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The role and function of follicle-stimulating hormone in the gonads have been 
extremely studied. However, recent research has begun to explore the relationship 
between elevated follicle-stimulating hormone levels and the prevalence of 
extragonadal disorders, particularly in perimenopausal and postmenopausal 
women. These disorders include endometrial cancer, osteoporosis, obesity, and 
atherosclerosis. This review provides new insights into the relationship between 
follicle-stimulating hormone and the development of age-related diseases, with a 
focus on Alzheimer’s disease. Follicle-stimulating hormone does not act alone in 
promoting Alzheimer’s disease but often works in conjunction with inflammation, 
lipid accumulation, and vascular alterations. Furthermore, follicle-stimulating 
hormone synergizes with obesity, gut microbiota, autophagy, and aging, creating 
conditions that facilitate the onset and progression of Alzheimer’s disease. This 
review also summarizes the therapeutic potential of FSH-blocking antibodies in 
treating these diseases.
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1 Introduction

Perimenopausal and postmenopausal women are at high risk for various age-related 
diseases, including cardiovascular diseases (Hodis and Mack, 2022), musculoskeletal 
symptoms (Wright et al., 2024) and cognitive dysfunction (Mosconi et al., 2021). Hormonal 
changes, particularly the decline in estrogen levels, are closely associated with these risks. As 
women transition from perimenopause to postmenopause, estrogen levels drop significantly 
and remain low. However, estrogen replacement therapy remains controversial, with some 
studies reporting no improvement or even worsening of cognitive function (Cheng et al., 
2021). In contrast, follicle-stimulating hormone (FSH) levels begin to rise approximately 
2 years before the final menstrual period (FMP) and stabilize 2 years after the FMP, often 
remaining elevated for decades (Wang et  al., 2021). This trend parallels the onset of 
age-related diseases.

FSH is a gonadotropin secreted by the anterior pituitary gland that binds to FSH receptors 
(FSHRs), which belong to the class A/rhodopsin subfamily of G protein-coupled receptors. 
Traditionally, FSH was thought to act primarily on gonadal tissues, specifically sertoli cells in 
the testes and granulosa cells in the ovaries. However, recent evidence suggests that FSH also 
plays a role in extragonadal diseases (Table 1).

Alzheimer’s disease (AD) is a degenerative brain disorder and the leading cause of 
dementia worldwide. Perimenopausal and postmenopausal women are particularly susceptible 
to AD. According to the American Alzheimer’s Association in 2020, the prevalence of AD 
increases dramatically with age (Alzheimer's disease facts and figures, 2022), and women are 
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disproportionately affected compared to men. While age is a 
significant factor, women live longer than men, they are more prone 
to developing brain lesions, thus increasing the prevalence of AD. The 
onset of AD is also strongly associated with elevated serum FSH levels. 
Studies have shown that postmenopausal women with AD have higher 
serum FSH concentrations than their healthy counterparts, 
independent of estrogen levels. Recent research has demonstrated that 
FSH affects neurons, establishing it as an AD-promoting hormone 
(Xiong et al., 2022). FSHR expression has been detected in the human 
cortex, neuroblastoma cells (SH-SY5Y), mouse cortex, hippocampus, 
and rat neurons (Table 2). Knockdown of hippocampal FSHR has 
been shown to improve AD neuropathology and spatial memory 
impairment (Xiong et al., 2022).

