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Objective: The development of non-invasive clinical diagnostics is paramount 
for the early detection of Alzheimer’s disease (AD). Neurofibrillary tangles in 
AD originate from the entorhinal cortex, a cortical memory area that mediates 
navigation via path integration (PI). Here, we  studied correlations between PI 
errors and levels of a range of AD biomarkers using a 3D virtual reality navigation 
system to explore PI as a non-invasive surrogate marker for early detection.

Methods: We examined 111 healthy adults for PI using a head-mounted 3D VR 
system, AD-related plasma biomarkers (GFAP, NfL, Aβ40, Aβ42, and p-tau181), 
Apolipoprotein E (ApoE) genotype, and demographic and cognitive assessments. 
Covariance of PI and AD biomarkers was assessed statistically, including tests 
for multivariate linear regression, logistic regression, and predictor importance 
ranking using machine learning, to identify predictive relationships for PI errors.

Results: We found significant positive correlations between PI errors with age 
and plasma GFAP, p-tau181, and NfL levels. Multivariate analysis identified 
significant correlations of plasma GFAP (t-value = 2.16, p = 0.0332) and 
p-tau181 (t-value = 2.53, p = 0.0128) with PI errors. Predictor importance 
ranking using machine learning and receiver operating characteristic curves 
identified plasma p-tau181 as the most significant predictor of PI. ApoE genotype 
and plasma p-tau181 showed positive and negative PI associations (ApoE: 
coefficient = 0.650, p = 0.037; p-tau181: coefficient = −0.899, p = 0.041). EC 
thickness exhibited negative correlations with age, mean PI errors, and GFAP, 
NfL, and p-tau181; however, none of these associations remained significant 
after adjusting for age in linear regression analyses.

Conclusion: These findings suggest that PI quantified by 3D VR navigation 
systems may be useful as a surrogate diagnostic tool for the detection of early 
AD pathophysiology. The hierarchical application of 3D VR PI and plasma 
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p-tau181, in particular, may be an effective combinatorial biomarker for early 
AD neurodegeneration. These findings advance the application of non-invasive 
diagnostic tools for early testing and monitoring of AD, paving the way for timely 
therapeutic interventions and improved epidemiological patient outcomes.
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apolipoprotein E, cognitive dysfunction, entorhinal cortex, glial fibrillary acidic 
protein, magnetic resonance imaging, spatial memory, P-tau181, virtual reality

Introduction

Alzheimer’s disease (AD) is a lifespan disorder with symptoms 
that typically emerge during aging but whose etiology can begin 
asymptomatically over years to decades. Given this extended time 
course, the consensus of the medical community is that preventative 
approaches to clinical diagnosis and care are paramount. Indeed, 
lifestyle modifications can influence up to 40% of AD risk 
underscoring the critical need to develop validated clinical protocols 
for the identification of individuals at early stage risk for AD 
(González-Madrid et al., 2023). The conventional approach to risk 
diagnosis is the use of molecular biomarkers to detect early 
pathological changes before the appearance of clinical symptoms. 
However, biomarkers are expensive, require invasive procedures, and 
do not correlate well with current neurocognitive functional and 
behavioral tests. Thus, there is an urgent need to develop simple 
non-invasive clinical indicators and to deploy them as surrogate 
markers for further molecular diagnoses.

In brain pathology, the onset of AD begins in the entorhinal 
cortex (EC) of the hippocampal formation, marking the initial site 
for the development of neurofibrillary tangles (NFTs) (Braak and 
Braak, 1995, 1996). These tangles progressively expand from the EC 
through the limbic cortex and finally to the neocortex, a process that 
correlates with the severity of cognitive decline (Jellinger, 2006). As 
an early indicator of AD, the presence of NFTs in the EC does not 
directly correlate with dementia symptoms, however, their expansion 
into limbic cortex and neocortex is commonly associated, 
respectively, with mild cognitive impairment (MCI) and overt 
dementia (Jack et al., 2004; Rodrigue and Raz, 2004; Thaker et al., 
2017). Thus, the co-occurrence of NFT accumulation with cognitive 
and behavioral deterioration provides a timeline for clinical brain 
aging in normal and disease states, with changes in the EC indicating 
the staged progression from a pre-clinical state to overt 
clinical deterioration.

The EC contains a grid cell network that performs spatial mapping 
and navigation capabilities (Hafting et al., 2005) by encoding periodic 
self-location representations crucial for path integration (PI). PI 
enables the calculation of one’s current position by continuously 
updating head orientation and movement over time using self-motion 
cues from visual, vestibular, and proprioceptive sources, independent 

of external cues such as landmarks (Segen et al., 2022). In accord, 
disruptions in grid cell functioning (Gil et al., 2018) or the inhibition 
of EC cells (Koike et  al., 2024) impair PI. Indeed, two types of 
hippocampal-dependent cognition, PI and spatial memory (SM) have 
been investigated as behavioral markers for aging using a head-
mounted 3D virtual reality (VR) system (Kunz et al., 2015; Stangl et al., 
2018; Howett et al., 2019; Koike et al., 2024), an immersive technology 
that encompasses the user’s field of vision and simulates head and body 
movements. The 3D VR paradigm indicates that PI errors commence 
around the age of 50 and increase with age, according to Braak’s 
classification (Koike et al., 2024). The age-related decline in PI ability 
suggested the hypothesis that it might serve as a surrogate marker for 
NFT status in the EC for the detection of early-stage AD.

