
Frontiers in Aging Neuroscience 01 frontiersin.org

Protocol for detection and 
monitoring of post-stroke 
cognitive impairment through 
AI-powered speech analysis: a 
mixed methods pilot study
Ravi Shankar 1*, Effie Chew 2,3,4, Anjali Bundele 1,5 and 
Amartya Mukhopadhyay 3,6

1 Medical Affairs – Research Innovation & Enterprise, Alexandra Hospital, National University Health 
System, Singapore, Singapore, 2 Division of Rehabilitation Medicine, Department of Medicine, National 
University Hospital, Singapore, Singapore, 3 Department of Medicine, Yong Loo Lin School of 
Medicine, National University of Singapore, Singapore, Singapore, 4 Division of Rehabilitation Medicine, 
Department of Medicine, Alexandra Hospital, Singapore, Singapore, 5 Yong Loo Lin School of 
Medicine, National University of Singapore, Singapore, Singapore, 6 Division of Respiratory & Critical 
Care Medicine, Department of Medicine, National University Health System, Singapore, Singapore

Introduction: Post-stroke cognitive impairment (PSCI) affects up to 75% of stroke 
survivors but remains challenging to detect with traditional neuropsychological 
assessments. Recent advances in artificial intelligence and natural language 
processing have opened new avenues for cognitive screening through speech 
analysis, yet their application to PSCI remains largely unexplored. This study 
aims to characterize speech markers of PSCI in the first-year post-stroke and 
evaluate their utility for predicting cognitive outcomes in a Singapore cohort.

Methods: This prospective mixed-methods study will recruit 30 stroke survivors 
from the Alexandra Hospital and National University Hospital in Singapore. 
Participants will be  assessed at four timepoints: baseline (within 6 weeks of 
stroke onset), 3-, 6-, and 12-months post-stroke. At each visit, participants 
will complete the Montreal Cognitive Assessment (MoCA) and a standardized 
speech protocol comprising picture description and semi-structured 
conversation tasks. Speech recordings will be automatically transcribed using 
automated speech recognition (ASR) systems based on pretrained acoustic 
models, and comprehensive linguistic and acoustic features will be extracted. 
Machine learning models will be developed to predict MoCA-defined cognitive 
impairment. Statistical analysis will include correlation analysis between 
speech features and MoCA scores, as well as machine learning classification 
and regression models to predict cognitive impairment. Linear mixed-effects 
models will characterize trajectories of MoCA scores and speech features over 
time. Qualitative analysis will follow an inductive thematic approach to explore 
acceptability and usability of speech-based screening.

Discussion: This study represents a critical step toward developing speech-
based digital biomarkers for PSCI detection that are sensitive, culturally 
appropriate, and clinically feasible. If validated, this approach could transform 
current models of PSCI care by enabling remote, frequent, and naturalistic 
monitoring of cognitive health, potentially improving outcomes through earlier 
intervention.

OPEN ACCESS

EDITED BY

Qiong Wu,  
Suzhou University of Science and Technology, 
China

REVIEWED BY

Chia-Ju Chou,  
Cardinal Tien Hospital, Taiwan
Cynthia Nyongesa,  
University of California, San Diego, 
United States

*CORRESPONDENCE

Ravi Shankar  
 Ravi_SHANKAR@nuhs.edu.sg

RECEIVED 23 February 2025
ACCEPTED 21 April 2025
PUBLISHED 01 May 2025

CITATION

Shankar R, Chew E, Bundele A and 
Mukhopadhyay A (2025) Protocol for 
detection and monitoring of post-stroke 
cognitive impairment through AI-powered 
speech analysis: a mixed methods pilot study.
Front. Aging Neurosci. 17:1581891.
doi: 10.3389/fnagi.2025.1581891

COPYRIGHT

© 2025 Shankar, Chew, Bundele and 
Mukhopadhyay. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Study Protocol
PUBLISHED 01 May 2025
DOI 10.3389/fnagi.2025.1581891

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2025.1581891&domain=pdf&date_stamp=2025-05-01
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1581891/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1581891/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1581891/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1581891/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1581891/full
mailto:Ravi_SHANKAR@nuhs.edu.sg
https://doi.org/10.3389/fnagi.2025.1581891
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2025.1581891


