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Objective: This study aims to assess risk factors and build a nomogram model to

facilitate the early recognition of post-stroke complex regional pain syndrome

(CRPS).

Methods: A total of 587 stroke patients admitted to Dongguan Hospital of

Guangzhou University of Traditional Chinese Medicine from September 2021

to October 2024 were initially included in this study. After exclusions, 376

patients were selected. Among these, there were 90 patients with post-stroke

CRPS, while the non-stroke CRPS group consisted of 286 patients. Feature

selection and optimization to generate the predictive model and nomogram

were performed using LASSO regression and multivariable logistic regression

analysis. We also utilized calibration plots, receiver operating characteristic

(ROC) curves, decision curves (DCA), and clinical impact curves (CIC) for

model validation.

Results: LASSO regression analysis and multivariate logistic regression identified

gender, age, NIHSS score, cervical spondylosis, sleep disorders, fasting blood

glucose (FBG), and albumin (ALB) as significant predictors. The nomogram

model showcased reliable predictive effectiveness, achieving an area under the

curve (AUC) of 0.858 (95% CI, 0.801–0.915). Both DCA and CIC demonstrated

that the nomogram model holds substantial clinical utility.

Conclusion: This study has developed a novel predictive model for post-stroke

CRPS, providing a valuable tool to facilitate the early detection of high-risk

patients in a clinical environment.
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1 Introduction

Complex regional pain syndrome (CRPS) is a complex pain
disorder marked by autonomic dysfunction and inflammation
(Bruehl, 2015). Evidence suggests that post-stroke CRPS
predominantly manifests as Type I CRPS (Merskey, 1986),
which is also known as shoulder-hand syndrome (SHS).

At present, research on post-stroke CRPS is sparse among
scholars both domestically and internationally (Eldufani et al.,
2020; Marinus et al., 2011; Taylor et al., 2021; Urits et al., 2018).
The definitions, pathophysiology, treatment, and prognosis of
post-stroke CRPS remain subjects of controversy, and protocols
for preventing post-stroke CRPS have not yet been established.
Findings suggest that the rate of post-stroke CRPS can be as
high as 50.0% (Han et al., 2014; Katsura et al., 2022; Kim et al.,
2020), making it one of the prevalent complications of stroke and
a significant factor contributing to disability in stroke patients.
It primarily manifests as restricted movement and pain in the
shoulder, hand, and wrist, along with symptoms such as allodynia,
swelling, changes in sweating, elevated temperature, and, in severe
cases, irreversible loss of hand function (Harden et al., 2013). This
condition markedly influences patients’ physical and psychological
health and, subsequently, their quality of life, leading to increased
disability and higher public healthcare costs. Research has reported
that early treatment can lower the likelihood of developing CRPS
(Kondo et al., 2001). Therefore, timely recognition of high-risk
populations for post-stroke CRPS, combined with proactive and
effective preventive interventions, could lead to reduced hospital
stays and treatment costs while improving patients’ quality of life
(Elsamadicy et al., 2018).

Prior meta-analyses have shown that factors linked to the
onset of post-stroke CRPS include being female, left-sided
hemiparesis, shoulder subluxation, spasticity, the upper limb’s
distal Brunnstrom stage, and scoring low on the Barthel index
(Su et al., 2021). However, there are currently no studies that
comprehensively assess various risk factors for post-stroke CRPS
using a nomogram model, which fails to meet clinical needs.
Therefore, developing a risk prediction model for post-stroke CRPS
specifically tailored to stroke patients holds significant clinical
importance. A nomogram is a graphical tool composed of line
segments representing various predictive variables. It offers several
advantages, including practicality, ease of interpretation, and
effective and accurate predictive capabilities, providing clinicians
with an intuitive prediction tool that facilitates its use in clinical
practice (Balachandran et al., 2015).

