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Yonsei University College of Medicine, Seoul, Republic of Korea

Background: During the prodromal stage of Parkinson’s disease (PD), brain

structural alterations precede clinical diagnosis and offer opportunities for early

detection. We investigated whether combining clinical non-motor markers with

an MRI-based brain structural marker could enhance predictive performance for

PD conversion.

Methods: Individuals with prodromal symptoms (n = 46, 63.5 ± 7.6 years, 24

males) were selected from the Parkinson’s Progression Markers Initiative dataset.

We developed a machine learning classifier to identify individuals with brain

structural patterns similar to PD based on cortical thickness and white matter

integrity. Its predictive performance for PD conversion was assessed alone and

combined with clinical non-motor markers such as rapid eye movement sleep

behavior disorder and olfactory dysfunction.

Results: Six individuals converted to PD within 4 years. The MRI marker classified

21 individuals as having PD-like brain patterns, including all six converters.

When combined with olfactory dysfunction, the approach achieved optimal

performance with 100% sensitivity, 80% specificity, and 90% balanced accuracy,

outperforming individual markers and other combinations.

Conclusion: MRI-quantified brain structural similarity to PD, particularly when

combined with olfactory assessment, significantly enhances prediction of PD

conversion in individuals with prodromal symptoms. This accessible, multimodal

approach could facilitate early identification of high-risk individuals for targeted

interventions and clinical trials.
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1 Introduction

The prodromal stage of Parkinson’s disease (PD), termed
prodromal PD, is a phase where neurodegenerative pathology
initiates but motor symptoms necessary for PD diagnosis are
not yet present. Prodromal PD has been receiving increasing
attention since disease-modifying treatments for delaying or
even stopping the progression of the disease could be suitably
tested for it (Mahlknecht et al., 2022). However, identifying
prodromal PD and predicting conversion to PD among individuals
with non-specific prodromal features remain challenges, despite
progress in understanding its pathophysiology and clinical
manifestations.

During the years to decades of prodromal PD (Schenck
et al., 2013), nigral neurodegeneration and extranigral Lewy body
pathology (Del Tredici and Braak, 2012) could manifest as non-
specific clinical signs and symptoms that serve as prodromal
markers. Given that the initial PD pathology often originates
outside the substantia nigra, particularly in the lower brainstem
or olfactory bulb (Braak et al., 2003; Beach et al., 2009), these
neuropathological changes increase the probability of developing
specific non-motor phenomena such as rapid eye movement sleep
behavior disorder (RBD) and olfactory impairment (hyposmia
or anosmia), presenting a significant opportunity for identifying
prodromal PD through targeted screening (Khoo et al., 2013).
The occurrence of RBD or olfactory deficits not only signifies
potential underlying neurodegeneration but also suggests an
elevated risk for the emergence of additional prodromal features
(Gaenslen et al., 2014).

While the presence of specific markers does not invariably
lead to conversion from prodromal PD to PD, the ability
to predict conversion to PD has been supported by the
strongest evidence for both RBD and olfactory dysfunction
(Postuma and Berg, 2016) but with varying degrees of sensitivity
and specificity. The low prevalence of RBD in the general
population, coupled with its high long-term risk of developing
PD (Iranzo et al., 2014), accentuate its specificity over sensitivity;
conversely, the high prevalence of olfactory dysfunction in PD
as well as in the general population (Doty, 2007) underlines its
sensitivity over specificity [for a summary, see (Postuma et al.,
2012a)]. We hypothesized that such limitations in the predictive
abilities of clinical non-motor markers could be compensated
by combining them with neuroimaging markers that provide
complementary information about underlying pathophysiological
processes. Specifically, we expected that imaging-based markers
reflecting early neurodegeneration could optimize the balance
between sensitivity and specificity when combined with clinical
assessments that have complementary predictive profiles. In
this regard, not only did we attempt a combination of the
dopamine transporter (DaT) scan marker, which is well-known
for its high sensitivity and specificity (Ba and Martin, 2015),
with clinical non-motor markers, but we also proposed a
new imaging marker derived from MRI and evaluated its
combination with clinical non-motor markers for predicting
conversion to PD. Considering that progressive neurodegeneration
could induce brain structural alterations even before the clinical
diagnosis of PD (Yang et al., 2021; Pimer et al., 2023),
individuals whose brain structural patterns are closer to PD