Shankar et al. 10.3389/fnagi.2025.1581891

Frontiers in Aging Neuroscience 02 frontiersin.org

KEYWORDS

post-stroke cognitive impairment, natural language processing, speech analysis, 
digital biomarkers, cognitive screening, machine learning, mixed methods

Introduction

Post-stroke cognitive impairment (PSCI) affects up to 75% of 
stroke survivors (Lee et al., 2023; Alhashimi et al., 2024) but remains 
challenging to detect and monitor using traditional neuropsychological 
assessments (Tang et  al., 2018). PSCI can span multiple cognitive 
domains and progress to dementia, leading to poorer functional 
outcomes, reduced quality of life, and increased caregiver burden (Sun 
et al., 2014; Pendlebury and Rothwell, 2009). Early identification is 
critical for timely intervention and support (Kalaria et al., 2016), but 
current screening tools often lack sensitivity to subtle deficits 
(Zietemann et al., 2018).

Recent advances in artificial intelligence (AI), natural language 
processing (NLP), and automatic speech recognition (ASR) have 
opened new avenues for detecting cognitive decline through speech 
analysis (Asgari et al., 2017). Studies in Alzheimer’s disease and mild 
cognitive impairment have found that linguistic features extracted 
from spontaneous speech can predict cognitive status with high 
accuracy (Fraser et al., 2016; König et al., 2015; Beltrami et al., 2018). 
These “digital biomarkers” offer several advantages over traditional 
assessments, including greater objectivity, ecological validity, and 
suitability for remote, frequent monitoring (de la Fuente et al., 2020; 
Robin et  al., 2020). However, their application to PSCI remains 
largely unexplored.

Developing speech-based screening tools is particularly pertinent 
in Singapore, which faces a rapidly aging population and increasing 
stroke burden (Venketasubramanian et al., 2017; Teh et al., 2018). 
Current approaches relying on brief cognitive tests or full 
neuropsychological batteries are limited by suboptimal sensitivity, 
need for specialized training, and infrequent administration (Zhao 
et al., 2020). Automated speech analysis could provide a scalable, cost-
effective solution for detecting PSCI in routine clinical care and 
research (Mirheidari et al., 2024; Simon et al., 2024; Martínez-Nicolás 
et al., 2021; Akkad et al., 2023). Adapting these tools for Singapore’s 
multilingual context could also help address linguistic and cultural 
gaps in cognitive assessment.

This pilot study aims to characterize speech markers of PSCI 
in the first-year post-stroke and evaluate their utility for predicting 
cognitive outcomes in a Singapore cohort. Unlike Alzheimer’s 
disease (AD), which typically follows a predictable progression 
pattern primarily affecting memory systems initially, PSCI 
presents with heterogeneous cognitive profiles influenced by 
stroke location, size, and type. We anticipate observing distinct 
linguistic-cognitive patterns in PSCI patients compared to those 
with AD. Specifically, we expect to detect: (1) reduced information 
content and coherence reflecting executive dysfunction commonly 
seen after stroke; (2) impaired word retrieval and semantic 
processing manifesting as word-finding difficulties and 
circumlocutions; (3) syntactic simplification correlating with 
working memory deficits; and (4) prosodic alterations reflecting 
frontal-subcortical pathway disruptions.

Recent work by Mirheidari et al. (2024) has demonstrated the 
feasibility of detecting cognitive impairment in stroke survivors 

through speech analysis, showing that both acoustic features 
(particularly emotion-based prosodic features) and linguistic 
features (especially those capturing contextual information) can 
effectively predict cognitive status. These speech markers are 
clinically significant as they may emerge before traditional 
screening tools detect impairment, particularly in highly educated 
individuals with cognitive reserve. By capturing these subtle 
linguistic changes through automated analysis, our approach could 
facilitate earlier detection of cognitive decline, enabling timely 
interventions such as cognitive rehabilitation and secondary stroke 
prevention to mitigate progression to dementia. Furthermore, 
longitudinal tracking of these markers may provide more sensitive 
measures of intervention efficacy than conventional assessments, 
supporting personalized treatment approaches.