2 Materials and methods

2.1 Study design and participants

We conducted a retrospective analysis, gathering data from
a total of 587 individuals who had suffered strokes and
were subsequently admitted to the Rehabilitation Department
of Dongguan Hospital, Guangzhou University of Traditional
Chinese Medicine. This data collection period spanned from
September 2021 to October 2024. The following inclusion criteria
were established: (1) adhering to the diagnostic criteria for

cerebrovascular disease outlined in the Fourth National Conference
(Chinese Medical Association Neurology Branch, 2019) and
diagnosed using CT and verified by MRI scans; (2) an age span
of 18 to 90 years. The exclusion criteria comprised: (1) individuals
with transient ischemic attacks; (2) individuals with a history
of upper limb surgery; (3) patients with other severe comorbid
conditions, including but not limited to malignant tumors, severe
cardiovascular diseases, severe liver and biliary diseases, renal
failure; (4) patients with significantly missing required case data;
(5) patients who had experienced fever or infection in the past
two weeks.

Finally, 376 stroke patients were enrolled. They were classified
during their hospitalization into the training cohort (264 cases)
and validation cohort (112 cases) at a ratio of 7:3. Discrimination
was performed to determine whether the stroke patients had CRPS
based on the diagnostic criteria published in 2024 (Abd-Elsayed
et al., 2024). This study was conducted in accordance with the
principles of the Declaration of Helsinki. The research protocol
was approved by the Ethics Committee of Dongguan Hospital,
Guangzhou University of Traditional Chinese Medicine (PJ [2025]
No.2). Since this retrospective observational study did not infringe
upon patient privacy and posed no risk to patient safety, informed
consent was waived by the Ethics Committee. To protect patient
confidentiality, the data from this study will not be made publicly
available.

2.2 Clinical data acquisition

Predictive variables for patients with post-stroke CRPS were
identified through an analysis of existing literature and clinical
experience. Data were carefully gathered from the electronic
medical records of the patients, which included: (1) Demographic
information: Gender, age, income (low income, middle income,
high income), smoking history, alcohol consumption history,
medical history (hypertension, diabetes, coronary heart disease,
hyperlipidemias, cervical spondylosis), previous stroke, previous
shoulder diseases (chronic shoulder pain, shoulder trauma),type of
stroke (hemorrhagic, infarction, or a combination of both), lesion
location (cerebral cortex, cerebellum, thalamus, basal ganglia,
brainstem), affected side of hemiplegia (left side, right side),
muscle strength of the affected upper limb (0–3 levels, 4–5 levels),
treatment (surgical treatment, conservative treatment), sleep
disorders, and comorbid depression. (2) Laboratory indicators:
White blood cells (WBC), hemoglobin (HBG), neutrophil
percentage (NEUT%), C-reactive protein (CRP), prealbumin
(PAB), albumin (ALB), uric acid (UA), fasting blood glucose
(FBG), glycosylated hemoglobin (HbA1c), and D-dimer. (3)
Barthel Index: This index was utilized to evaluate the patients’
activities of daily living (ADL). It comprises 10 aspects and
categorizes scores into three groups: independent (100 points),
essential self-care (61 to 99 points), and poor self-care ability (below
60 points). A higher score indicates greater independence and
lower dependence. The primary outcome measured was whether
or not the patient developed post-stroke CRPS. (4) The National
Institutes of Health Stroke Scale (NIHSS) consists of 15 items,
with a total score ranging from 0 to 42. Higher scores indicate
more severe neurological impairment. The scores are classified as
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FIGURE 1

Flowchart.

follows: a score of less than 5 indicates mild impairment; 5 to 15,
moderate impairment; and 16 or greater, severe impairment.

2.3 Statistical analysis

Statistical analysis was primarily performed using R software
(version 4.2.1) and SPSS software (IBM version 26.0). Descriptive
statistics were conducted on 376 participants. Summarize

categorical data using frequency (n) and percentage (%).
Continuous variables with a normal distribution were expressed
as mean ± standard deviation (SD), while continuous variables
with a non-normal distribution were expressed as the median
and interquartile range. Categorical variables are compared using
chi-square analysis, while continuous variables are analyzed using
the Mann-Whitney test.