brains would be likely to be at higher risk of developing
PD than those whose brain structural patterns are closer to
healthy brains. Therefore, we aimed to develop an MRI-based
classifier using a machine learning method to discriminate PD
brains from healthy ones, then applied it to individuals with
prodromal symptoms to assess its performance for predicting PD
conversion.

2 Materials and methods

2.1 Study sample

A total of 46 individuals with prodromal symptoms of PD
(mean ± standard deviation age: 63.5 ± 7.6 years, 24 males)
who were followed up for more than 4 years were included from
the Parkinson’s Progression Markers Initiative (PPMI) dataset.1

For developing an MRI-based classifier, we included 75 healthy
individuals (mean ± standard deviation age: 59.9 ± 11.3 years, 49
males) and 132 individuals with PD (mean ± standard deviation
age: 60.7 ± 9.2 years, 88 males) from the PPMI dataset to serve
as training and test sets. An independent test set of 83 healthy
individuals (mean ± standard deviation age: 66.4 ± 8.2 years, 50
males) and 130 individuals with PD (mean ± standard deviation
age: 69.0 ± 9.6 years, 72 males) was incorporated from a local
tertiary hospital dataset (Figure 1). More details on inclusion
and exclusion criteria are described in Supplementary Appendix
S1. This study was approved by the institutional review board,
and a waiver for written consent was obtained because of the
retrospective study design.

2.2 MRI data collection and
preprocessing

Locally recruited participants underwent 3T MRI scans (Philips
Healthcare, Best, Netherlands), while PPMI dataset participants’
scans were acquired using site-specific MRI systems from various
manufacturers. Acquisition parameters for structural T1-weighted
and diffusion-weighted MRI data according to the datasets are
summarized in Supplementary Table S1.

To mitigate potential scanner-related effects, all MRI data
underwent standardized preprocessing pipelines with consistent
parameters across all datasets. For structural T1-weighted images,
preprocessing included skull stripping, intensity scaling, bias field
correction, and spatial normalization using the CIVET pipeline2

for cortical thickness extraction. For diffusion-weighted images,
preprocessing steps included denoising, Gibbs ringing removal,
motion and eddy current correction, intensity scaling, bias field
correction, and spatial normalization using FSL tools,3 followed
by tract-based spatial statistics (TBSS) analysis for fractional
anisotropy extraction.

1 https://www.ppmi-info.org/

2 https://mcin.ca/technology/civet/

3 http://fsl.fmrib.ox.ac.uk/fsl/
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FIGURE 1

Flowchart depicting the inclusion/exclusion process for study population. BL, baseline; DaT, dopamine transporter imaging; DTI, diffusion tensor
imaging; PD, Parkinson’s disease; PPMI, Parkinson’s Progression Markers Initiative; RBDSQ, rapid eye movement sleep behavior disorder screening
questionnaire; T1WI, T1-weighted imaging; UPSIT, University of Pennsylvania smell identification test.

2.3 Brain structural features

Since cortical thickness in gray matter (GM) regions and
integrity in white matter (WM) regions could adequately serve
as features to infer the progression of brain structural alterations
in PD (Park et al., 2022), we adopted these features (cortical
thickness from 62 GM regions and integrity from 48 WM
regions) to develop the classifier to distinguish between healthy
and PD brains (Supplementary Appendix S2). All 62 cortical
thickness and 48 white matter integrity measures were used without
feature selection to preserve model interpretability and examine
individual contributions of the complete feature set, while avoiding
potential overfitting that can occur with feature selection in small
datasets.