By leveraging state-of-the-art ASR, NLP and machine learning 
techniques, we  seek to develop a proof-of-concept speech-based 
screening approach that is sensitive, linguistically and culturally 
appropriate, and feasible for longitudinal monitoring. Specific 
objectives are:

 1. Elicit speech samples from stroke survivors using a brief, 
standardized protocol comprising picture description and 
semi-structured conversation tasks

 2. Extract linguistic and acoustic features from transcribed speech 
that correlate with and predict MoCA scores over 12 months 
post-stroke

 3. Explore the acceptability and usability of speech elicitation 
tasks through qualitative interviews with study participants

Based on these objectives, our primary hypothesis is that speech 
features extracted from standardized speech tasks will correlate 
significantly with cognitive status as measured by MoCA scores in 
stroke survivors. Our secondary hypotheses are: (1) a machine 
learning model using speech features can predict cognitive impairment 
with at least 75% accuracy; (2) specific speech markers will show 
longitudinal changes that parallel cognitive trajectories over the 
12-month follow-up period; and (3) speech-based cognitive 
assessment will be  acceptable to stroke survivors as measured by 
qualitative feedback.

Methods

Study design and setting

This is a prospective cohort study recruiting 30 stroke survivors 
from the acute stroke unit and outpatient stroke clinics at the 
Alexandra Hospital and National University Hospital in Singapore. 
The study employs a longitudinal design with four assessment 
timepoints: baseline (within 6 weeks of stroke onset), 3 months, 
6 months, and 12 months post-stroke. Stroke onset is defined as the 
first documented occurrence of stroke symptoms, confirmed by 
clinical assessment and neuroimaging.
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Visit structure and duration

The study comprises structured visits at each timepoint. Baseline 
visits require 90–120 min, encompassing:

 • Informed consent and eligibility verification
 • Clinical data collection
 • MoCA assessment (15–20 min)
 • Speech tasks (25–35 min total)

Follow-up visits at 3 and 6 months are shorter, lasting 60–75 min, 
focusing on MoCA assessment and speech tasks. The final 12-month 
visit includes these standard assessments plus a qualitative interview 
(30–45 min). Rest breaks are provided throughout all sessions 
as needed.

At each visit, participants complete the Montreal Cognitive 
Assessment (MoCA) and standardized speech tasks. Upon study 
completion, all participants are invited to participate in a qualitative 
interview exploring their experience with the assessment protocol and 
its feasibility for clinical implementation.

Participants

Inclusion Criteria:
 • Age greater than or equal to 55 years
 • Admitted to Alexandra Hospital and National University 

Hospital with acute ischemic or hemorrhagic stroke confirmed 
on neuroimaging

 • Within 6 weeks of stroke onset
 • Able to follow study procedures and provide informed consent
 • Able to engage in simple conversation in English

Exclusion Criteria:
 • Pre-existing diagnosis of dementia, Alzheimer’s disease, or other 

neurodegenerative conditions
 • Severe aphasia precluding speech tasks based on 

clinical assessment
 • Active psychiatric disorders, substance abuse, or life-limiting 

medical conditions

Potential participants will be screened via medical records and 
collaborating clinicians. Eligible individuals will be approached prior 
to discharge or at their first outpatient visit. Interested participants will 
provide written informed consent. We aim to recruit a sample of 30 
over 12 months.

All study procedures will be  conducted in English to ensure 
standardization. Participants must demonstrate functional English 
proficiency through basic conversation and comprehension screening. 
Language background including primary language, years of English 
education, and self-rated proficiency will be  documented. This 
standardization is essential for the validity of speech analysis while 
acknowledging Singapore’s linguistic diversity.

To address Singapore’s multilingual context, our approach 
incorporates several adaptations. First, we are using the DeepSpeech 
ASR engine with transfer learning techniques to fine-tune acoustic 
models specifically on Singaporean English (Singlish), accounting for 
its unique phonological features, prosodic patterns, and lexical 

variations. The National Speech Corpus (NSC) provides training data 
representing Singapore’s ethnic diversity (Chinese, Malay, Indian, and 
others) and varying English proficiency levels.

