSP90B1 up to 3, and CHMP2A, FOXP3, MDH1, and 
METTL3 attained 2 points (Supplementary Figure S3A). Subsequently, 
the cross-platform normalized expression levels of these genes in 
multiple brain regions were examined (Supplementary Figure S3B). 
The generated results demonstrated that five genes were significant in 
the AD sample; four of them (CHMP2A, EGFR, MDH1, and PKN2) 
exhibited differences (p < 0.05) in cross-platform expression level in 
AD tissues, while HSP90B1 showed alterations in independent dataset 
GSE5281. The remaining genes (FOXP3 and METTL3) did not show 
differences in any of the datasets in this database. Consequently, five 
genes (CHMP2A, EGFR, MDH1, PKN2, and HSP90B1) with robust 
evidence of AD-specific dysregulation were prioritized for subsequent 

FIGURE 6

Correlation analysis between pyroptosis-AD hub genes and immune cell infiltration. (A) Heatmap showed the correlation and p-values of 22 immune 
infiltrating cells and pyroptosis-related genes. The red indicated a positive correlation, whereas the blue represented a negative correlation, and 
p-values were shown as *p < 0.05, **p < 0.01, ***p < 0.001. (B) Correlation analysis between MDH1 and infiltrating immune cells. (C–H) Correlation 
scatter plots between the expression of MDH1 and immune cells presented significance. (I) Correlation analysis between FOXP3 and infiltrating 
immune cells. (J–O) Correlation scatter plots between the expression of MDH1 and immune cells presented significance.
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regulatory network construction and in  vivo validation in APP/
PS1 mice.

3.7 Validation of the pyroptosis-AD hub 
genes in AD mice

In the preceding analysis, heatmaps and boxplots were generated 
to visualize the expression patterns of five dysregulated pyroptosis-AD 
hub genes in AD versus control samples (Figure  7A and 
Supplementary Figure S3C). To preliminarily validate the expression 
of these genes in AD mice, our dataset GSE242902 was explored, and 
the heatmap presented a comparison of the expression of these genes 
in APP/PS1 mice and WT mice at the ages of 6 and 12 months 
(Figure  7B). Then, qPCR analysis of hippocampal tissues further 
confirmed differential expression: Mdh1 was significantly 
downregulated (p  = 0.0157), while Egfr (p  = 0.0115), Pkn2 
(p = 0.0067), and Hsp90b1 (p = 0.0038) were upregulated in the AD 
mice (Figures  7D–G). However, Chmp2a did not exhibit any 
significant differences in AD or control mice (Figure  7C). 
We proceeded to examine the alterations in protein levels of the four 
genes in the hippocampus of AD mice. The findings indicated that 
these protein changes were in accordance with those observed at the 
mRNA level, with Mdh1 exhibiting downregulation and Egfr, Pkn2, 
and Hsp90b1 demonstrating significant upregulation (p  = 0.0012, 
0.0194, 0.0118, and 0.0169, respectively) (Figures  7H–K). It was 
noteworthy that the trends of gene expression changes in AD mice 
were generally consistent with those observed in AD patients.

3.8 The diagnostic performance of 
pyroptosis-AD hub genes in the training 
and validation datasets

The diagnostic utility of these five pyroptosis-AD hub genes was 
systematically evaluated. In the combined training dataset, all five 
genes exhibited area under the receiver operating characteristic curve 
(AUROC) values exceeding 0.6, with PKN2 (AUROC = 0.724) and 
CHMP2A (AUROC = 0.767) demonstrating superior sensitivity and 
specificity (Figure 8A). The data employed for the combined analysis 
were selected from the hippocampal tissue expression profiles of those 
three datasets. Thus, we first selected the original individual datasets 
for ROC validation, and the result demonstrated that in the 
hippocampus tissue data from GSE5281, all five genes exhibited values 
exceeding 0.8, and in the data from GSE48350, four genes (in addition 
to HSP90B1) also remained above 0.7 (Figures 8B,C). To assess tissue-
specific diagnostic robustness, we evaluated entorhinal cortex samples 
from GSE5281. MDH1 and PKN2 achieved exceptional AUROC 
values of 0.846 and 0.862, respectively, confirming their well specificity 
and sensitivity in both the cortex and the hippocampus of AD 
(Figure  8D). Additionally, we  added the dataset GSE36980 as a 
validation set. The results demonstrated that all five genes manifested 
values exceeding 0.6, with MDH1 and PKN2 exhibiting values above 
0.7 (Figure  8E). In the hippocampal tissue expression data of 
GSE36980, MDH1 and PKN2 performed even more effectively, with 
ROC values of 0.843 and 0.786, respectively (Figure 8F). Meanwhile, 
in the temporal cortex data of GSE36980, PKN2 continued to 
demonstrate superior performance (Figure 8G). A comparison of the 