2 Role of FSH in Alzheimer’s disease

AD is pathologically characterized by amyloid plaques formed by 
amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs) composed 

of hyperphosphorylated Tau proteins. These pathological features lead 
to synaptic loss, neuronal degeneration, and the hallmark symptoms 
of AD: memory impairment, cognitive decline, and behavioral 
dysfunction (Fedele, 2023). The amyloid cascade hypothesis remains 
the dominant theory explaining AD pathogenesis. According to this 
hypothesis, Aβ peptides are produced through the cleavage of amyloid 
precursor protein (APP) by β-secretase and γ-secretase, resulting in 
various Aβ isoforms, including Aβ42, which is considered the primary 
driver of AD (Zhang Y. et al., 2023). Dysregulation of Aβ production 
or clearance leads to its accumulation and aggregation into soluble 
oligomers and insoluble fibrils. Tau, a protein predominantly found in 
neuronal axons, plays a critical role in neurite outgrowth, cell shape, 
and intracellular transport. Hyperphosphorylated Tau disrupts protein 
degradation systems, such as the ubiquitin-proteasome and 
phagosome-lysosome pathways, leading to the accumulation of waste 
proteins in neurons (Drummond et al., 2020).

Xiong et al. (2022) confirmed that FSHR is expressed in the 
cortex, hippocampus, and neuronal cells by end-point polymerase 
chain reaction (PCR) or immunofluorescence staining (IF). IF 

TABLE 1 Follicle-stimulating hormone receptor (FSHR) expression in extragonadal tissues.

Type of tissue Sample size Main methodology Observation Reference

Osteoclasts Mice (n = 4-14/group) RT-PCR, WB, FACS (Anti-FSHR 

Ab: Thermo), IF

FSHR mRNA (p < 0.05) and 

protein expressed in osteoclasts 

and precursors

Sun et al. (2006)

Osteoclasts Human (n = NA) RT-PCR, WB FSHR mRNA and protein 

expressed in osteoclasts

Sun et al. (2006)

Vein endothelial cells Human cell line WB (Anti-FSHR Ab: Proteintech 

22,665-1-AP), IF

FSHR protein expression in 

Human umbilical vein endothelial 

cells

Tan et al. (2021)

Prostate tumor vascular 

endothelial cells

Human (n = 773) IHC (Anti-FSHR Ab: FSHR 323, 

FSHR190, FSHR225)

Prostate tumor vascular 

endothelial cells are positive for 

FSHR relative to normal tissue

Radu et al. (2010)

Liver Human (n = NA) RT-PCR, WB (Anti-FSHR Ab: 

Proteintech, Abcam), IF

Expression and localization of 

FSHR in human liver

Guo et al. (2019)

Liver Mice (n = NA) RT-PCR, WB (Anti-FSHR Ab: 

Proteintech, Abcam), IF (Anti-FSHR 

Ab: Proteintech)

Expression and localization of 

FSHR in mouse liver

Guo et al. (2019)

Adipocytes Human (n = NA) RT-PCR, WB (Anti-FSHR Ab: 

Abcam), IF, IHC

Expression of FSHR in human 

adipocytes

Liu et al. (2015)

Adipocytes Mice (n = NA) RT-PCR, WB (Anti-FSHR Ab: 

Abcam), IF

Expression of FSHR in mouse 

adipose tissue

Liu et al. (2015)

Endometrial cancer Human (n = 34), Human 

cell lines

WB (Anti-FSHR Ab: Abcam 

ab150557), IHC (Anti-FSHR Ab: 

Abcam ab150557), IF (Anti-FSHR 

Ab: Abcam ab113421)

FSHR protein expression in 

endometrial cancer (p < 0.05)

Sheng et al. (2022)

Pancreas Rat (n = 5) IF (Anti-FSHR Ab: Santa Cruz), 

IHC (Anti-FSHR Ab: Santa Cruz)

FSH receptor mainly located in 

some islet cells

Chu et al. (2010)

Brain Human (n = NA) RT-PCR FSHR expression in cortex and 

neuroblastoma cells

Xiong et al. (2022)

Brain Mice (n = NA) RT-PCR, WB (Anti-FSHR Ab: 

Thermo PA5–50963)

FSHR expression in cortex and 

hippocampus

Xiong et al. (2022)

Brain Rat (n = NA) RT-PCR FSHR expression in cortical 

neurons

Xiong et al. (2022)