The combinatorial analysis of EC-dependent PI and conventional 
AD biomarkers and genetic markers comprise a potentially powerful 
approach to AD risk diagnosis. Here, we studied the relationships 
between PI errors assessed using a 3D VR system and a diverse panel 
of known AD-related and aging-related biomarkers in a cohort of 111 
healthy individuals. Our findings reveal a novel combinatorial 
approach to the use of surrogate behavioral biomarkers on the 
pathological progression of AD. Although conventional biomarkers 
such as Aβ42 and phospho-tau can detect underlying amyloid and tau 
pathology in asymptomatic individuals (Niimi et al., 2024), combining 
them with sensitive behavioral measures may improve the precision 
and timing of preclinical AD detection.

Materials and methods

Participants

We analyzed data from 140 healthy volunteers that participated in 
our ongoing aging registry study at Fujita Health University who were 
recruited between September 2021 and June 2023. Our study was 
conducted exclusively in Japan, involving a homogeneous population 
of Japanese participants. We collected demographic data, including 
education, medical history, medication use, drinking and smoking 
habits, and family history of neurodegenerative diseases. All 
participants underwent 3 T magnetic resonance imaging (MRI) and 
clinical assessments of general cognitive performance using the Mini-
Mental State Examination (MMSE) (Folstein et al., 1975), the Japanese 
version of Addenbrooke’s Cognitive Examination-Revised (ACE-R) 
(Mioshi et  al., 2006), and the Japanese version of the Montreal 
Cognitive Assessment (MoCA-J) (Nasreddine et al., 2005). The ACE-R 
is a comprehensive cognitive assessment battery that evaluates 
multiple domains, including memory, attention, language, and 
visuospatial skills (Mioshi et al., 2006). A total score of 89 is commonly 
used as the cutoff normal cognition. Mood disturbances were 
evaluated using the Geriatric Depression Scale-15 (GDS-15).

Abbreviations: ACE-R, Addenbrooke’s Cognitive Examination-Revised; AD, 

Alzheimer’s disease; AUC, area under the curve; Aβ, amyloid β; EC, entorhinal 

cortex; GDS-15, Geriatric Depression Scale-15; GFAP, glial fibrillary acidic protein; 

MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; MoCA-J, 

Japanese version of the Montreal Cognitive Assessment; NfL, neurofilament light; 

NFTs, neurofibrillary tangles; PI, path integration; ROC, receiver operating 

characteristic; vm, virtual meter; VR, virtual reality.
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Of the 140 initial participants, 29 were excluded because of (a) an 
inability to complete the 3D navigation task due to VR-induced 
sickness (9 participants), (b) cognitively abnormal MMSE scores below 
26 or ACE-R total scores below 89 (13 participants) (Mizutani et al., 
2023), (c) a medical history of stroke (2 participants), or neurological 
or psychiatric disorders (2 participants), or (d) incomplete data (3 
participants). The characteristics of the 111 final participants aged 22 
to 79 years are summarized in Table 1. All participants underwent 
testing on the same day in the following order: blood tests, cognitive 
assessments, VR-based PI evaluation, and MRI scanning.

This research was approved by the Ethics Committee at Fujita 
Health University Hospital (approval number: HM22-407) and 
conform to the Ethical Guidelines for Medical and Health Research 
Involving Human Subjects endorsed by the Japanese government. All 
participants provided written informed consent prior to joining the 
study and retained the option to withdraw from the study at any point.

3D VR navigation task

We developed digital biomarkers for the early detection of AD 
using head-mounted immersive 3D VR devices. These systems are 
characterized by their capacity to envelop the user’s field of vision and 
simulate authentic head or body motions (Koike et al., 2024). The VR 

space comprised a 20-virtual meter (vm) diameter arena encircled by 
walls 3 vm in height. Participants wore 3D VR goggles and controlled 
their movements using a joystick (Meta Quest 2). Initially, they were 
permitted to move freely within the virtual arena, which included 
obstacles, to become accustomed to the setup. Forward and backward 
movements were joystick-controlled, whereas lateral movements 
required participants to rotate their bodies while seated on a 
swivel chair.

Prior to testing, participants completed a brief questionnaire to 
assess motion-sickness susceptibility. Individuals who were unable to 
reliably operate the joystick or who experienced significant 
VR-induced discomfort during the calibration phase were excluded. 
Participants with mild vestibular symptoms received standardized 
instructions (e.g., smoothly releasing the joystick, keeping their feet 
still). Each eligible participant then underwent a 2-min calibration 
procedure to adjust the joystick dead-zone, sensitivity, and 
headset  alignment for individual comfort. Throughout the task, 
participants remained seated in a swivel chair to minimize postural 
demands. The entire session, including the practice trial, lasted 
approximately 15 min and was conducted independently, except in 
cases where verbal guidance was provided due to hearing difficulties. 
Volunteers with visual impairments or those unable to effectively use 
a joystick were excluded. The software and VR goggles described in a 

TABLE 1 Demographic characteristics of the participants.