The creation and application of the nomogram model
involve three main steps. First, to mitigate multicollinearity
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TABLE 1 Descriptive and other characteristics of participants in training and validation group.

Variables Training group Validation group

Total
(n = 264)

Non-
post
CRPS

(n = 207)

Post-
stroke
CRPS

(n = 57)

P-value Total
(n = 112)

Non-
post
CRPS

(n = 79)

Post-
stroke
CRPS

(n = 33)

P-value

Demographics

Age, years, mean ± SD 62.47 ± 2.28 61.28 ± 12.46 66.82 ± 1.60 0.002 63 (52 ± 70) 60.48 ± 12.11 64.55 ± 10.37 0.095

Gender, n (%)

Male 182 (68.9%) 154 (74.4%) 28 (49.1%) < 0.001 79 (70.5%) 63 (79.7%) 16 (48.5%) 0.001

Female 82 (31.1%) 53 (25.6%) 29 (50.9%) 33 (29.5%) 16 (20.3%) 17 (51.5%)

Income, n (%)

Low income 63 (23.9%) 49 (23.7%) 14 (24.6%) 0.541 31 (27.7%) 23 (29.1%) 8 (24.2%) 0.209

Middle income 160 (60.6%) 129 (62.3%) 31 (54.4%) 64 (57.1%) 47 (59.5%) 17 (51.5%)

High income 41 (15.5%) 29 (14%) 12 (21.1%) 17 (15.2%) 9 (11.4%) 8 (24.2%)

Medical history

Hypertension, n (%) 222 (84.1%) 175 (84.5%) 47 (82.5%) 0.703 88 (78.6%) 64 (81%) 24 (72.7%) 0.330

Diabetes, n (%) 99 (37.5%) 69 (33.3%) 30 (52.6%) 0.008 38 (33.9%) 28 (35.4%) 10 (30.3%) 0.600

CHD, n (%) 24 (9.1%) 18 (8.7%) 6 (10.5%) 0.670 14 (12.5%) 8 (10.1%) 6 (18.2%) 0.389

Hyperlipidemias, n (%) 61 (23.1%) 49 (23.7%) 12 (21.1%) 0.678 17 (15.2%) 12 (15.2%) 5 (15.2%) 1.000

Cervical spondylosis, n (%) 30 (11.4%) 12 (5.8%) 18 (31.6%) < 0.001 11 (9.8%) 7 (8.9%) 4 (12.1%) 0.857

Previous stroke, n (%) 33 (12.5) 22 (10.6%) 11 (19.3%) 0.080 19 (17%) 12 (15.2%) 7 (21.2%) 0.439

Previous shoulder disease, n (%)

Chronic shoulder pain 6 (2.3%) 4 (1.9%) 2 (3.5%) 0.030 2 (1.8%) 0 (0%) 2 (6.1%) < 0.001

Shoulder trauma 8 (3%) 3 (1.4%) 5 (8.8%) 4 (3.6%) 0 (0%) 4 (12.1%)

Smoking, n (%) 82 (31.1%) 64 (30.9%) 18 (31.6%) 0.924 32 (28.6%) 20 (25.3%) 12 (36.4%) 0.238

Alcohol drinking, n (%) 67 (25.4%) 53 (25.6%) 14 (24.6%) 0.873 23 (20.5%) 16 (20.3%) 7 (21.2%) 0.909

Clinical features

Types of stroke, n (%)

Infarction 200 (75.8%) 149 (72.0%) 51 (89.5%) 0.022 84 (75%) 55 (69.6%) 29 (87.9%) 0.084

Hemorrhage 58 (22.0%) 53 (25.6%) 5 (8.8%) 24 (21.4%) 21 (26.6%) 3 (9.1%)