Second, our linguistic feature extraction pipeline incorporates 
Singapore-specific linguistic resources, including locally adapted word 
frequency databases and lexical norms. This ensures our lexical 
sophistication measures reflect local language usage patterns rather 
than Western standards. Additionally, our syntactic complexity 
metrics are calibrated against Singaporean English grammatical 
structures, which may differ from standard English.

Third, we will employ cross-cultural validation by comparing our 
linguistic markers against previously published norms, adjusting 
thresholds and interpretations as needed. Qualitative interviews will 
further explore cultural factors affecting speech task performance, 
informing future refinements.

We recognize that bilingualism and multilingualism are defining 
features of Singapore’s linguistic landscape, with participants likely to 
have varying degrees of proficiency across multiple languages. While 
conducting the study in English provides standardization, 
we acknowledge that code-switching (alternating between languages 
within conversation) and accent variation may influence speech 
characteristics. To address this, our ASR models will be trained to 
recognize common code-switching patterns in Singaporean English, 
particularly with Mandarin, Malay, and Tamil terms. During 
preprocessing, transcripts will be  flagged for instances of code-
switching, which will be analyzed both as potential confounders and 
as linguistically meaningful phenomena that may correlate with 
cognitive status.

Additionally, our machine learning approach will incorporate 
language background variables (primary language, education level, 
and self-rated proficiency) as features in model development, 
potentially allowing the algorithm to adjust predictions based on 
linguistic profile.

To address varying English proficiency among participants, 
we will implement several methodological controls. First, language 
background data will be integrated as covariates in all statistical 
analyses, allowing us to partial out variance attributable to language 
proficiency rather than cognitive status. Second, we  will create 
individualized baseline profiles for each participant, enabling 
within-subject comparisons over time that are less affected by 
between-subject differences in language proficiency. This approach 
aligns with our primary aim of tracking cognitive change rather 
than making absolute assessments. Third, we will conduct stratified 
analyses based on education and language proficiency levels to 
determine whether different linguistic markers show varying 
sensitivity across these groups. For participants with lower English 
proficiency, we anticipate that acoustic features and simpler lexical 
measures may prove more reliable than complex syntactic or 
semantic measures.

To mitigate potential floor effects, we  will normalize features 
within education and proficiency bands and utilize ratio measures that 
are more robust to education effects. Our machine learning approach 
will incorporate interaction terms between education/language 
proficiency and linguistic features, potentially revealing different 
cognitive-linguistic relationships across education levels. Stratified 
analyses will examine whether speech-cognition relationships differ 
between monolingual and multilingual participants, potentially 
revealing protective effects of multilingualism against cognitive 
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decline, as suggested in previous research. This multi-faceted approach 
ensures our tools remain culturally appropriate while maintaining 
scientific rigor and clinical utility across Singapore’s diverse population.

Study procedures

Cognitive assessment
The MoCA will be administered at each study visit. The MoCA is 

a widely used 30-point screening tool assessing multiple cognitive 
domains including memory, language, executive function, and 
orientation (Nasreddine et  al., 2005). It has been validated in 
Singaporean stroke and elderly populations and is sensitive to mild 
PSCI (Dong et al., 2010; Khaw et al., 2021).

Montreal Cognitive Assessment scores range from 0 to 30, with 
greater than or equal to 26 considered normal (Carson et al., 2018). 
For this study, MoCA will be analyzed both as a continuous variable 
and dichotomized, with scores less than 26 indicating 
cognitive impairment.

Recognizing that education significantly influences MoCA 
performance, we  will implement education-adjusted analyses to 
ensure equitable cognitive impairment classification. First, in addition 
to the standard cutoff of <26, we will apply education-adjusted cutoffs 
based on Singapore-specific normative data (Dong et al., 2010), with 
suggested thresholds of <25 for participants with 10–12 years of 
education and <22 for those with <10 years of education.

The importance of considering different cutoff values has been 
highlighted in recent research on stroke populations. Mirheidari et al. 
(2024) explored various MoCA cutoffs for detecting cognitive 
impairment in stroke survivors and found that while a cutoff of 26 
provided balanced sensitivity and specificity, different thresholds 
might be optimal for specific clinical purposes. Their work suggests 
that education-adjusted thresholds may provide more accurate 
classification across diverse educational backgrounds.