Variables All participants Mean 3D VR error distance p-value APOE ε4 allele p-value

n = 111 <5 vm, 
n = 72

≥5 vm, 
n = 39

Negative, 
n = 93

Positive, 
n = 18

Age at examination 

(range), years
54.8 ± 12.2 (22–79)

52.1 ± 12.2 (22–

79)
59.8 ± 10.7 (24–78) <0.001*** 55.8 ± 12.3 (22–79)

49.9 ± 10.9 (24–

74)
0.017*

Sex (male/female) 43/68 33/39 10/29 0.037* 39/54 4/14 0.116

Education 14.1 ± 2.3 14.5 ± 2.4 13.5 ± 2.0 0.052 14.3 ± 2.3 13.4 ± 2.1 0.086

MMSE score 29.1 ± 0.9 29.3 ± 0.8 28.9 ± 1.0 0.083 29.1 ± 0.9 29.4 ± 0.8 0.081

ACE-R score 95.5 ± 2.6 95.8 ± 2.3 95.0 ± 2.9 0.277 95.6 ± 2.6 95.2 ± 2.5 0.501

MoCA-J score 26.3 ± 2.0 26.4 ± 2.1 26.1 ± 1.9 0.208 26.2 ± 2.1 26.7 ± 1.9 0.384

GDS-15 score 3.1 ± 2.8 3.2 ± 2.9 2.9 ± 2.5 0.706 3.0 ± 2.7 4.0 ± 3.1 0.157

APOE ε4 positivity, 

n (%)
18 (16.2) 9 (12.5) 9 (23.1) 0.149

Plasma GFAP (pg/

mL)
86.21 ± 34.17 77.92 ± 28.20 101.51 ± 39.02 0.001** 87.05 ± 33.27 81.88 ± 39.23 0.648

Plasma Aβ42/Aβ40 

ratio
0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.02 0.208 0.07 ± 0.02 0.07 ± 0.01 0.873

Plasma Aβ42 (pg/

mL)
6.15 ± 1.57 6.16 ± 1.39 6.14 ± 1.88 0.587 6.17 ± 1.58 6.05 ± 1.58 0.917

Plasma Aβ40 (pg/

mL)
90.36 ± 14.30 89.04 ± 12.45 92.80 ± 17.13 0.231 90.96 ± 13.06 87.28 ± 19.72 0.349

Plasma NfL (pg/

mL)
10.27 ± 4.74 9.41 ± 4.02 11.86 ± 5.54 0.014* 10.64 ± 4.54 8.35 ± 5.40 0.028*

Plasma p-tau181 

(pg/mL)
1.47 ± 0.61 1.33 ± 0.47 1.72 ± 0.74 0.008* 1.48 ± 0.63 1.39 ± 0.48 0.780

ACE-R, Addenbrooke’s Cognitive Examination-Revised; APOE, apolipoprotein E; Aβ, amyloid β; GDS-15, Geriatric Depression Scale-15; GFAP, glial fibrillary acidic protein; MMSE, Mini-
Mental State Examination; MoCA-J, Japanese version of the Montreal Cognitive Assessment; NfL, neurofilament light protein; vm, virtual meter; VR, virtual reality. Means were compared with 
t tests, and proportions were compared with the χ2 test. *p < 0.05, **P < 0.01, and ***P < 0.001.
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previous study (Howett et  al., 2019) were provided by MIG Inc. 
(Tokyo, Japan; https://www.medicalig.com).

The PI performance was assessed in participants wearing the VR 
goggles who navigated first to a designated Location A (marked by a 
yellow flag), proceeded then to a designated Location B (marked by 
a red flag), and finally returned to the starting point (Figure  1). 
During the return to the starting point, flag marker at Location A was 
no longer visible, requiring participants to rely solely on their 
memory and spatial awareness to navigate back. The distance 
between the participant’s final position and the actual starting point 
(error distance) was recorded. The participants completed this test 
three times, with the average error distance used as the measure of 
PI ability.

To minimize practice effects, we  randomized the starting 
orientation across three trials and defined our primary PI metric as 
the mean error over those trials. This three-trial protocol mirrors 
previously published methods (Hanyu et al., 2024; Koike et al., 2024), 
which demonstrated stable performance after the first learning  
exposure.

Sample collection and assays of plasma 
biomarkers

Blood plasma was obtained from all recruited participants by 
collecting blood samples after a fasting period of more than 6 h. The 
samples were centrifuged for 10 min at 1,500 × g. To prevent repeated 
freeze–thaw cycles, the obtained plasma was aliquoted into 500 μL 
samples that were promptly frozen and stored at −80°C until analysis. 
The plasma levels of plasma glial fibrillary acidic protein (GFAP), 
neurofilament light (NfL) protein, amyloid β (Aβ)40, Aβ42, and p-tau181 
were measured using a single-molecule array (Simoa) with the Simoa 
Human Neurology 4-Plex A Kit and Simoa pTau-181 V2 Advantage Kit 
(Quanterix, Billerica, MA, United States), following the manufacturer’s 
instructions. To ensure technical reliability and account for potential 

pipetting or assay variability, plasma samples were assayed in duplicate. 
The enzyme-per-bead values from each pair were averaged to reduce 
measurement error, and final protein concentrations were determined 
using a standard curve generated from known calibrator concentrations.