Infarction combined with
hemorrhage

6 (2.3%) 5 (2.4%) 1 (1.8%) 4 (3.6%) 3 (3.8%) 1 (3%)

Location of occlusion, n (%)

Cerebral cortex 96 (36.4%) 74 (35.7%) 22 (38.6%) 0.907 39 (34.8%) 28 (35.4%) 11 (33.3%) 0.782

Cerebellum 11 (4.2%) 9 (4.3%) 2 (3.5%) 6 (5.4%) 3 (3.8%) 3 (9.1%)

Thalamus 24 (9.1%) 18 (8.7%) 6 (10.5%) 9 (8%) 6 (7.6%) 3 (9.1%)

Basal ganglia 101 (38.3%) 82 (39.6%) 19 (33.3%) 39 (34.8%) 29 (36.7%) 10 (30.3%)

Brainstem 32 (12.9%) 24 (11.6%) 8 (14%) 13 (16.7%) 13 (16.5%) 13 (16.6%)

Hemiplegic limbs, n (%)

Left 143 (54.2%) 108 (52.2%) 35 (61.4%) 0.216 60 (53.6%) 37 (46.8%) 23 (69.7%) 0.027

Right 121 (45.8%) 99 (47.8%) 22 (38.6%) 52 (46.4%) 42 (53.2%) 10 (30.3%)

MMT upper, n (%)

0–3 level 128 (48.5%) 104 (50.2%) 24 (42.1%) 0.276 61 (54.5%) 48 (60.8%) 13 (39.4%) 0.038

4–5 level 136 (51.5%) 103 (49.8%) 33 (57.9%) 51 (45.5%) 31 (39.2%) 20 (60.6%)

Treatment, n (%)

Surgical treatment 66 (25%) 57 (27.5%) 9 (15.8%) 0.070 27 (24.1%) 20 (25.3%) 7 (21.2%) 0.643

(Continued)
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TABLE 1 (Continued)

Variables Training group Validation group

Total
(n = 264)

Non-
post
CRPS

(n = 207)

Post-
stroke
CRPS

(n = 57)

P-value Total
(n = 112)

Non-
post
CRPS

(n = 79)

Post-
stroke
CRPS

(n = 33)

P-value

Conservative treatment 198 (75%) 150 (72.5%) 48 (84.2%) 85 (75.9%) 59 (74.7%) 20 (25.3%)

Sleep disorder, n (%) 46 (17.4%) 31 (15%) 15 (26.3%) 0.046 25 (22.3%) 12 (15.2%) 13 (39.4%) 0.005

Comorbid depression, n
(%)

24 (9.1%) 20 (9.7%) 4 (7%) 0.539 8 (7.1%) 5 (6.3%) 3 (9.1%) 0.908

NIHSS score, n (%)

< 5 148 (56.1%) 109 (52.7%) 39 (68.4%) 0.024 52 (46.4%) 33 (41.8%) 19 (57.6%) 0.128

5–15 108 (40.9%) 90 (43.5%) 18 (31.6%) 55 (49.1%) 42 (53.2%) 13 (39.4%)

≥ 16 8 (3%) 8 (3.9%) 0 (0.00%) 5 (4.5%) 4 (5.1%) 1 (3%)

ADL, n (%)

100 27 (10.2%) 18 (8.7%) 9 (15.8%) 0.127 11 (9.8%) 7 (8.9%) 4 (12.1%) 0.742

99–61 157 (59.5%) 123 (59.4%) 34 (59.6%) 66 (58.9%) 47 (59.5%) 19 (57.6%)

< 60 80 (30.3%) 66 (31.9%) 14 (24.6%) 35 (31.3%) 25 (31.6%) 10 (30.3%)

Inspection results

White blood cell,
mean ± SD

6.96 ± 1.96 6.91 ± 1.90 7.17 ± 2.17 0.379 7.46 ± 2.25 6.98 ± 1.92 8.61 ± 2.59 < 0.001