In our approach, Firstly, we will conduct parallel analyses using 
both the standard and education-adjusted cutoffs to determine 
whether different classification schemes yield similar patterns of 
speech-cognition relationships. This approach will help identify 
whether certain speech markers are more robust to education effects 
than others. Secondly, rather than relying solely on dichotomized 
outcomes, we will emphasize analyses of continuous MoCA scores 
using regression models that explicitly include education as a 
covariate. This approach preserves statistical power and acknowledges 
the continuous nature of cognitive function. Finally, our machine 
learning models will incorporate education as a feature during 
training, potentially allowing algorithms to learn different speech-
cognition relationships across education levels. Stratified performance 
metrics will be  reported to assess whether our models achieve 
comparable accuracy across education bands, ensuring equitable 
clinical applicability.

Speech tasks
Speech samples will be collected using a standardized protocol 

comprising two tasks:

 1. Picture description: Participants will be shown the Cookie 
Theft Picture from the Boston Diagnostic Aphasia 
Examination (BDAE) (Goodglass et  al., 2001) on a tablet 

screen. This standardized assessment tool depicts a domestic 
kitchen scene with multiple events occurring simultaneously: 
two children attempting to steal cookies from a jar while 
precariously balanced on a stool, a woman washing dishes 
seemingly unaware of the overflowing sink, and various 
environmental details that require attention to both focal and 
background elements (Figure 1) (Giles and Patterson, 1996). 
The picture has been extensively validated for evaluating 
cognitive-linguistic abilities across various neurological 
conditions (Mueller et  al., 2018), as it engages multiple 
cognitive domains including attention, executive function, 
and visuospatial processing. Studies have demonstrated its 
particular sensitivity to subtle changes in discourse 
production and semantic content in both stroke and dementia 
populations (Stark et  al., 2021). Participants will be  given 
standardized instructions: “Tell me everything you  see 
happening in this picture. Try to give me as many details as 
you can.” While participants will be allowed up to 5 min to 
complete their description, most typically finish within 
1–2 min (Nicholas and Brookshire, 1993). All descriptions 
will be  audio-recorded for subsequent analysis using the 
specified speech processing pipeline. The Cookie Theft 
picture used in this study (Figure 1) is the original version 
from the Boston Diagnostic Aphasia Examination (BDAE) 
(Goodglass and Kaplan, 1983), used with appropriate 
permissions. While there is an updated version of this 
assessment tool (Berube et al., 2019), our study specifically 
uses the classic BDAE version due to its extensive validation 
across diverse neurological populations and the wealth of 
normative data available for comparison. This methodological 
choice facilitates cross-study comparisons and integration of 
our findings with the broader literature on cognitive-
linguistic assessment. The specific version selection is 
important as the visual details and complexity of the scene 
directly influence participant responses and subsequent 
linguistic analysis.

 2. Semi-structured conversation: Trained researchers will engage 
participants in a natural conversation guided by standardized 
open-ended questions designed to elicit spontaneous speech 
about personally relevant topics. The conversation will explore 
four key domains: the participant’s current living 
arrangements and family dynamics; their engagement in 
hobbies, interests, and social activities both before and after 
their stroke; significant life experiences and personal 
achievements; and their perspectives on aging and health. 
This autobiographical approach allows for natural discourse 
while maintaining consistency across participants through 
structured prompts (De Silva et al., 2025). The questions are 
designed to encourage extended responses and personal 
narrative, providing rich samples of connected speech that 
complement the more constrained picture description task. 
Researchers will be trained to use active listening techniques 
and minimal verbal encouragers to maximize participant 
speech production while minimizing their own verbal input. 
The semi-structured conversation will include open-ended 
questions designed to elicit extended discourse about 
personally relevant topics such as daily routines, hobbies, 
significant life events, and perspectives on health. Interviewers 
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will be trained to use standardized follow-up techniques that 
encourage elaboration while maintaining consistency 
across participants.

Each task aims to elicit at least 3 min of participant speech, for a 
total speech sample of 6–10 min per visit. Speech recording will 
be  standardized using calibrated Sennheiser PC8 USB headset 
microphones in designated quiet rooms at both sites. Recordings will 
be  made with consistent microphone positioning and pre-session 
calibration. Regular acoustic environment monitoring and equipment 
maintenance will ensure data quality.