2.4 Classifier to distinguish between
healthy and PD brains

The MRI-based classifier was generated by employing the
random forest method that works by training an ensemble
of decision trees on random subsets of a training set and
making predictions by summarizing the predictions of all the
decision trees. By employing the brain structural features along
with the confounding variables of age and sex as predictors,
the classifier was trained on a training set and subsequently
evaluated for performance on a test set, as well as a separate,
independent test set, in distinguishing between healthy and PD
brains (Supplementary Appendix S3). The independent test set
was introduced to assess generalizability across different scanner
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specifications and acquisition protocols, allowing evaluation of our
approach’s robustness to inter-scanner variability without requiring
explicit harmonization techniques. The overall performance of the
classifier was assessed by measuring the accuracy of predictions and
the area under a receiver operating characteristic curve (AUC).

2.5 Division of prodromal individuals into
close-to-healthy and close-to-PD

The MRI-based classifier was applied to the prodromal
individuals as a target set to classify them. When the prodromal
individuals were classified as PD by this model, their brain
structural patterns were considered to more closely resemble
those of the PD individuals rather than the healthy individuals.
We designate this as the “close-to-PD” state, indicating that
from a brain structural pattern perspective, these individuals
appear neuroanatomically closer to PD than to healthy conditions.
Similarly, the prodromal individuals classified as healthy were
designated as being in the “close-to-healthy” state. We emphasize
that these designations are exploratory classifications proposed
in this study based on brain structural patterns, rather than
established clinical categories from the literature. Given the random
forest model, the PD class probability, that is, the probability
of each individual belonging to the PD class was computed as
the proportion of trees in the forest that predicted the PD class
of the individual.

Clinical characteristics of the prodromal individuals according
to their designated states were assessed relative to the healthy
and PD individuals by comparing their scores on a set of
clinical assessments, including the Hoehn and Yahr staging
scale (HYSS), Movement Disorders Society-sponsored revision
of the unified PD rating scale part III (MDS-UPDRS III),
RBD screening questionnaire (RBDSQ), and University of
Pennsylvania smell identification test (UPSIT), using a confounder-
adjusted permutation test (Supplementary Appendix S4). Statistical
significance was determined at a p-value < 0.05, corrected for
post hoc multiple comparisons using a false discovery rate method.

2.6 Brain structural contributions to the
division of prodromal individuals

It is important to note that our approach to predicting PD
conversion differs from conventional prediction models. Rather
than directly training a model on prodromal individuals to predict
PD conversion, we employed the healthy-PD classification model
as a proxy. This methodological choice was primarily based
on our fundamental assumption that neurodegeneration-related
brain structural changes precede clinical PD diagnosis, making
individuals with brain patterns resembling PD more likely to
develop the disease than those with healthy-like patterns. The
practical constraint of limited available prodromal individuals
and confirmed PD conversion cases in existing datasets further
supported this approach. Consequently, our sensitivity analysis
for determining how input variables affected model outputs in
PD conversion prediction relied on analyzing the underlying
healthy-PD classification model. As sensitivity analysis, to identify

which brain regions were important to discriminate the PD
and close-to-PD states from the healthy and close-to healthy
states, respectively, we evaluated the consistency and robustness
of the classifier’s feature importances across different data samples
(test and target sets) using Shapley additive explanations (SHAP)
analysis (Supplementary Appendix S5). The overall importance of
each feature was assessed by SHAP magnitude, calculated as the
mean of absolute SHAP values across samples in the respective set.

2.7 Development of PD in prodromal
individuals

For the prodromal individuals, PD conversion was determined
by confirming their clinical diagnosis beyond 4 years, such that
those diagnosed with idiopathic PD during follow-up at or before
4 years, with unchanged diagnosis thereafter, were regarded as
incident PD cases.