RT-PCR, reverse transcription PCR; WB, Western blotting; FACS, Fluorescence-Activated cell sorting; NA, not applicable; IHC, immunohistochemistry.
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revealed that FSH triggers the expression of C/EBPβ, arginine 
endopeptidase (AEP), cleaved APP, Tau proteins, Aβ40, and 
Aβ42  in mice. Consistent with these molecular changes, Morris 
water maze testing demonstrated that FSH-injected mice exhibited 
spatial memory impairment, indicating FSH-induced cognitive 
decline. In ovariectomized mice, hippocampal FSHR knockdown 
reduced the expression of C/EBPβ, AEP, cleaved APP, and Tau, 
ameliorating AD neuropathology and spatial memory impairment, 
independent of estrogen. This was further supported by Golgi 
staining, transmission electron microscopy and Morris water maze 
testing. Additionally, FSHR activation in human SH-SY5Y cells and 
primary rat neuronal cells induced amyloidogenic protein 
accumulation and the release of inflammatory cytokines IL-6 and 
IL-1β. These findings confirm the direct role of FSH in AD through 
the C/EBPβ–δ-secretase pathway and provide a basis for targeting 
FSH in AD treatment (Figure 1).

3 Potential mechanisms by which FSH 
increases risk of AD

FSH contributes to AD pathogenesis both directly and in tandem 
with other mechanisms, including inflammation, lipid accumulation, 
and vascular alterations.

3.1 Inflammation

Neuroinflammation is a key factor in AD pathogenesis. Chronic 
neuroinflammation, driven by glial overactivation, is considered the 
third core pathological feature of AD, alongside Aβ plaques and NFT 
(Leng and Edison, 2021). When the balance between pro-inflammatory 
and anti-inflammatory signals is disrupted, glial cells release 
interleukin (IL)-1β and tumor necrosis factor (TNF)-α, leading to 
neuronal damage through excessive phagocytosis (Twarowski and 
Herbet, 2023). Inflammatory cytokines also exacerbate Aβ 
accumulation and Tau propagation (Chen and Yu, 2023). Xiong et al. 
(2022) demonstrated that FSH increased the expression of IL-1β (1.4-
fold, p < 0.001) and IL-6 (1.75-fold, p < 0.001) in human primary 
neuronal cells, along with elevated levels of APP and Tau. FSHR 
knockdown reduced the expression of these inflammatory markers, 
suggesting that FSH promotes neuroinflammation and exacerbates 
AD pathology (Xiong et al., 2022).

Systemic inflammation, triggered by external factors, also impacts 
neurodegenerative diseases. Inflammatory mediators can induce 
neuronal inflammation through neural and humoral pathways, 
leading to brain damage (Marizzoni et al., 2023). While peripheral 
lipopolysaccharide (LPS) and pro-inflammatory cytokines typically 
do not cause widespread neuronal damage, AD is an exception. The 
blood–brain barrier (BBB) becomes more permeable with age, 
particularly in the hippocampus, allowing peripheral inflammatory 
factors to activate microglia and increase central pro-inflammatory 
factors. In postmenopausal women, elevated systemic inflammatory 
factors such as TNF-α (95% CI 0.46 to 2.44, p = 0.005), IL-1β (95% CI 
1.35 to 16.26, p = 0.02), and IL-6 (95% CI 0.06 to 1.98, p = 0.003) are 
strongly associated with increased FSH levels (Abildgaard et al., 2020). 
FSH induces the expression of these cytokines, contributing to both 
peripheral and central inflammation (Lai et al., 2022).