expression of PKN2 or MDH1 in AD and control subjects in this 
dataset revealed a significant upregulation and downregulation of 
PKN2 and MDH1, respectively (Figures 8H,I), which was consistent 
with the results of previous gene expression validation studies in 
AD mice.

3.9 Construction of TFs and miRNAs 
regulatory networks of the pyroptosis-AD 
hub genes

To delineate the regulatory architecture governing pyroptosis-AD 
hub genes, we  performed an integrated analysis of transcription 
factors (TFs), miRNAs. Through the target miRNA prediction process, 
202 miRNAs for EGFR, 206 for PKN2, 12 for HSP90B1, 3 for MDH1, 
and 2 for CHMP2A were identified (Supplementary Table S5). Thirty-
five of these miRNAs could co-regulate EGFR and PKN2, and four 
miRNAs were target genes for PKN2 and HSP90B1 
(Supplementary Figure S4A). The same prediction process was 
performed on mouse genes and resulted in 15 miRNAs that could 
co-regulate Egfr and Pkn2 and one miRNA that was a common target 
gene of Pkn2 and Hsp90b1 (Supplementary Figure S4B). Notably, 
miR-335-3p emerged as a conserved regulator in both human- and 
mouse-derived genes, suggesting its pivotal role in AD-associated 
pyroptosis. For the identification of TFs, a total of 16 TFs were 
predicted for these hub genes (Supplementary Table S6), and the 
results suggested that MYC and SP1 were common TFs for the three 
upregulated genes (PKN2, EGFR, and HSP90B1), while FOXA1 for 
the two downregulated genes (MDH1 and CHMP2A) 
(Supplementary Figures S4C,D).

3.10 Construction of lncRNA regulatory 
network of the pyroptosis-AD hub genes

To elucidate the temporal regulation of pyroptosis-AD hub genes 
during AD progression, we constructed lncRNA-mediated regulatory 
networks using transcriptomic data from APP/PS1 mice (GSE242902). 
This dataset profiled mRNAs and lncRNAs in hippocampal tissues at 
3-, 6-, and 12-month time points. The expression of the five 
pyroptosis-AD hub genes has been presented (Figure 7B); we next 
analyzed the differential expression of lncRNAs in 3-, 6-, and 
12-month-old APP/PS1 mice. The result of the principal component 
analysis of the samples was shown (Figure 9A). By setting up different 
subgroups for comparison, a total of 841 differentially expressed 
lncRNAs (DElncRs) were identified (duplicate DElncRs in multiple 
comparisons were integrated) (Figures  9B,C). Detailed group 
comparisons and the number of DElncRs were counted (only genes 
with a normalized expression value greater than 6 in any sample were 
retained) (Figure 9B and Supplementary Figure S5A).

Time series analysis was employed to investigate the potential 
regulatory relationship between these DElncRs and the five 
pyroptosis-AD hub genes with age. Genes exhibiting similar 
temporal variations were classified into the same cluster 
according to the membership scores (Figure  9D and 
Supplementary Table S7). To be precise, Chmp2a and Mdh1 were 
categorized in cluster 2, Pkn2 in cluster 3, and Egfr and Pkn2 in 
cluster 6 (Figure 9E and Supplementary Figure S5B). In parallel, 
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a correlation analysis was employed to explore the correlation 
between these DElncRs and the pyroptosis-AD hub genes, which 
were plotted as a heatmap (Figure 9F). Then, the lncRNA-mRNA 
networks were constructed according to whether the target 

lncRNAs were in the same cluster and highly correlated with 
mRNA. The top 10 lncRNAs for each pyroptosis-AD hub genes 
were presented in the network (Figure  9G and 
Supplementary Table S8).