2.8 Performance of PD conversion
predictors

To assess an increased risk of developing PD, we considered
the following four markers: (i) RBD assessed using the RBDSQ
[RBD], defined as RBD positive with a score of 5 or higher on the
questionnaire evaluating sleep behavior, (ii) olfactory dysfunction
identified through the UPSIT [Hyposmia], classified as hyposmia
or anosmia according to age- and sex-adjusted criteria (males
scoring 33 or lower and females scoring 34 or lower), (iii) close-
to-PD determined by the MRI-based classifier [MRI], and (iv)
nigrostriatal dopaminergic degeneration assessed through visual
analysis of DaT scans [DaT]. Detailed evaluation methods for the
markers are provided in Supplementary Appendix S6.

We evaluated a total of 11 predictors for conversion
to PD by examining the scenarios when only clinical non-
motor markers were available, as well as when both clinical
non-motor and imaging markers were available. Specifically,
predictors comprising only clinical non-motor markers included
[RBD] and [Hyposmia] individually and their concomitance
[RBD + Hyposmia]. Additionally, we considered predictors
not only composed of [MRI] and [DaT] individually but also
their concurrent presence with clinical non-motor markers
(for [MRI], [MRI] alone, [MRI + RBD], [MRI + Hyposmia],
[MRI + RBD + Hyposmia]; and similarly, for [DaT], [DaT] alone,
[DaT + RBD], [DaT + Hyposmia], [DaT + RBD + Hyposmia]). The
integration of multiple markers was systematically implemented
through assessment of their concurrent presence in each individual.
For example, for the integration of the MRI-based classifier ([MRI])
with clinical non-motor markers ([RBD] or [Hyposmia]), our
methodology specifically examined whether both markers occurred
simultaneously in the same individual. For each individual, the
presence of multiple markers was recorded as a binary outcome
(present/absent) based on the simultaneous occurrence of all
component markers.

The performance of each predictor for PD conversion was
evaluated firstly by conducting Fisher’s exact test under the null
hypothesis of no non-random association between predicted and

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1579326
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1579326 July 11, 2025 Time: 18:46 # 5

Park et al. 10.3389/fnagi.2025.1579326

actual PD conversion outcomes, and secondly by computing
performance metrics quantifying the concordance between the
predicted and observed instances of PD conversion, including
sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV), and for a comprehensive assessment of
performance, balanced accuracy (BA) and Matthews correlation
coefficient (MCC) (Supplementary Appendix S7).

2.9 Software and code availability

In this study, the development of the MRI-based classifier
and SHAP analysis were conducted using respective Python
packages. Statistical inferences using the confounder-adjusted
permutation test were performed using a MATLAB-based in-house
program. The generated MRI-based classifier and the code for the
confounder-adjusted permutation test are publicly available at a
GitLab repository.4

3 Results

3.1 Clinical characteristics of study
population

Table 1 summarizes demographic and clinical characteristics of
the healthy individuals (n = 75), prodromal PD individuals (n = 46),
and PD individuals (n = 132) from the PPMI dataset.

3.2 Classifier to distinguish between
healthy and PD brains

The performance of the MRI-based classifier, generated using
the brain structural features from 62 GM regions measuring
cortical thickness and 48 WM regions assessing integrity,
exhibited an accuracy of 0.927 and an AUC of 0.982 on
the test set. This classifier based on both types of features
outperformed that based solely on features of either cortical
thickness (accuracy = 0.805, AUC = 0.923) or WM integrity
(accuracy = 0.854, AUC = 0.933). In external validation with the
independent test set, the classifier using both types of features
(accuracy = 0.873, AUC = 0.949) also outperformed that based
solely on either cortical thickness (accuracy = 0.657, AUC = 0.770)
or WM integrity (accuracy = 0.864, AUC = 0.885).