3.2 Lipid accumulation

Recent studies have highlighted the synergistic effects of FSH and 
apolipoprotein E4 (ApoE4) (Xiong et al., 2023a), the primary genetic 
risk factor for AD, in activating the C/EBPβ/δ-secretase pathway, 
which promotes AD-like pathologies (Figure 1). Ovariectomized mice 
mimicking a menopausal state developed AD-like pathologies, 
primarily driven by FSH rather than estrogen. ApoE4-knockin female 
mice also exhibited AD-like pathologies with increasing FSH levels, 
which were alleviated by anti-FSHβ antibody (FSH-Ab) treatment. 
Additionally, ApoE4-expressing mice showed impaired 
cerebrovascular integrity, elevated astrocyte hyperplasia, and 
disrupted BBB function, all of which accelerate AD pathogenesis (Liu 
C. C. et al., 2022).

Many of the proteins found in Alzheimer’s plaques have been 
hypothesized to be ligands for low-density lipoprotein receptors on 
neurons in the central nervous system (CNS), thus, FSH has been 
implicated in lipid deposition in neurons, leading to amyloid plaque 
formation (Bowen et  al., 2000). A cross-sectional study found a 
correlation between FSH levels and cholesterol levels in women over 
55 (Zhang W. et al., 2023). In mouse models, compared to the control 
group, high-dose FSH treatment increased serum levels of total 
cholesterol (TC) (1.25-fold, p < 0.01) and low-density lipoprotein 
cholesterol (LDL-C) (1.4-fold, p < 0.05) (Guo et al., 2019). Elevated 
LDL-C levels are associated with a higher incidence of AD (Saiz-
Vazquez et al., 2020), with each 1 mmol/L increase in LDL-C linked 

TABLE 2 Follicle-stimulating hormone receptor (FSHR) expression in nerve cells.

Sample size Methodology FSHR expression Reference

Rat (n = 6) IF (Anti-FSHR Ab: Santa Cruz), IHC (Anti-FSHR 

Ab: Santa Cruz)

FSHR positive signals were located in 

hippocampus

Chu et al. (2008)

Human (n = NA) RT-PCR FSHR expression in cortex and 

neuroblastoma cells

Xiong et al. (2022)

Mice (n = NA) RT-PCR, WB (Anti-FSHR Ab: Thermo PA5–

50963)

FSHR expression in cortex and 

hippocampus

Xiong et al. (2022)

Rat (n = NA) RT-PCR FSHR expression in cortical neurons Xiong et al. (2022)

Rat (n = 6) IF (Anti-FSHR Ab: Santa Cruz) FSHR positive signals were located in 

cerebellar cortex

Chu et al. (2013)

IHC, immunohistochemistry; NA, not applicable; RT-PCR, reverse transcription PCR; WB, Western blotting.
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to an approximately 17% increase in AD risk (Wee et al., 2023). High-
density lipoprotein (HDL) facilitates Aβ transport and reduces Aβ 
accumulation in vascular tissue (Poliakova and Wellington, 2023). In 
conclusion, cholesterol may bind to lipoprotein receptor-related 
protein-1 (LRP1), promoting Aβ deposition and removal, vascular 
stiffness, arteriosclerosis, and cerebral amyloid angiopathy (CAA). 
Cholesterol also plays a structural role in cell membranes, which are 
major components of basic synaptic integrity and neurotransmission.

3.3 Vascular alterations

Cerebrovascular changes are another critical factor in AD. A large 
autopsy-based neuropathological study has revealed that 80% of AD 
patients without vascular dementia exhibit vascular lesions, including 
arteriosclerosis and CAA (Sweeney et al., 2019). Arterial stiffness is 
strongly associated with AD (Cortes-Canteli and Iadecola, 2020), as it 
reduces cerebral blood flow (CBF) and promotes Aβ deposition 
(Apatiga-Perez et al., 2022), involving in angiostarch deposition in 
early. Postmenopausal women show an inverse correlation between 
FSH levels and vascular compliance, with FSH contributing to 
vascular stiffness and endothelial damage (Laakkonen et al., 2021; 
Wenner et al., 2024). Notably, FSH levels were positively associated 
with the augmentation index (95% CI 0.68 to 1.09, p < 0.001) 