FIGURE 7

Validation of the pyroptosis-AD hub genes at the level of RNA and protein in AD mice. (A) A hierarchical clustering heatmap based on the normalized 
expression of the five pyroptosis-AD genes in the combined dataset. (B) A clustering heatmap was constructed based on the normalized expression of 
the five pyroptosis-AD genes in the 6- and 12-month-old APP/PS1 and control mice. The 6- and 12-month-old APP/PS1 or WT mice were abbreviated 
as A6 and A12 or W6 and W12, respectively. (C–G) qPCR validation of mRNA expression of the pyroptosis-AD hub genes (Chmp2a, Egfr, Pkn2, 
Hsp90b1, and Mdh1, respectively) between the 12 months APP/PS1 and wild-type (WT) mice. Data are mean ± SEM (n = 6 for WT, and n = 5 for APP/
PS1 mice group, *p < 0.05, **p < 0.01, unpaired two-tailed t-test). (H–K) The cell lysates from the hippocampus of APP/PS1 and WT mice were 
prepared and blotted with anti-Egfr, Pkn2, Hsp90b1, and Mdh1, respectively (up). The relative protein expressions of Egfr, Pkn2, Hsp90b1, and Mdh1 
were calculated using Gapdh as an internal reference (below). Data are mean ± SEM (n = 6 per group, *p < 0.05, **p < 0.01, unpaired two-tailed t-test).

https://doi.org/10.3389/fnagi.2025.1568337
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2025.1568337

Frontiers in Aging Neuroscience 13 frontiersin.org

4 Discussion

Pyroptosis, a pro-inflammatory mode of programmed cell death, 
is characterized by the rupture of cellular membranes, leading to the 
release of inflammatory substances such as interleukin-1β (IL-1β) and 
IL-18 (Man et al., 2017). As a chronic neurodegenerative disease, AD 
is accompanied by persistent neuroinflammation driven by sustained 
microglial activation and cytokine release (De Strooper and Karran, 
2016). The release of inflammatory factors, such as IL-1β, triggers a 
severe inflammatory cascade that ultimately results in neuronal 
damage or death (Allan et  al., 2005). This indicates that 

neuroinflammation and pyroptosis may represent promising avenues 
for AD treatment. However, the roles and underlying mechanisms of 
pyroptosis in AD remain incomplete and require further investigation.

Recently, several studies have investigated the potential 
involvement of PANoptosis-related genes in AD (Zhang and Dai, 
2024; Li et  al., 2024; Lian et  al., 2024). Similar to pyroptosis, 
PANoptosis is a type of programmed death that is characterized by 
features that include pyroptosis, autophagy, and necrotic apoptosis. 
Lian et al. (2024) identified necroptosis-specific molecular signatures 
associated with AD subtypes, demonstrating its regulatory role in 
necroptosis in AD progression. Moreover, the PANoptosis-related 

FIGURE 8

Screening and validation of candidate PRGs for the diagnosis of AD. (A) The ROC curve shows the diagnostic performance of the five feature genes in 
the combined dataset (training set). (B,C) ROC curves showing the diagnostic performance in the hippocampus of datasets GSE5281 (B) and 
GSE48350 (C). (D–G) ROC curves show the diagnostic performance in the validation sets (entorhinal cortex of GSE5281, the hippocampus, or the 
temporal cortex data of GSE36980). (H,I) Differential expression of PKN2 and MDH1 in the GSE36980 (*p < 0.05, **p < 0.01, unpaired two-tailed t-test).
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FIGURE 9