APOE genotyping

For ApoE genotyping, we used the Invader® assay, as previously 
described (Arai et al., 2007). Genotyping analysis was performed by 
calculating the ratio of net fluorescence counts for the wild-type 
primary probe to that of the mutant primary probe.

MRI data

All participants underwent brain imaging at Fujita Health 
University using a 3 T MRI scanner (Canon Medical Systems) with a 
32-channel head coil. For each participant, T1-weighted images were 
acquired using a 3D fast field echo sequence with the following 
imaging parameters: repetition time = 6.6/2500 ms, echo 
time = 2.7 ms, flip angle = 8°, field-of-view = 240 × 240 mm2, 
acquisition/reconstruction matrix = 288 × 288, 230 sagittal slices with 
0.8-mm slice thickness, and voxel resolution of 0.8 × 0.8 × 0.8 mm3, 
with a total acquisition time of 5 min and 5 s.

All T1-weighted images were preprocessed with Freesurfer v7.21 
using its default recon-all pipeline. Regional volume and thickness 
data were then extracted from the preprocessed images using the 
Desikan-Killiany atlas (Desikan et al., 2006), which consists of 34 
cortical regions of interest per hemisphere.

1 https://surfer.nmr.mgh.harvard.edu/

FIGURE 1

Schematic representation of the 3D VR navigation task. Path integration was measured in VR goggle-wearing participants going to Location A 
(indicated by a yellow flag), then to Location B (indicated by a red flag), and finally returning to the starting point. The error distance between the 
participant’s final location (x) and the starting point was determined. VR, virtual reality.
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Statistical analyses

Statistical analyses were conducted to examine the relationship 
between PI performance and various demographic, clinical, and 
biomarker measures. We employed the Mann–Whitney U test and 
the chi-square tests to analyze demographic comparisons between 
the two independent study groups. Pearson’s correlation analyses of 
the extracted volume and thickness data were performed using PI 
and biomarker data; the correlation coefficients and their 
corresponding p-values were computed using the corr() function in 
MATLAB (R2023a; MathWorks, Natick, Mass, United  States). 
We also examined the association between PI and EC thickness and 
volume using linear regression analysis, which included age, sex, and 
estimated total intracranial volume (for volume data only) as 
covariates. To elucidate the factors that significantly predicted PI 
errors, we  performed multivariate linear regression analyses by 
implementing the standard least squares method. We evaluated the 
predictive power of age, GFAP, NfL, p-tau181, Aβ40, Aβ42, the ratio 
of Aβ42/Aβ40 ratio, and APOE ε4 allele status. Multicollinearity was 
assessed by calculating variance inflation factors (VIFs) for all 
predictors; those with VIF > 10 were removed, and both linear and 
logistic regression models were re-fitted using the reduced set 
of variables.

Logistic regression analysis was performed to determine the odds 
ratios for PI errors exceeding 5 vm based on the same set of predictors. 
This 5 vm threshold was derived from a previous study employing the 
same 3D-VR methodology, which showed that participants in their 
twenties typically exhibited PI errors below 5 vm, whereas the 
proportion of individuals with PI errors ≥ 5 vm increased 
progressively with age (Hanyu et al., 2024; Koike et al., 2024). The 
Wald chi-square test was used to determine the significance of each 
predictor within the model. To explore a generalizable model for 
predicting whether PI errors exceed 5 vm based on the above 
predictors, we trained four supervised machine-learning models: (1) 
a logistic regression model and (2) a support vector machine with a 
linear kernel were selected as representatives of linear binary 
classifiers, (3) a support vector machine with a Gaussian kernel, and 
(4) a random forest were selected as representatives of non-linear 
binary classifiers. The generalization performance was then estimated 
using the leave-one-out cross-validation paradigm. To investigate if 
the significance of predictors in the model showing the best 
generalization performance is consistent with those in the logistic 
regression model, the importance of the predictors was evaluated by 
a predictor importance ranking method named “model class reliance 
(MCR)” (Fisher et al., 2019).

Receiver operating characteristic (ROC) curve analysis was used 
to determine the optimal plasma p-tau181 plasma level cut-off value 
for predicting significant PI errors. We set the cutoff at 2.2 pg./mL, 
which is consistent with a previously reported threshold for 
amyloid-PET and tau-PET positivity using the same Simoa platform 
(Tagai et al., 2024). The AUC, standard error of the AUC, and 95% 
confidence interval were computed to assess the accuracy of the 
p-tau181 plasma level as a predictive biomarker. The sensitivity and 
specificity of these cut-off values were also calculated to understand 
the practical applicability of our findings in a clinical setting.