(Laakkonen et al., 2021). Path analysis further demonstrated that the 
effect of age on flow-mediated dilation (p = 0.01) was partially 
mediated by FSH (Wenner et al., 2024), suggesting a hormonal role in 
age-related vascular deterioration. FSH regulates the expression of 
vascular cell adhesion molecule 1 (VCAM-1) in endothelial cells 
through the FSHR/Gas/cAMP/PKA and PI3K/Akt/mTOR/NF-κB 
pathways, leading to vascular calcification and reduced elasticity (Piao 
et al., 2022). High FSH concentrations also disrupt the expression of 
V-cadherin and E-cadherin, increasing membrane permeability 
(Rocca et al., 2024). These vascular changes may contribute to the 
increased risk of AD in perimenopausal and postmenopausal women.

4 Blood–brain barrier breakdown

The BBB is composed of brain endothelial cells connected by tight 
junctions and brain perivascular cells, which include pericytes, 
astrocytes, microglia, and oligodendrocytes. The BBB can shield 
deleterious waste metabolites and remove Aβ, thereby maintaining 
brain homeostasis and protecting neurons (Takata et al., 2021).

Due to impairment of the BBB, there seems to be  a close 
relationship between peripheral FSH, proinflammatory factors, lipids, 
vascular stiffness and the onset of AD. The two-hit hypothesis provides 
a compelling explanation for this phenomenon (Figure 2). The first hit 

FIGURE 1

The role of FSH-FSHR signaling in neurons and hippocampus. FSH promotes the formation of amyloid plaques through Aβ peptide aggregation and 
the development of NFTs. Additionally, FSH triggers the release of ApoE via the C/EBPβ–δ-secretase pathway, which further elevates levels of IL-6 and 
IL-1β. The action of FSH is antagonized by FSH-Ab, which binds to FSHR and inhibits it’s signaling.
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involves BBB disruption and reduced CBF, leading to vascular-
mediated neuronal dysfunction and the leakage of harmful 
metabolites, including FSH, lipids, and pro-inflammatory factors. The 
second hit involves the pathological accumulation of these risk factors, 
causing neurodegeneration (Eisenmenger et al., 2023). FSH may affect 
the cerebrovascular system on both sides of the BBB, highlighting the 
importance of the cerebrovascular system as a bridge between the 
brain and the body.

Currently, while evidence regarding the direct effects of FSH on 
the blood–brain barrier (BBB) remains insufficient, several 
interconnected mechanisms may have affection. FSH regulates the 
expression of connexin 43 (Cx43) in postmenopausal women 
(Wilson et  al., 2008), potentially disrupting gap junction 
communication critical for BBB maintenance. The glucose 
transporter GLUT1, highly expressed in brain microvascular 
endothelial cells forming the BBB, mediates glucose transport to 
maintain neuronal function and BBB integrity (Koepsell, 2020), 
whereas FSH regulates GULT1 expression via the HIF-1α-AMPK 
signaling pathway (Wu et  al., 2022). Additionally, VCAM-1 
expressed by cerebral microvascular endothelial cells promotes 
cerebral vascular inflammation and damages BBB (Salian et  al., 
2024). While FSHR expression has been detected in peripheral 
endothelial cells and pericytes but not yet confirmed in brain 

endothelial cells (Maclellan et al., 2018). Importantly, recent studies 
demonstrate that FSH stimulates VCAM-1 production in vascular 
endothelial cells via FSHR-dependent mechanisms, enhancing 
monocyte-endothelial adhesion (Li et  al., 2017). These findings 
suggest that elevated FSH levels during menopause may accelerate 
AD pathogenesis through combined effects on endothelial 
metabolism, cell–cell communication, and neurovascular  
inflammation.

5 Potential synergistic effects of FSH 
with other risk factors

Other risk factors may synergize with FSH to create a permissive 
environment for the development of age-related diseases, especially 
AD (Figure 3).