Construction of lncRNA regulatory network of the pyroptosis-AD hub genes. (A) PCA of lncRNAs expression profiles of the APP/PS1 and WT mice at 
the age of 3, 6, and 12 months. (B) Visualization of the clustered volcano diagram for the DElncRs from six different comparisons, including APP/PS1 
mice vs. WT mice at the age of 3, 6, and 12 months and comparison of APP/PS1 mice between different ages. (C) A hierarchical clustering heatmap 
based on the normalized expression in all samples of DElncRs. The 3-, 6-, and 12-month-old APP/PS1 or WT mice were abbreviated as A3, A6, and A12 
or W3, W6, and W12, respectively. (D) The clustered heatmap was produced based on the membership scores of the six clusters obtained by time 
series analysis. All the DElncRs and five pyroptosis-AD hub genes were clustered into six groups. (E) Line charts showed the relative expression trend in 
each cluster. The five pyroptosis-AD hub genes were divided into cluster 2 (Champ2 and Mdh1), cluster 3 (Pkn2), and cluster (Egfr and Hsp90b1). The 
horizontal axis represents a total of nine samples in the age 3-, 6-, and 12-month groups in turn. (F) The heatmaps of correlation analysis of the five 
pyroptosis-AD hub genes and DElncRs. (G) Regulatory networks constructed by the five pyroptosis-AD hub genes and their top10 (show all if the 
numbers of lncRNA less than 10) correlated lncRNAs (the ID of lncRNAs could be queried in the NONCODE, NCBI, or Ensemble databases).
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molecular subtypes identified by Li et al. (2024) were also associated 
with necroptosis and apoptosis, but not pyroptosis in AD. Nevertheless, 
differential expression of genes associated with pyroptosis is observed 
in AD (Xia et al., 2023). Therefore, a comprehensive investigation of 
the molecular signatures of pyroptosis-related genes and their 
regulatory networks in AD is essential for elucidating their diagnostic 
values and underlying mechanisms.

In this study, we leveraged hippocampal tissue expression data 
from multiple datasets to systematically analyze key pyroptosis-related 
genes in AD. Through the WGCNA and DEG analysis, we identified 
71 and 24 PRGs associated with AD, respectively. Consequently, 
we proceeded to evaluate the hub genes among these 91 genes (four 
genes were shared in both WGCNA and DEGs results). By applying 
three machine learning algorithms and PPI functions analysis, seven 
candidate hub genes (CHMP2A, EGFR, MDH1, PKN2, HSP90B1, 
FOXP3, and METTL3) for pyroptosis were ultimately identified. 
Given that previous studies have confirmed immune cell dysregulation 
in AD (Yang et al., 2024; Liu et al., 2021), we used CIBEROST to 
analyze the immune infiltration patterns of PRGs in AD. Correlation 
analysis revealed that the seven pyroptosis-AD hub genes exhibited 
significant associations with three immune cell subtypes: eosinophils, 
dendritic cells, and T cells follicular helper. Notably, FOXP3 and 
MDH1 demonstrated superior performance, as they were associated 
with more than six types of immune cell infiltration. Both showed 
positive associations with regulatory T cells and memory B cells, 
indicating their potential contribution to cellular pyroptosis in 
AD. The infiltration increases of these two immune cells in AD 
patients have also been discussed (Lai et al., 2022).

We subsequently employed the method CFG analysis, proposed 
by AlzData, to ascertain the degree of association between our seven 
hub genes and AD. CFG analysis is an algorithm designed to prioritize 
AD candidate genes, and its ranking results are based on multiple AD 
disease data sources, which can be used to confirm the extent of the 
correlation between genes and AD (Xu et al., 2018). Indeed, all of the 
genes that we have identified through machine learning algorithms 
are associated with AD to varying degrees. In addition, the database 
provides cross-platform normalized expression profiles aggregated 
across multiple (up to 13) datasets, which means that it can be used to 
validate differential expression of genes (Lai et al., 2022; Wang et al., 
2024). The results demonstrated that four (CHMP2A, EGFR, MDH1, 
and PKN2) of the seven genes exhibited differential expression in AD 
across multiple datasets. In addition to the hippocampus, differential 
expression was also observed in the entorhinal cortex and temporal 
cortex of AD patients compared to the controls 
(Supplementary Figure S3).