All statistical analyses were performed using JMP software version 
16 (SAS Institute, Cary, NC, United States), except that the predictions 
by supervised machine-learning models and MCR were implemented 

by a custom-written MATLAB program (version R2024a, MathWorks, 
Natick, MA, United States). An alpha level of 0.05 was set to determine 
statistical significance. The hyperparameters of the machine learning 
model were set to the default values provided by MATLAB without 
any optimization processes (Specifically, for the support vector 
machines, the box constraint was set to C = 1, the kernel scale of the 
Gaussian kernel was set to γ = 1. the number of trees was set to 100 for 
the random forest models).

Results

Table  1 presents the demographic characteristics of the study 
groups. The mean age of the entire study population at examination 
was 54.8 ± 12.2 (range: 22–79) years, and women comprised 61.3%. 
The 39 (35.1%) participants with a ≥ 5 vm error distance had a higher 
age at examination, a higher percentage of female participants, and 
elevated plasma levels of GFAP, NfL, and p-tau181 compared to those 
with a <5 vm error distance. General cognitive performance assessed 
by the MMSE, ACE-R, and MoCA-J was not significantly different 
between the two groups. APOE ε4 was positive in 18 (16.2%) 
participants among the entire study population, and they were 
younger than those without.

PI errors assessed using 3D VR goggles showed significant 
positive correlations with age (r = 0.304, p = 0.0012) and plasma levels 
of GFAP (r = 0.334, p = 0.0003), p-tau181 (r = 0.327, p = 0.0005), and 
NfL (r = 0.205, p = 0.0310; Figure  2). Notably, no significant 
correlations were found between PI errors and plasma levels of Aβ40 
and Aβ42, as well as the Aβ42/Aβ40 ratio. These findings are visually 
represented by a comprehensive heatmap that details the strength and 
direction of relationships between measured biomarkers and PI 
performance (Figure 3).

Multivariate analyses utilizing standard least squares revealed 
that plasma GFAP and p-tau181 levels, along with age, were 
significantly correlated with PI errors (Table  2). In the logistic 
regression analysis, both plasma p-tau181 levels and the presence of 
the APOE ε4 allele were significantly associated with increased PI 
errors (Table 3).

Among the four machine-learning models we  explored for 
predicting whether PI errors exceeded 5 vm, the support vector 
machine with the linear kernel showed the best accuracy (0.74) and 
AUC (0.73) evaluated by the leave-one-out cross-validation paradigm 
(Figures 4A,B). However, the AUC of all models showed significantly 
better performance than chance, which ranged between 0.61 and 0.73 
(Figure 4A). In the support vector machine with the linear kernel, the 
predictor importance ranking showed that plasma p-tau181 level was 
the most significant predictor, consistent with the findings from a 
logistic regression analysis (Figure 4C). Although the APOE ε4 allele 
was recognized as a factor in the logistic regression analysis, its 
significance was comparatively lower in the support vector machine 
with the linear kernel model (Figure 4C).

The ROC curve for detecting plasma p-tau181 levels ≥ 2.2 
presented an AUC of 0.8577, suggesting a high degree of accuracy in 
differentiating individuals based on PI errors. The standard error for 
the AUC was 0.0524, and the 95% confidence interval ranged from 
0.7550 to 0.9605, indicating strong model performance. The optimal 
cut-off value for PI errors was determined to be 5.78 vm, achieving a 
sensitivity of 91.7% and specificity of 77.8%. The statistical 
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FIGURE 2

Correlations between 3D VR path integration errors and various markers. Panel (a) shows the relationship between mean error distance in the 3D VR 
navigation task and participant age. Panels (b–d) depict the correlations of mean error distance with plasma levels of GFAP, p-tau181, and NfL, 
respectively. The scatter plots are complemented by bar graphs comparing groups with mean error distances of <5 vm and ≥5 vm. Solid red lines 
represent regression lines, and red dashed lines show 95% confidence intervals. Significance levels are marked as *p < 0.05, **p < 0.01, and 
***p < 0.001. GFAP, glial fibrillary acidic protein; NfL, neurofilament light; vm, virtual meter; PI, path integration; VR, virtual reality.

FIGURE 3

Heatmap depicting the correlation matrix of path integration errors measured by 3D VR navigation (3D VR, vm) and various plasma biomarkers. The 
matrix presents Pearson’s correlation coefficients between variables including plasma Aβ40, Aβ42, Aβ42/Aβ40 ratio, GFAP, NfL, and p-tau181. Positive 
correlations are indicated in red and negative correlations in blue, with the color intensity representing the correlation strength. Significant correlations 
are denoted as *p < 0.05, **p < 0.01, and ***p < 0.001. Aβ, amyloid β; GFAP, glial fibrillary acidic protein; NfL, neurofilament light protein; vm, virtual 
meter; VR, virtual reality.
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significance of this model was supported by a p-value below 0.0001 
(Figure 5).