Hemoglobin, mean ± SD 132.42 ± 17.04 133.05 ± 16.63 130.10 ± 18.42 0.247 131.30 ± 17.52 130.92 ± 15.92 132.22 ± 21.12 0.722

NEUT%, median (IQR) 64.25
(57.83–
70.28)

63.7
(57.6–69.7)

66.2
(60.5–70.95)

0.054 65.5
(58.51–70.18)

64.2
(58.5–69.5)

68.4
(59.39–74.5)

0.075

C-reactive protein, median
(IQR)

2.23
(1.00–5.40)

2.1
(0.99–5.05)

2.82
(1.01–6.79)

0.217 2.52
(1.26–7.49)

2.40
(1.22–6.40)

4.15
(1.50–9.16)

0.229

Prealbumin, mean ± SD 248.53 ± 47.58 250.57 ± 42.07 241.10 ± 63.62 0.184 240.11 ± 40.81 244.61 ± 37.67 229.30 ± 46.35 0.053

Albumin, mean ± SD 40.25 ± 4.14 40.01 ± 3.16 41.13 ± 6.53 0.070 39.65 ± 3.55 39.85 ± 3.10 39.19 ± 4.47 0.070

HbA1c, mean ± SD 6.21 ± 1.61 6.08 ± 1.47 6.67 ± 1.97 0.013 6.14 ± 1.27 6.01 ± 1.18 6.48 ± 1.40 0.373

Uric acid, mean ± SD 355.81 ± 97.95 360.04 ± 91.75 340.46 ± 117.39 0.182 366.12 ± 117.17 358.69 ± 117.25 383.92 ± 116.84 0.073

Fasting blood glucose,
mean ± SD

5.90 ± 1.61 5.59 ± 1.19 7.02 ± 2.30 < 0.001 5.70 ± 1.32 5.48 ± 0.99 6.24 ± 1.81 0.301

D-dimer, median (IQR) 0.44
(0.22–0.91)

0.42
(0.22–0.89)

0.51
(0.28–1.05)

0.064 0.49
(0.27–0.95)

0.44
(0.22–0.76)

0.57
(0.41–1.00)

0.005

CHD, coronary heart disease; MMT upper, manual muscle testing (affected upper limb); NIHSS, National Institute of Health Stroke Scale; ADL, activities of daily living; NEUT%, the neutrophil
percentage; HbA1c, glycated hemoglobin; IQR, interquartile range; SD, standard deviation. P-values less than 0.05 are highlighted in bold.

and overfitting while simplifying the model and selecting
variables, LASSO regression was employed, running 10-fold
cross-validation to normalize the included variables and identify
the optimal lambda value (Sauerbrei et al., 2007). Seven non-
zero coefficients were used to determine the independent
predictive features (Alhamzawi and Ali, 2018). Second, statistically
significant variables were chosen to build the nomogram model
through multivariable logistic regression analysis (Su et al.,
2021). Third, the effectiveness of the nomogram was assessed
through calibration plots and receiver operating characteristic
(ROC), where the Area Under the ROC Curve (AUROC) value
exceeding 0.7 demonstrates strong discrimination by the model.
Decision curve analysis (DCA) and clinical impact curves (CIC)
were employed to assess the clinical utility of the nomogram
(Vickers et al., 2008).

3 Results

3.1 Study flow diagram

The flowchart is illustrated in Figure 1. Out of the 587 stroke
patients, 211 did not meet the inclusion criteria. Ultimately, a total
of 376 individuals participated in the study.