Indeed, these genes have been reported in AD studies, but their 
roles in pyroptosis in AD remain to be explored. CHMP2A belongs to 
the charged multivesicular body protein (CHMP) family, which is a 
component of ESCRT-III (endosomal sorting complex required for 
transport III) and is associated with neuronal development and 
autophagy (Vaz-Silva et al., 2018; Deneubourg et al., 2022). CHMP4B 
has recently been reported to be involved in the microglia pyroptosis 
in AD (Ding et al., 2024). MDH1 was identified as an indicator of 
microglia activation in AD, but specific mechanisms in AD are lacking 
(Pesamaa et  al., 2023). PKN2 was thought to be  involved in the 
neuroprotective role in hypoxia (Thauerer et al., 2014). EGFR has been 
relatively well-studied in AD, with a review suggesting that EGFR 
inhibition is critical for modulating the amyloid pathway as it 

contributes to microtubule stabilization and attenuates the secretion 
of pro-inflammatory molecules to reduce severe neuronal 
degeneration (Jayaswamy et  al., 2023). For the other two genes, 
FOXP3 and METTL3, although no significant alterations were found 
in the cross-platform normalized expression profiles, their roles in AD 
have been reported. FOXP3’s participation in regulatory T cell process 
can regulate the microglial inflammatory response of AD (Yang et al., 
2022), while METTL3 affects the development of AD through m6A 
methylation (Yang et  al., 2023; Yin et  al., 2023). Subsequently, 
we  utilized 12-month-old APP/PS1 mice, which exhibit more 
pronounced AD-like neuropathological features than 6-month-old 
animals, to investigate the expression profiles of these pyroptosis-
associated genes. Our findings demonstrated that the transcriptional 
alterations observed in these AD mice closely paralleled the molecular 
signatures observed in human AD patient datasets. However, 
unexpectedly, the changes in CHMP2A in AD mice were not 
significant, suggesting that a larger sample size may be required for 
more definitive conclusions. Furthermore, these genes demonstrated 
robust diagnostic utility, with ROC values exceeding 0.6  in the 
combined dataset. In particular, MDH1 and PKN2 exhibited 
exceptional performance across independent datasets and brain 
regions (hippocampus and cortex), underscoring their translational 
potential as AD biomarkers.

To elucidate the potential regulatory relationship between these 
PRGs in AD, we  sought to elucidate the underlying regulatory 
network. Among the predicted microRNA regulators, miR-335-3p 
emerged as a critical candidate due to its conserved regulatory roles 
in human and murine EGFR and PKN2 expressions. Studies have 
reported that miR-335-3p is involved in cell differentiation and 
apoptosis (Kay et al., 2019; Sun et al., 2022), suggesting its potential 
function in pyroptosis modulation. LncRNA are RNAs with regulatory 
functions widely expressed in the brain (Wu et al., 2025; Liu et al., 
2022). To explore the dynamic connection between pyroptosis genes 
and DElncRs, we employed the Mfuzz algorithm to identify genes 
with similar expression patterns. Using time series analysis and 
correlation analysis, we constructed the lncRNA-mRNA regulatory 
network in AD of these genes. LncRNAs in the hub network can 
be taken to play pivotal roles in regulating pyroptosis.

While this study provides novel insights into pyroptosis regulation 
in AD, several limitations warrant acknowledgment. Our study is just 
a pioneering study, and further validation experiments are necessary 
to elucidate how these pyroptosis-related genes play a role in 
AD. Although we validated the expression using external datasets and 
mouse tissues, additional testing in human brain tissue is essential to 
substantiate these findings. Furthermore, we  have conducted 
preliminary investigations into the potential regulatory pathways of 
the PRGs, and the mechanisms of these genes acting in AD require 
further exploration.

5 Conclusion

In summary, our study represents a pioneering effort in 
identifying hub genes associated with pyroptosis in AD. By employing 
multiple transcriptomics and machine learning, we have successfully 
identified seven key genes. Of these, MDH1 and PKN2 demonstrated 
superior performance in the subsequent comprehensive evaluation, 
which was achieved through immune cell infiltration, ROC curves, 
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and experimental expression validation. Furthermore, we  have 
established a regulatory network of these genes. These findings not 
only provide novel insights into the pivotal genes associated with 
pyroptosis but also offer potential molecular targets for the diagnosis 
and treatment of AD.
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