The thickness of the left EC was negatively correlated with age 
(r = −0.4310, p < 0.001) and mean PI error (r = −0.2129, p = 0.0249) 
(Figure  6), as well as with several biomarkers, including Aβ40 
(r = −0.2011, p = 0.0343), GFAP (r = −0.1971, p = 0.0381), NfL 
(r = −0.2328, p = 0.0139), and p-tau181 (r = −0.2373, p = 0.0122) 
levels. Likewise, the thickness of the right EC was negatively correlated 
with age (r = −0.3628, p < 0.001), Aβ40 level (r = −0.2242, p = 0.0180), 
and NfL level (r = −0.2560, p = 0.0067). In the linear regression, which 
included age and sex as covariates, the association between the 
thickness of the right and left EC and PI error was not significant 
(Figure 7). No significant associations were observed between EC 
volume and these measures.

Discussion

In this cohort of 111 cognitively normal adults, we demonstrate 
that errors in an entorhinal-dependent 3D VR PI task correlate with 
plasma biomarkers of neurodegeneration, notably GFAP and 
p-tau181. In multivariate models adjusting for age and other 
covariates, both GFAP (t = 2.16; p = 0.033) and p-tau181 (t = 2.53; 
p = 0.013) remained independent predictors of PI error, and machine-
learning feature ranking consistently identified p-tau181 as the 
strongest predictor. Although these findings suggest that PI 
performance may reflect early AD-related neurobiology, longitudinal 
studies linking PI deficits to clinical conversion are necessary before 
PI can be definitively regarded as a predictor of AD risk.

Recent longitudinal and biomarker-driven studies have 
demonstrated that entorhinal-based PI deficits emerge well before 
clinical symptoms of AD. Howett et  al. showed that PI errors in 
immersive VR differentiate CSF biomarker–positive MCI patients 

from controls with an AUC of 0.90 (Howett et al., 2019). Castegnaro 
et al. (2023) found that overestimation in angular PI and increased 
variability in PI trajectories are early markers of impending 
Alzheimer’s dementia. Hanyu et al. (2024) reported that impaired PI 
performance predicted 12-month cognitive decline in prodromal AD 
subjects. Most compellingly, Newton et al. demonstrated in a 3-year 
follow-up of 100 asymptomatic middle-aged adults that each 1 m 
increase in baseline PI location error in 3D VR was associated with a 
2.4-fold higher risk of conversion to MCI (HR 2.4; 95% CI 1.3–4.2; 
p  = 0.005), independent of APOE ε4 genotype and education 
(Newton et al., 2024). Collectively, these data suggest that PI error 
may represent a sensitive early behavioral biomarker of AD 
pathology. We therefore propose that future longitudinal analyses in 
our aging registry combine PI errors with plasma p-tau181 levels to 
maximize early detection of individuals at imminent risk for 
clinical conversion.

Our analysis revealed that PI errors in the 3D VR navigation 
system were significantly correlated with older age and elevated 
plasma levels of AD-related biomarkers including GFAP, p-tau181, 
and NfL. A multivariate analysis suggested that plasma GFAP level, 
APOE ε4 positivity, and, especially, plasma p-tau181 level are more 
significant predictors of PI performance than age. Further machine 
learning–based analysis confirmed that plasma p-tau181 was the 
single strongest predictor of PI error, outperforming GFAP, NfL, 
APOE ε4 status, and age. These findings indicate that the observed PI 
errors are not solely a consequence of aging but may also reflect an 
underlying AD pathology. Moreover, our results highlight the utility 
of the 3D VR navigation system in capturing these deficits, suggesting 
its effectiveness as a potential surrogate marker for early 
pathophysiological changes indicative of AD.

Recent advancements have highlighted the potential of plasma 
p-tau181 levels as a non-invasive biomarker for AD (Janelidze et al., 
2020; Palmqvist et  al., 2021), although it is unclear whether the 

TABLE 2 Multivariate analyses utilizing standard least squares for PI errors and potential confounding factors.

Variable Coefficient Std. error t-value P-value 95% CI

Interception −0.203146 1.187987 −0.17 0.8646 (−2.558705, 2.1524121)

Age 0.0563816 0.028327 1.99 0.0491* (0.0002148, 0.1125485)

Plasma GFAP 0.0191023 0.008772 2.18 0.0317* (0.0017081, 0.0364965)

Plasma NfL −0.142004 0.080222 −1.77 0.0796 (−0.301069, 0.0170614)

Plasma p-tau181 1.1607704 0.454761 2.55 0. 0121* (0.2590626, 2.0624781)

APOE ε4 positivity −0.164448 0.323482 −0.51 0.6123 (−0.805854, 0.4769566)

APOE, apolipoprotein E; CI, confidence interval; GFAP, glial fibrillary acidic protein; NfL, neurofilament light protein; PI, path integration. *P < 0.05.

TABLE 3 Logistic regression analysis of odds ratios for increased PI errors.