3.2 Patient characteristics

The study included 376 stroke patients, of whom 286 (76.1%)
were diagnosed with non-post-stroke CRPS, and 90 (23.9%) were
diagnosed with post-stroke CRPS. Table 1 displays the differences
between the two groups in terms of demographic data, clinical
features, relevant scoring scales, and laboratory indicators.
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FIGURE 2

(A) The profile plot shows the LASSO coefficients for 31 features plotted against the log(lambda) sequence. Seven variables were chosen based on
the optimal lambda. (B) A vertical dashed line is drawn to represent the value determined through 10-fold cross-validation. The optimal adjusted
parameter log(λ) is displayed on the horizontal axis, while the deviance (binomial deviance) is shown on the vertical axis.

TABLE 2 Multivariate logistic regression analysis.

Variables OR 95% CI P

Gender

Male 0.413 0.189∼0.906 0.027

Age 1.044 1.006∼1.082 0.021

NIHSS score

5–15 0.436 0.198∼0.964 0.040

Cervical spondylosis 13.447 4.764∼37.954 < 0.001

Sleep disorder 2.635 1.098∼6.324 0.030

Albumin 1.132 1.036∼1.237 0.006

FBG 1.739 1.368∼2.212 < 0.001

3.3 Independent risk factors in the
training set

LASSO regression was carried out to determine the threatening
elements linked to the development of CRPS among stroke patients
included in the training set. This approach serves as a strong
competitor for variable selection in Cox models (Sauerbrei et al.,
2007). Determine the optimal regularization parameter λ based on
10-fold cross-validation and minimizing the standard error. The
seven most relevant predictive factors were selected from a total of
31 correlated variables. These factors include gender, age, NIHSS
score, cervical spondylosis, sleep disorders, FBG, and ALB (see
Figures 2A, B for a visual representation of these findings).

3.4 Prediction model development

The results of the multivariable logistic regression analysis
indicate that gender, age, NIHSS score, cervical spondylosis, sleep
disorder, FBG, and ALB are independent predictive factors for post-
stroke CRPS (Table 2). All seven predictive variables demonstrated

significant statistical differences. Therefore, based on these seven
factors, a risk nomogram for post-stroke CRPS was developed
(Figure 3).

3.5 Validation of the nomogram

The ROC curve served as a tool for assessing the model’s
predictive performance. The AUROC was 0.858 in the training
set and 0.740 in the validation set (Figures 4A, B), indicating that
the nomogram prediction model demonstrates good predictive
capability. The Hosmer–Lemeshow goodness-of-fit test was
employed to evaluate the calibration of the predictive model, and
the calibration curve (Figures 5A, B) illustrated a strong correlation
between the predicted probabilities and the actual occurrence of
post-stroke CRPS in both the validation and training datasets.

3.6 Clinical efficacy of the nomogram

We performed DCA to assess the clinical applicability of our
nomogram. The DCA curves indicate that within a reasonable
range of threshold probabilities, the nomogram model can provide
clinical net benefit for patients in both the training group and
the validation group (Figures 6A, B). Building on this, the CIC
was plotted (Figures 7A, B) to assess the model’s clinical impact,
showing that when the risk threshold exceeds 0.80, the number of
positive events is closely aligned with the actual incidence of the
condition.

4 Discussion

The etiology of post-stroke CRPS is complex, involving
multiple factors, including neurological, circulatory, inflammatory,
and psychological aspects. Manifestations include autonomic
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FIGURE 3

Nomogram for predicting CRPS in post-stroke patients.

FIGURE 4

The ROC curve for the nomogram predicting post-stroke CRPS (A). In the training set (A), the AUC was 0.858 (95% CI: 0.801–0.915). When a cutoff
point was set at a risk probability of 0.180, the specificity and sensitivity of the predicted results were 77.3% and 80.7%, respectively. In the validation
set presented in (B), the AUC was 0.740 (95% CI: 0.636–0.844), with a threshold of 0.099, a specificity of 0.633, and a sensitivity of 0.818.

disturbances (such as skin temperature changes, color
abnormalities, and sweating irregularities), sensory issues (pain
and allodynia), and motor impairments (such as paralysis, tremors,
and dystonia) (Borchers and Gershwin, 2017).

