AUTHOR=Jüchter Carolin , Chi Chieh-Ju , Beutelmann Rainer , Klump Georg Martin TITLE=Speech sound discrimination in background noise across the lifespan: a comparative study in Mongolian gerbils and humans JOURNAL=Frontiers in Aging Neuroscience VOLUME=Volume 17 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2025.1570305 DOI=10.3389/fnagi.2025.1570305 ISSN=1663-4365 ABSTRACT=Many elderly listeners have difficulties with speech-in-noise perception, even if auditory thresholds in quiet are normal. The mechanisms underlying this compromised speech perception with age are still not understood. For identifying the physiological causes of these age-related speech perception difficulties, an appropriate animal model is needed enabling the use of invasive methods. In a comparative behavioral study, we used young-adult and quiet-aged Mongolian gerbils as well as young and elderly human subjects to investigate age-related changes in the discrimination of speech sounds in background noise, evaluating whether gerbils are an appropriate animal model for the age-related decline in speech-in-noise processing of human listeners. Gerbils and human subjects had to report a deviant consonant-vowel-consonant combination (CVC) or vowel-consonant-vowel combination (VCV) in a sequence of CVC or VCV standards, respectively. The logatomes were spoken by different speakers and masked by a steady-state speech-shaped noise. Response latencies were measured to generate perceptual maps employing multidimensional scaling, visualizing the subjects’ internal representation of the sounds. By analyzing response latencies for different types of vowels and consonants, we investigated whether aging had similar effects on the discrimination of speech sounds in background noise in gerbils compared to humans. For evaluating peripheral auditory function, auditory brainstem responses and audiograms were measured in gerbils and human subjects, respectively. We found that the overall phoneme discriminability in gerbils was independent of age, whereas consonant discriminability was declined in humans with age. Response latencies were generally longer in aged than in young gerbils and humans, respectively. Response latency patterns for the discrimination of different vowel or consonant types were different between species, but both gerbils and humans made use of the same articulatory features for phoneme discrimination. The species-specific response latency patterns were mostly unaffected by age across vowel types, while there were differential aging effects on the species-specific response latency patterns of different consonant types.