5.1 Obesity

Obesity is a significant risk factor for AD in perimenopausal and 
postmenopausal women. Obesity impairs endothelial function, disrupts 
the BBB, and induces adipose tissue inflammation, leading to elevated 

FIGURE 2

The two-hit hypothesis explains the effects of peripheral risky factors including FSH in AD. In the first step, FSH contributes to BBB breakdown, vascular 
stiffness, and a decline in CBF, leading to the leakage of risk factors through mechanisms involving inflammation, lipid accumulation, and vascular 
alterations. Building on the step 1, these peripheral risk factors exacerbate neuroinflammation, cerebral lipid deposition, CAA, and intracranial 
atherosclerosis, ultimately resulting in Alzheimer’s disease-like pathology.

https://doi.org/10.3389/fnagi.2025.1578439
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Xue et al. 10.3389/fnagi.2025.1578439

Frontiers in Aging Neuroscience 06 frontiersin.org

levels of adipokines and free fatty acids (FFAs) that promote amyloid and 
Tau aggregation (Kao et al., 2020). FSH levels are positively correlated 
with body mass index (BMI) and regulate fat accumulation through the 
Gαi/Ca2+/CREB pathway and Ucp1 expression in visceral adipose tissue 
(Xiong et al., 2023b).

5.2 Gut microbiota

The brain-gut-microbiota axis has been increasingly studied in 
relation to AD. Dysbiosis of gut microbiota leads to an imbalance 
between pro-inflammatory and anti-inflammatory bacteria, 
contributing to peripheral inflammation in patients with cognitive 
dysfunction and cerebral amyloidosis. FSH levels are positively 
correlated with pro-inflammatory gut bacteria such as Escherichia/
Shigella and negatively correlated with anti-inflammatory bacteria 
such as Eubacterium and Faecalibacterium (Kwon et  al., 2023). 
Patients with AD-related cognitive impairment show higher levels of 
Firmicutes and Proteobacteria, consistent with FSH’s effects on gut 
microbiota (Liu Y. et  al., 2022). Despite knowledge about the 

associations between FSH and gut microbiota, the exact mechanisms 
and their role in AD have not yet been fully elucidated.

5.3 Mitophagy

Mitophagy, the selective degradation of mitochondria, plays a crucial 
role in neurodegenerative diseases (Quinn et  al., 2020). Increased 
PINK1-Parkin expression is associated with reduced Aβ levels and 
improved cognitive function in mice (Han et al., 2020). FSH inhibits 
oxidative stress in granulosa cells through the FSH-HIF-1α-PINK1-
Parkin pathway (Li et al., 2020). mTOR, a downstream factor of FSH 
signaling, regulates autophagy. Inhibition of mTOR with rapamycin 
enhances autophagy, reduces Aβ levels, and alleviates AD progression.

5.4 Aging

In perimenopausal and postmenopausal women, aging is 
always the initial factor in the development of more common 

FIGURE 3

Potential association of FSH and other risk factors in AD. FSH exhibits potential synergistic effects with obesity, gut microbiota dysbiosis, impaired 
mitophagy, genetic factors (ApoE), and aging, all of which contribute to the development and progression of AD.
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diseases. Chronic inflammation, dysbiosis, and impaired 
autophagy are emerging hallmarks of aging that interact 
synergistically to promote disease (Lopez-Otin et  al., 2023). 
Moreover, during aging, the relationship between changes in 
hormone levels (including FSH) and pathological changes is not 
singular but rather involves multiple correlations. The aging of 
neuronal cells progressively worsens the intracranial 
environment, characterized by the accumulation of oxygen 
radicals, impaired BBB integrity, and the loss of functional 
synapses. These changes may drive or sustain brain inflammation 
by increasing the expression of inflammatory molecules, 
ultimately contributing to the development of AD (Guerrero 
et al., 2021).

6 Therapy and perspectives about 
FSH-blocking antibody

FSH has emerged as a promising therapeutic target for 
diseases in perimenopause and postmenopause. Antibodies 
targeting the β-subunit of FSH (FSH-Ab) have shown potential in 
alleviating disease progression (Table 3).