3.3 Division of prodromal individuals into
close-to-healthy and close-to-PD

When the MRI-based classifier was applied to the prodromal
individuals, 21 were assigned to the close-to-PD state and the
other 25 were assigned to the close-to-healthy state. PD class
probabilities were significantly higher for prodromal individuals

4 https://gitlab.com/chang-hyun.park/pd-conversion-prediciton

in the close-to-PD state compared to those in the close-
to-healthy state. While close-to-healthy prodromal individuals
showed similar probabilities to healthy individuals, close-to-PD
prodromal individuals had lower probabilities than PD individuals
(Supplementary Figure S1 and Supplementary Appendix S8).
Scores on clinical assessments revealed that the prodromal
individuals in either state displayed clinical characteristics that were
intermediate between the healthy and PD individuals. For any
clinical assessment, however, there was no significant difference in
scores between the prodromal individuals in the close-to-healthy
and close-to-PD states (Figure 2 and Supplementary Appendix S9).

3.4 Brain structural contributions to the
division of prodromal individuals

The SHAP analysis revealed consistent and robust
contributions of brain regions to classifier predictions, with
white matter integrity features demonstrating relatively greater
impact compared to cortical thickness measures. The correlation
between SHAP magnitudes derived from distinguishing healthy
and PD brains and those from dividing prodromal individuals
into close-to-healthy and close-to-PD states was highly significant
(r = 0.980, p< 0.001), demonstrating consistent feature importance
across different classification tasks. Specifically, regions showing
the highest predictive importance included several white matter
regions such as the left medial lemniscus, genu of corpus callosum,
right medial lemniscus, and right uncinate fasciculus, along
with cortical regions including the left rostral anterior cingulate,
left posterior cingulate, and left inferior parietal cortices. These
findings are consistent with established patterns of brain structural
changes in PD, including the anterior-to-posterior progression of
pathology (Potgieser et al., 2014) and the temporal precedence of
white matter over cortical alterations (Park et al., 2022; Figure 3,
Supplementary Figure S2, and Supplementary Appendix S10).

3.5 Development of PD in prodromal
individuals

Among the 21 prodromal individuals classified as the close-to-
PD state, six developed PD within 4 years of follow-up. None of
the 25 prodromal individuals classified as the close-to-healthy state
developed PD during the follow-up.

3.6 Performance of predictors for PD
conversion within four-year follow-up

The presence of [Hyposmia], [MRI], and [DaT], as well as
their combinations of [MRI + Hyposmia] and [DaT + Hyposmia],
at baseline was associated with PD conversion within 4 years
of follow-up, as demonstrated by Fisher’s exact test, which
showed significantly higher odds of developing PD in individuals
exhibiting these predictors compared to those who did not
(Supplementary Table S2).

Among clinical non-motor markers, as consistently
demonstrated in prior studies (Postuma et al., 2012a;
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TABLE 1 Demographic and clinical characteristics of individuals included in the study.

Characteristic Healthy (n = 75) Prodromal (n = 46) PD (n = 132) P-value∗ Post hoc comparison

Age (y) 61.3 (53.1–67.5) 63.7 (60.5–67.8) 62.3 (54.3–67.7) 0.213

Sex† 0.199

Male 49 (65) 24 (52) 88 (67)

Female 26 (35) 22 (48) 44 (33)

HYSS 0 (0–0) 0 (0–0) 2 (1–2) <0.001 Healthy < PD
Prodromal < PD

MDS-UPDRS III 0 (0–1) 2 (0–3) 19.5 (13–25.5) <0.001 Healthy < PD
Healthy < Prodromal
Prodromal < PD

RBDSQ 3 (1–4) 4 (2–7) 3 (2–5) 0.002 Healthy < PD
Healthy < Prodromal

RBD† 15 (20) 9 (20) 45 (34)

UPSIT 35 (32–37) 32 (19–35) 23 (16–30) <0.001 Healthy < PD
Healthy < Prodromal
Prodromal < PD

Olfactory dysfunction† 35 (47) 23 (50) 111 (84)

Values are presented as medians with interquartile ranges in parentheses, unless otherwise noted. HYSS, Hoehn and Yahr staging scale; PD, Parkinson’s disease; RBD, rapid eye movement sleep
behavior disorder; RBDSQ, rapid eye movement sleep behavior disorder screening questionnaire; MDS-UPDRS III, Movement Disorder Society-sponsored revision of the unified PD rating
scale part III; UPSIT, University of Pennsylvania smell identification test. ∗P-values were calculated using different statistical methods depending on the nature of the variables: the χ2 test was
employed for the categorical variable such as sex, the Kruskal-Wallis test was used for the continuous variable like age, and a confounder-adjusted permutation test that controlled for age and
sex was applied for other continuous variables. †Data are presented as counts of individuals, with corresponding percentages shown in parentheses.