Predictor Coefficient Std. error Wald chi-square P-value 95% CI

Interception −5.3716217 1.49091 12.98 0.0003* (−8.5919142, −2.7006078)

Age 0.05815079 0.031003 3.52 0.0607 (0.00004286, 0.12254277)

Plasma GFAP 0.01370331 0.0081967 2.79 0.0946 (−0.0020897, 0.03033886)

Plasma NfL −0.0612266 0.0749329 0.67 0.4139 (−0.2116501, 0.0853091)

Plasma p-tau181 0.88458064 0.4395787 4.05 0.0442* (0.04600545, 1.78401044)

APOE ε4 positivity −0.6526679 0.3112176 4.40 0.0360* (−1.2851273, −0.0515959)

APOE, apolipoprotein E; CI, confidence interval; GFAP, glial fibrillary acidic protein; NfL, neurofilament light protein; PI, path integration. *P < 0.05.
Increased PI Errors were defined as cases in which PI errors exceed 5 vm.
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observed p-tau181 levels reflect tau deposition in the EC because 
plasma p-tau181 levels are not only related to tau positron emission 
tomography (PET) but also to amyloid PET. This biomarker not only 
predicts disease progression but also acts as an early pathological 
marker, with elevated levels correlating with the initial 
neuropathological changes (Smirnov et al., 2022). The current study 
found a significant relationship between PI errors and plasma 
p-tau181 levels, suggesting that these measurements may be efficacious 
in detecting the progression of AD pathology apart from deficits 
associated with normal aging. Moreover, ROC analyses showed that 
PI errors can predict increased plasma levels of p-tau181. These 
findings suggest that combining VR-based PI metrics with plasma 
p-tau181 could potentially improve the discrimination of normal 
age-related navigational changes from those related to early AD 
pathology. Future work incorporating gold-standard clinical diagnoses 
and longitudinal follow-up will be  essential to confirm these 
preliminary observations.

Nonetheless, plasma p-tau181 is not entirely specific to AD; 
elevated levels have also been reported in dementia with Lewy bodies 
(Gonzalez et al., 2022), Parkinson’s disease with dementia (Mizutani 
et al., 2023), and amyotrophic lateral sclerosis (Vacchiano et al., 2023). 
In contrast, plasma p-tau217 and p-tau231 exhibit greater dynamic 
range and higher specificity for AD pathology in both CSF and blood 
(Teunissen et  al., 2025). Additionally, the [18F]MK-6240 tau PET 
tracer detects early tau accumulation in the entorhinal cortex 
following amyloid positivity (Cody et al., 2024), reflecting a later stage 
of tau spread relative to plasma p-tau biomarkers. Combining plasma 
p-tau181, p-tau231, and [18F]MK-6240 PET measures in future studies 
may therefore help elucidate the temporal sequence of tau pathology 
and clarify the mechanistic relationship between entorhinal 
dysfunction and PI errors in our 3D VR navigation task.

Based on univariate analyses, the thickness of the EC negatively 
correlated with age and mean PI errors, and several biomarkers, but 
these associations were not statistically significant after adjusting for 

FIGURE 4

Generalization performance and predictor importance evaluated using machine learning. (A) Generalization performance of four machine learning 
models: Logistic Regression (with all predictors or after excluding high variance inflation factor variables), Support Vector Machine with linear kernel 
(SVM-linear), Support Vector Machine with Gaussian kernel (SVM-Gaussian), and Random Forest. The first two models were selected as representatives 
of linear binary classifiers and the last two as representatives of non-linear binary classifiers. The performance measures [accuracy, sensitivity, 
specificity, precision, F1 score, and AUC (area under the curve of the receiver operator characteristics)] were evaluated using leave-one-out cross-
validation (LOOCV). SVM-linear showed the best performance in terms of accuracy and AUC. The p-values were evaluated by the permutation test 
assuming the chance level where the model estimated the classification scores at random. (B) Distribution of discriminant scores of the test data in the 
SVM-linear LOOCV process. The trained model predicted the test data as the positive group (3D vm ≥ 5 m) when the score was 0 or larger and the 
negative group (3D vm < 5 m) when the score was less than 0. Blue and red denote whether the data actually belong to positive or negative groups, 
respectively. (C) The list of predictor importance scores evaluated by model class reliance (Fisher et al., 2019, Journal of Machine Learning Research 20 
(177), 1–81). For each variable, the random permutation was repeated 100 times and the importance scores were evaluated as 1-AUC (higher was more 
significant) in the LOOCV process. The horizontal dotted line is the 1-AUC achieved by the original (non-permuted) SVM-linear. The bar height and 
error bars represent the average and standard deviation for 100 random permutations, respectively.
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FIGURE 5

ROC curves assessing the diagnostic performance of plasma p-tau181 levels for detecting path integration errors. Panels (a,b) illustrate the ROC curves 
for a p-tau181 level cutoff of 2.2 pg./mL along with AUC, standard errors, confidence intervals, and p-values. AUC, area under the curve; ROC, receiver 
operating characteristic.

FIGURE 6

Pearson’s correlation analysis of the entorhinal cortex thickness and volume versus the mean error distance in the 3D VR navigation task. The left 
entorhinal cortex is shown in the left panels, and the right entorhinal cortex is displayed in the right panels, both with corresponding p-values. Solid 
black lines represent regression fits, and dashed lines represent 95% confidence intervals. VR, virtual reality.
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age and other confounding variables, consistent with a previous report 
(Newton et al., 2024). Interestingly, EC thickness was correlated with 
PI ability in people with MCI (Howett et al., 2019) indicating the 
functional impairment of the EC before significant structural changes 
are detectable, and that EC thickness changes may parallel the 
progression of navigational and cognitive decline in AD;5 they may 
be independent predictors when controlling for age.