In most cases, only about one-fifth of patients are able to
fully return to their previous level of regular activity (Matayoshi
et al., 2009; Misidou and Papagoras, 2019), and this can even
lead to irreversible permanent disability, serving as a barrier to

rehabilitation and severely affecting patients’ quality of life. To
date, there have been only a handful of research projects that
have documented and reported on the various risk factors that
are linked to the development of post-stroke CRPS (Katsura et al.,
2024; Yu et al., 2023). To address this gap, we collected common
clinical-related data variables and laboratory findings to establish
a diagnostic prediction model, ultimately developing a simplified
equation. The results indicate that a composite index of gender,
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FIGURE 5

Calibration curve for the post-stroke CRPS nomogram (A,B). The diagonal dashed line signifies perfect prediction by the optimal model. The
proximity of the red solid line to this dashed line indicates the model’s predictive performance; the closer they are, the more accurate the
predictions.

FIGURE 6

Decision curve analysis (DCA) for the post-stroke CRPS nomogram prediction (A,B). The y-axis measures the net benefit obtained from using the
model. The red line in the figure represents the clinical diagnostic model for post-stroke CRPS. In contrast, the black horizontal line (None line) and
the gray diagonal line (All line) represent the extreme cases of “no intervention” and “all intervention,” respectively.

age, NIHSS scores, cervical spondylosis, sleep disorders, FBG, and
ALB demonstrates good predictive capability for the occurrence of
post-stroke CRPS. As a result, this combined index may serve as a
valuable asset that could significantly aid in the timely detection of
post-stroke CRPS.

The age range for cases of post-stroke CRPS primarily
falls between 45 and 75 years, with a common prevalence
among individuals aged 56 to 65 (Hannan et al., 2013).
Research conducted in the past has shown that age constitutes
a significant and independent risk factor for the development of
this condition (Zhang et al., 2004), with older individuals being

more susceptible to developing CRPS. This could potentially be
associated with the physiological alterations that take place in
the skeletal structure, joints, and nervous system as individuals
age. Additionally, regarding gender, it is noteworthy that our
findings are inconsistent with those of van Velzen et al.
(2019). The differences in sample size and the generally higher
incidence of stroke in males compared to females (Carcel et al.,
2020) may be the main reasons for this discrepancy. The
underlying mechanisms are still unclear and require further
investigation.
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FIGURE 7

Clinical impact curve (CIC) analysis for the post-stroke CRPS nomogram prediction (A,B). The y-axis represents the number of individuals at risk. The
red line indicates the predicted number of events occurring for post-stroke CRPS, whereas the red dashed line depicts the actual occurrences.

NIHSS score is a reliable indicator for assessing the severity
of neurological impairment in stroke patients. Given the close
association between neurological dysfunction and the development
of post-stroke CRPS, existing studies have shown a positive
correlation between NIHSS scores and the degree of neurological
damage (Wang et al., 2025). Thus, stroke patients with higher
NIHSS scores are more likely to develop CRPS.

Research has indicated that cervical spondylosis ought to
be regarded as a potential risk factor for post-stroke CRPS
(Steinbrocker, 1947). We propose that cervical spondylosis may
influence the risk of developing CRPS through neural, vascular,
and muscular pathways. Firstly, adverse neural stimulation can
produce abnormal discharges, leading to persistent transmission
of pain signals, which subsequently results in soft tissue spasms
around the shoulder joint. Additionally, decreased peripheral
nerve nourishment and blood circulation, along with abnormal
vasodilation or vasoconstriction, can lead to localized hypoxia
and an increase in pro-inflammatory substances (Parkitny et al.,
2013), resulting in persistent pain, alterations in the temperature
and color of skin, and swelling (Albrecht et al., 2006). Therefore,
early diagnosis may be beneficial, and to ensure reliability, it will
be essential to conduct further clinical research involving a more
significant number of participants and data collected from multiple
centers in the future.