Mahlknecht et al., 2015), [RBD] demonstrated relatively high
specificity, whereas [Hyposmia] exhibited relatively high
sensitivity. The combination of [RBD + Hyposmia] resulted
in improved specificity, but it did not maintain the high sensitivity
associated with [Hyposmia] alone. While both imaging markers
surpassed [RBD] in sensitivity and exceeded [Hyposmia] in
specificity, [DaT] showed a balanced profile of high sensitivity
and specificity, and [MRI] displayed lower specificity but higher
sensitivity compared to [DaT]. The combination of [DaT + RBD]
and [DaT + Hyposmia] enhanced specificity relative to using
individual clinical non-motor markers alone, but it diminished
sensitivity further. In contrast, the combinations of [MRI + RBD]
and [MRI + Hyposmia] maintained the sensitivity of individual
clinical non-motor markers while enhancing specificity. Notably,
[MRI + Hyposmia] outperformed the performance of [MRI] or
[Hyposmia] alone, demonstrating the highest BA (BA = 0.900) and
MCC (MCC = 0.586) among the evaluated predictors. Combining
each imaging marker with both [RBD] and [Hyposmia] did
not differ in performance from combining it with [RBD] alone
(Table 2).

4 Discussion

This study aimed to enhance predictive capability for
conversion to PD during the prodromal phase by introducing
an MRI marker derived from routine MRI sequences and
combining it with clinical non-motor markers such as RBD and
olfactory dysfunction. The proposed MRI marker facilitated the
assessment of whether individuals with prodromal symptoms
exhibited brain structural patterns more similar to those of PD
individuals than to those of healthy individuals. In predicting
conversion to PD within 4 years, the MRI marker demonstrated

higher sensitivity but lower specificity compared to established
imaging approaches. Notably, when combined with olfactory
dysfunction, the MRI marker maintained perfect sensitivity while
substantially improving specificity, yielding the most effective
overall performance (BA = 0.900 and MCC = 0.586). These findings
suggest that the multimodal combination of clinical non-motor
and imaging markers, particularly the proposed MRI marker with
olfactory dysfunction, could be a promising approach to enhancing
predictive performance for conversion to PD in individuals with
prodromal symptoms.

The MRI marker demonstrates that brain structural patterns
encompassing both GM morphometry and WM integrity can
subcategorize the intermediate prodromal stage between the
healthy and PD states into the close-to-healthy and close-to-PD
states, with the consistent and robust contributions of brain regions
to the differentiation between the healthy and PD states, as well as
between the close-to-healthy and close-to-PD states. The relatively
greater impacts of WM integrity compared to GM morphometry
could be associated with the precedence of WM integrity changes
over cortical morphological alterations in PD progression (Park
et al., 2022). The brain structural patterns predictive of the close-
to-PD or PD state, observed as GM atrophy and WM disintegrity
primarily in anterior brain regions, may indicate the initial stages
of propagating brain structural changes throughout the brain
(Potgieser et al., 2014), while concurrent opposing brain structural
changes observed in other regions might represent compensatory
mechanisms occurring at similar early stages of disease progression
(Mole et al., 2016; Sawczak et al., 2019).