The PI correlated with plasma GFAP levels but not with the 
plasma Aβ42/Aβ40 ratio, which has lower sensitivity than the 
corresponding ratio in cerebrospinal fluid and amyloid PET data 
(Janelidze et al., 2021). GFAP, an astrocytic cytoskeletal protein of 
which blood levels are increased in individuals with AD and MCI, is 
upregulated around Aβ plaques and correlates with tau accumulation, 
indicating its involvement in neuroinflammatory responses and 
astrocytic reactivity (Kim et al., 2023). The lack of correlation between 
the plasma Aβ42/Aβ40 ratio and PI ability might not be caused solely 
by the low sensitivity of the plasma Aβ42/Aβ40 ratio. The presented 
correlation between plasma GFAP and PI performance, independent 
of the plasma Aβ42/Aβ40 ratio, suggests the potential of GFAP as a 
reactive marker for neuroinflammation. The lack of association with 
the Aβ42/Aβ40 ratio could stem from multiple factors, including the 
inherently lower sensitivity of plasma Aβ measures compared to those 
of cerebrospinal fluid or PET imaging, the specificity of GFAP as a 
neuroinflammatory marker, the timing of its elevation in the disease 

course, and the possible disconnect between soluble biomarkers and 
plaque deposition.

Our findings contribute to advancing the understanding of AD 
pathophysiology, support the development of non-invasive diagnostic 
approaches for early detection, and offer a potential clinical framework 
for implementing preventative interventions at preclinical stages. 
Continued research is warranted to clarify the specific roles and 
temporal dynamics of individual biomarkers and to elucidate how 
they interact within the broader context of AD progression.

Limitations

Our study had several limitations that warrant consideration. 
First, our cohort was composed exclusively of Japanese adults 
residing in predominantly urban environments, specifically Toyoake 
City and the greater Nagoya area. Their navigational experiences and 
spatial strategies may have been shaped by the local city layout and 
cultural factors, potentially limiting the generalizability of our 
findings to populations with different environmental exposures. 
Previous work by Coutrot et al. (2022) has shown that individuals 
raised in more complex, less grid-like street networks—often found 
in rural or organically developed areas—tend to develop superior 
wayfinding abilities. These findings suggest that lifestyle, 

FIGURE 7

Linear regression analysis of the entorhinal cortex thickness and volume against the mean error distance in the 3D VR navigation task. The left 
entorhinal cortex is presented in the left panels, and the right entorhinal cortex is shown in the right panels. Statistical significance is denoted where 
applicable. Solid black lines represent regression fits, and dashed lines represent 95% confidence intervals. VR, virtual reality.
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environmental familiarity, and cultural context may modulate PI 
performance. To validate the universality of PI error as an early 
behavioral biomarker of AD, future studies should include 
participants from diverse geographic, cultural, and 
environmental backgrounds.

Second, while our 3D VR navigation system has demonstrated 
potential for detecting early PI deficits, it does not evaluate 
contributing sensory information, such as visual flow, vestibular 
function, and proprioception, which are integrated within the EC and 
decline with age. This limitation suggests that our findings may reflect 
not only early markers of AD but also normal age-related changes, 
making it a challenge to distinguish between the two.

Third, we applied a single PI error cutoff (>5 vm) across the 
20–85 year span. This threshold was originally defined in our Brain 
Communications report (Koike et al., 2024) based on the 95% upper 
confidence bound of error distances in a tightly clustered 20s cohort. 
However, participants aged ≥ 50 years display both a broader 
dispersion and a rightward shift in error distances relative to 20s 
adults, so a uniform cutoff risks conflating normal, age-related 
navigational decline with early AD-related deficits. Although all 
multivariate models adjusted for age as a continuous covariate—and 
our proof-of-concept analysis still demonstrated a robust PI–p-
tau181 association—residual age-related confounding cannot 
be excluded. To better disentangle healthy aging from pathology, 
future studies should (1) establish decade-based 95th-percentile PI 
thresholds or calculate age-normed PI z-scores; and/or (2) explicitly 
model age × PI-error interaction effects when evaluating PI 
performance as an early AD biomarker.

Fourth, we  did not apply formal corrections for multiple 
comparisons in our secondary multivariate analyses. Although our 
primary hypotheses were pre-specified, the exploratory nature of these 
additional tests may increase the risk of false-positive findings. In 
future studies, we  plan to address this issue by applying false-
discovery-rate or family-wise-error-rate corrections, limiting the 
number of tested outcomes, and/or utilizing hierarchical modeling 
approaches. Validation in independent cohorts will also be necessary 
to confirm the robustness of our findings.

Finally, the absence of detectable changes in AD-related plasma 
biomarkers in participants with PI errors highlights the need for a 
broader range of diagnostic modalities to fully assess the early 
stages of AD pathophysiology. Furthermore, the imbalance in 
sample size for participants with the APOE ε4 allele might affect the 
generalizability of our results. Future studies incorporating sensory 
evaluations with larger and more diverse cohorts are essential to 
validate our findings and refine the utility of VR systems in early 
AD detection.
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