Early experiments demonstrated that FSH-Ab reduced fat 
mass and abdominal fat in mice without affecting total body 
weight (Liu et  al., 2017). FSH-Ab also lowered serum TC and 
LDL-C levels in ovariectomized mice (Guo et  al., 2019). In 
Alzheimer’s mice, FSH-Ab also inhibited the formation of plaques 
and neurofibrillary tangles and reversed cognitive decline (Xiong 
et al., 2022). Further studies revealed that FSH-Ab blocked the 
activation of the C/EBPβ/δ-secretase signaling pathway and 
reduced the levels of Aβ and Tau in ApoE4-TR mice. Additionally, 
FSH-Ab mitigated the extensive astrogliosis and microglia 

activation induced by ovariectomy, thereby rescuing impaired 
learning and memory (Xiong et al., 2023a). Monoclonal antibodies 
targeting FSHβ, such as Hf2 and Mf4, have been shown to increase 
bone mass by inhibiting osteoclast activity (Ji et  al., 2018). 
Humanized antibodies (Hu6, Hu26, Hu28) bind FSH with high 
affinity and block FSHR activation, reducing osteoclast formation 
and promoting beige adipose tissue formation (Gera et al., 2020). 
New evidence also indicated that MS-Hu6 could stimulate new 
bone formation and increase bone mass (Gera et  al., 2022). 
Additionally, formulated MS-Hu6 demonstrated improved 
stability and enhanced binding affinity to FSH at higher 
concentrations (Rojekar et al., 2023).

While FSH-blocking antibodies have shown promise in 
preclinical studies, they have yet to be applied in clinical practice.

7 Conclusion

This review summarizes the current understanding of the 
mechanisms and risk factors underlying AD in perimenopausal 
and postmenopausal women. FSH contributes to AD pathogenesis 
through neuronal signaling pathways, inflammation, lipid 
accumulation, and vascular alterations. The two-hit hypothesis 
provides a framework for understanding how peripheral risk 
factors, including FSH, influence AD development. Synergistic 
interactions between FSH and other risk factors, such as obesity, 
gut microbiota, autophagy, and aging, further exacerbate AD 
progression. A deeper understanding of the role of FSH in AD 
may lead to improved diagnostic methods and novel therapeutic 
strategies. FSH-blocking antibodies represent a promising avenue 
for AD treatment, though further research is needed to translate 
these findings into clinical applications.

TABLE 3 Applications and functions of FSH-blocking antibodies.

FSH-Ab Tissue Species Functionality Reference

FSH-Ab Adipose tissue Mouse Reduced body weight, fat mass and fat 

volume

Liu et al. (2017)

FSH-Ab Serum Mouse Reduce the serum TC and LDL-C levels Guo et al. (2019)

FSH-Ab Liver Mouse Reduce the liver TC levels Guo et al. (2019)

FSH-Ab Hippocampus Mouse Reduction in activation of signaling 

pathway, formation of Aβ and Tau

Xiong et al. (2022)

FSH-Ab Hippocampus Mouse Blocked the triggering of the signaling 

pathway, the elevation of Aβ and Tau and 

synapses decrease

Xiong et al. (2023a)

Mf4 Bone Mouse Increased bone mass Ji et al. (2018)

Hf2 Bone Mouse Increased bone mass Ji et al. (2018)

Hu26 Bone Mouse Inhibited osteoclast formation Gera et al. (2020)

Hu28 Bone Mouse Inhibited osteoclast formation Gera et al. (2020)

Hu6 Bone Mouse Inhibited osteoclast formation Gera et al. (2020)

Hu6 Fibroblast cell Mouse Reversed the inhibition of Ucp1 Gera et al. (2020)

MS-Hu6 Bone Mouse Stimulated new bone formation and 

increased bone mass

Gera et al. (2022)
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