The proposed MRI marker exhibited distinct characteristics
compared to the DaT scan marker, offering complementary rather
than redundant information for PD conversion prediction. While
DaT scans assess nigrostriatal dopaminergic integrity with balanced
sensitivity (83%) and specificity (85%), our MRI marker achieved
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FIGURE 2

Comparison of scores on clinical assessments. Clinical characteristics of individuals with prodromal symptoms of Parkinson’s disease (PD) in the
close-to-healthy or close-to-PD state are assessed relative to healthy individuals and those with PD by comparing scores on the (A) Hoehn and Yahr
staging scale (HYSS), (B) Movement Disorder Society-sponsored revision of the unified PD rating scale part III (MDS-UPDRS III), (C) rapid eye
movement sleep behavior disorder screening questionnaire (RBDSQ), and (D) University of Pennsylvania smell identification test (UPSIT). The bars
and error bars represent the mean and standard deviation, respectively, of scores. Statistically significant differences in post hoc pair-wise
comparisons are indicated by asterisks above the compared groups.

higher sensitivity (100%) but lower specificity (63%) when used
individually. Importantly, the MRI approach captures structural
brain changes that may precede the dopaminergic dysfunction
detectable by DaT scans, potentially identifying individuals at
earlier stages before substantial nigral cell loss becomes apparent.
From a practical standpoint, structural MRI offers significant
advantages including wider accessibility, non-invasive acquisition,
and lower cost compared to DaT scans, making it particularly
valuable in clinical settings where nuclear imaging is not readily
available. When combined with clinical markers, the DaT scan
marker did not enhance predictive performance, whereas the
MRI marker, particularly with olfactory dysfunction, maintained
perfect sensitivity while substantially improving specificity to
80%, resulting in superior overall performance (BA = 90%).
This suggests that structural MRI may provide complementary
neuroanatomical information that, when combined with clinical
assessments, offers additional value beyond what is captured by
functional dopaminergic imaging alone.

The absence of significant clinical differences between close-
to-healthy and close-to-PD states deserves careful interpretation.
This lack of significant differences likely reflects that brain
structural patterns may capture PD-related alterations that extend

beyond those associated with measurable clinical signs and
symptoms, potentially preceding the emergence of overt clinical
manifestations. Additionally, the prodromal stage represents a
continuum where structural changes may be more sensitive
than current clinical assessments in detecting early pathological
processes, and our sample size may have limited power to detect
subtle clinical differences between these intermediate groups.
Recent studies have shown that neuroimaging markers can
detect pathological alterations that precede clinically measurable
symptoms (Yang et al., 2021; Pimer et al., 2023), supporting the
concept that structural brain changes represent an intermediate
phenotype between normal aging and overt clinical manifestations.
This finding actually strengthens the argument for structural
imaging as a complementary biomarker, suggesting it captures
pathophysiological processes that may not yet be reflected in
current clinical scales designed for manifest disease stages. Our
results extend this concept by demonstrating that multimodal
approaches combining structural imaging with clinical markers
can enhance predictive performance compared to individual
modalities, as shown in recent PD prediction studies (Makarious
et al., 2022; Zhu et al., 2024). The lack of clinical discrimination
between our MRI-defined subgroups therefore supports the
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FIGURE 3

Magnitude of Shapley additive explanations (SHAP) for the top 10 brain structural features. SHAP magnitude, calculated as the mean of absolute
SHAP values across samples, reflects the features’ contributions to the classifier’s prediction for (A) dividing prodromal individuals into the
close-to-healthy and close-to-PD states and for (B) distinguishing between healthy and PD brains. The bar plot on the left displays the features
ranked by SHAP magnitude, while the rendered brain on the right illustrates the corresponding regions associated with these features. In both plots,
the bidirectional color scale of cool and warm hues denotes the directionality of correlation between feature values and SHAP values across
samples. Cool colors (negative correlation) indicate that decreasing feature values drive the prediction toward the close-to-PD or PD state, whereas
warm colors (positive correlation) signify the opposite trend. WM, white matter; GM, gray matter; S, superior; I, inferior; A, anterior; P, posterior.

TABLE 2 Performance of Parkinson’s disease conversion predictors.