Previous studies have found that stroke and sleep disturbances
frequently coexist (Sonmez and Karasel, 2019), with one report
indicating that 78% of stroke patients experience varying degrees
of sleep disorders (Pasic et al., 2011). Additionally, some
research has clearly shown that sleep problems are frequently
observed in individuals suffering from shoulder injuries following
a stroke (Al Battat et al., 2023; Küçükdeveci et al., 1996).
A cohort study by Zhang et al. (2022) explored the effect
of sleep disruptions on neurological functional outcomes after
stroke, revealing a positive correlation between poor neurological
function and sleep disturbances. Our study observed that sleep

disturbances are an important predictive factor for the occurrence
of CRPS following stroke. They can affect the autonomic nervous
system, leading to sympathetic nerve dysfunction (Kato et al.,
2000; Tobaldini et al., 2017), which in turn increases the
risk of CRPS after stroke. Furthermore, sleep disturbances can
trigger a series of inflammatory responses and oxidative stress,
further damaging the nervous system (Atrooz and Salim, 2020)
and significantly increasing the likelihood of CRPS in stroke
patients.

Our study indicates that patients with post-stroke CRPS
exhibit elevated fasting blood glucose (FBG) levels, with logistic
regression modeling yielding an odds ratio (OR) of 1.739,
indicating that FBG represents a significant risk factor for the
development of the disease. One of the typical symptoms of
post-stroke CRPS is pain. Studies have shown (Hok et al.,
2024) that individual differences in spontaneous pain intensity
in post-stroke CRPS are influenced by how insulin affects the
resting-state functional connectivity (rsFC) of the prefrontal
cortex. Insulin not only influences blood glucose levels but also
alters neural network activity by regulating neurotransmitter
release and affecting synaptic plasticity (Schwartz et al., 2024).
Changes in FBG and insulin levels reflect the body’s response to
metabolic load. Therefore, correcting glucose dysregulation may
help achieve beneficial effects on the central nervous system,
playing a crucial role in predicting CRPS in patients following
a stroke. Continued research is needed to verify this potential
mechanism.

We have innovatively discovered that albumin (ALB) can serve
as a new independent predictive factor for post-stroke CRPS.
Albumin levels are indicative of the body’s nutritional status; a
decrease in albumin levels can catalyze muscle atrophy (Erdoğan
et al., 2024; He et al., 2024; Tomata et al., 2022), leading to
a loss of the “muscle pump” function (Zorowitz et al., 1996),
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which results in motor dysfunction and venous return obstruction.
This can consequently cause swelling and pain in the hemiplegic
upper limb, raising the possibility of post-stroke CRPS
development.

Based on these results, we created a nomogram prediction
model that provides a potential theoretical reference for assessing
the risk of CRPS in patients following a stroke.

5 Conclusion

In this study, we identified significant correlations between
gender, age, NIHSS scores, cervical spondylosis, sleep disorders,
FBG, and ALB with the incidence of post-stroke CRPS. These
predictive factors are readily available in clinical settings. Our
simplified nomogram can assist clinicians in the early identification
of stroke patients prone to developing CRPS, allowing for the
initiation of empirical treatment to prevent or halt the progression
of post-stroke CRPS. To validate the effectiveness of this new
nomogram model, future large-scale prospective studies utilizing
comprehensive data from multiple centers will be necessary.

6 Limitations

This study has certain limitations. Primarily, This is a single-
center retrospective study, where both training and validation
cohorts are derived from the same medical center, potentially
limiting the model’s generalizability. Additionally, the study’s
sample size is limited, necessitating future multicenter, prospective
studies with larger cohorts to validate the model’s accuracy. Second,
due to the historical data analysis nature of our study, data on
sleep disturbance scores were lacking, preventing a more detailed
analysis of the types and severity of sleep disturbances. Third, this
study did not consider all possible risk factors and did not collect
data on these factors, which may lead to bias in the results.
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