PD conversion predictor Sensitivity Specificity PPV NPV BA MCC

RBD 0.333 0.825 0.222 0.892 0.579 0.134

Hyposmia 1.000* 0.575 0.261 1.000* 0.788 0.387

RBD + Hyposmia 0.333 0.850 0.250 0.895 0.592 0.163

MRI 1.000* 0.625 0.286 1.000* 0.813 0.423

MRI + RBD 0.333 0.950* 0.500* 0.905 0.642 0.339

MRI + Hyposmia 1.000* 0.800 0.429 1.000* 0.900* 0.586*

MRI + RBD + Hyposmia 0.333 0.950* 0.500* 0.905 0.642 0.339

DaT 0.833 0.850 0.455 0.971 0.842 0.540

DaT + RBD 0.167 0.925 0.250 0.881 0.546 0.110

DaT + Hyposmia 0.833 0.850 0.455 0.971 0.842 0.540

DaT + RBD + Hyposmia 0.167 0.925 0.250 0.881 0.546 0.110

BA, balanced accuracy; DaT, dopamine transporter imaging; MCC, Matthews correlation coefficient; NPV, negative predictive value; PD, Parkinson’s disease; PPV, positive predictive value;
RBD, rapid eye movement sleep behavior disorder. *The highest performance values for each performance metric.

potential value of structural imaging in identifying individuals
at risk before conventional clinical assessments can reliably
differentiate risk levels.

Our findings have important clinical implications for
prodromal PD management. This approach offers several
concrete clinical applications: first, stratification of high-risk
individuals for enrollment in clinical trials of disease-modifying
treatments, enabling more efficient trial design and potentially

accelerating therapeutic development; second, identification of
prodromal individuals who may benefit from early monitoring and
intervention strategies; and third, development of personalized
risk profiles to guide clinical decision-making regarding timing of
follow-up assessments and interventions. Given the accessibility
and cost-effectiveness of structural MRI compared to specialized
nuclear imaging, this multimodal approach presents a scalable
strategy for implementation in diverse clinical settings, particularly
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until more accessible biomarkers such as blood-based assays are
developed for PD, as has been achieved in Alzheimer’s disease.

Several important limitations warrant acknowledgment. First,
our sample size was constrained by stringent inclusion criteria
requiring both structural and diffusion-weighted MRI scans,
resulting in a relatively small cohort with only six PD conversions
over 4 years. This limitation, while reducing statistical power,
reflects the practical challenges of longitudinal prodromal studies
and may have contributed to potential overfitting concerns.
Second, the 4-years follow-up period may not capture all incident
cases due to variable lead times from marker manifestation
to PD conversion, particularly affecting RBD assessment which
typically has longer lead times (Postuma and Berg, 2016). Third,
while we employed uniform preprocessing pipelines and these
standardization procedures help reduce variability across sites,
we acknowledge that they cannot entirely eliminate all sources
of technical variation between different imaging systems and
acquisition protocols. Fourth, our focus on structural MRI and
clinical non-motor markers excluded other potentially valuable
biomarkers such as motor abnormalities with shorter lead times
(Postuma et al., 2012b), functional brain alterations (Heinzel
et al., 2019), and emerging biomarkers like nigrosomal iron
content (Pavese and Tai, 2018). Future studies should address
these limitations through larger multicenter collaborations with
extended follow-up periods, standardized acquisition protocols,
and incorporation of additional biomarker modalities to validate
and extend our exploratory findings.

5 Conclusion

The findings underscore the potential of multimodal markers
in improving the prediction of conversion to PD in individuals
with prodromal symptoms. The combination of the MRI-based
brain structural marker and olfactory dysfunction demonstrated
enhanced overall performance by leveraging the complementary
predictive abilities of individual markers, achieving 90% balanced
accuracy in identifying future PD converters. A multifaceted
predictive framework integrating the complementary abilities of
clinical and imaging markers represents a promising avenue for
facilitating early identification and management of individuals at
risk for PD development.
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