Data analysis

Automatic speech recognition
Speech recordings will be  automatically transcribed using 

DeepSpeech, an open-source ASR engine based on a deep neural 
network architecture (Hannun et  al., 2014). Acoustic models will 
be pretrained on large, diverse Singaporean English speech corpora, 
including the National Speech Corpus (NSC), comprising over 1,000 h 
of prompted and conversational Singaporean English from multiple 
ethnic groups (Koh et al., 2019).

Transfer learning will be used to fine-tune the models on a subset 
of the study recordings, which will be manually transcribed at the 
word level by a team of research assistants fluent in English. Inter-
transcriber reliability will be assessed using word error rate (WER) 
and disagreements will be resolved by consensus.

The fine-tuned models will then be applied to the remaining 
study recordings to generate time-aligned transcripts. 
Transcription accuracy will be evaluated by computing WER on a 
held-out validation set of manually transcribed recordings. If WER 

exceeds 15%, the models will be  iteratively refined using data 
augmentation techniques such as noise and reverberation addition, 
speed and pitch perturbation, and accent adaptation (Ahlawat 
et al., 2025).

Linguistic feature extraction
Linguistic features will be computed from the anonymized, time-

aligned transcripts using a suite of NLP tools and custom Python 
scripts. The following open-source libraries will be used:

 • spaCy (Honnibal, 2017) for tokenization, part-of-speech tagging, 
dependency parsing, named entity recognition, and 
semantic similarity

 • Natural Language Toolkit (NLTK) (Bird et  al., 2009) for 
additional lexical diversity, readability, and sentiment 
analysis measures

 • Gensim (Řehůřek and Sojka, 2011) for topic modeling and 
word embedding

 • Stanford CoreNLP (Manning et  al., 2014) for coreference 
resolution and utterance boundary detection

A comprehensive set of features will be  extracted, spanning 
multiple levels of linguistic representation:

 • Lexico-semantic:
 o Word frequency and familiarity norms based on the 

SUBTLEX-SG database (Brysbaert et al., 2019)
 o Age of acquisition and concreteness ratings based on 

Kuperman, Stadthagen-Gonzalez, and Brysbaert’s merged 
norms (Kuperman et al., 2012)

 o Psycholinguistic measures such as type-token ratio, pronoun 
ratio, noun-verb ratio, and idea density (Lu, 2010)

FIGURE 1

The cookie theft picture (Goodglass and Kaplan, 1983).
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 o Semantic coherence metrics based on latent semantic analysis 
and word2vec embedding (Foltz et al., 1999)

 • Morphosyntactic:
 o Frequencies and ratios of major part-of-speech categories
 o Measures of syntactic complexity, including mean length of 

utterance, clauses per utterance, parse tree height, and Yngve 
depth (Yngve, 1960)

 o Proportions of various phrasal and clausal constructions based 
on parse tree patterns

 o Grammatical error types and rates based on parse tree and 
language model anomaly detection (Foster, 2007)

 • Discourse and pragmatic:
 o Coherence metrics based on Centering Theory and entity grid 

models (Barzilay and Lapata, 2008)
 o Proportion of various speech acts, including assertives, 

directives, commissives, and expressives (Searle, 1976)
 o Dysfluency and repair rates, including filled pauses, 

repetitions, and retractions (Shriberg, 2001)
 o Turn-taking dynamics, including mean turn length, turn 

switches, and overlaps (Levitan and Hirschberg, 2011)

Acoustic features will be  extracted using OpenSMILE (Eyben 
et  al., 2010), an open-source toolkit for speech signal processing. 
Low-level descriptors such as pitch, intensity, formants, and spectral 
parameters will be  computed on a frame-by-frame basis and 
aggregated to derive global measures of prosody, voice quality, and 
rhythm. Specific features will include:

 • Fundamental frequency (F0) statistics (mean, median, range, 
standard deviation)

 • Jitter and shimmer (cycle-to-cycle variations in F0 and amplitude)
 • Harmonic-to-noise ratio (degree of acoustic periodicity)
 • Formant frequencies and bandwidths (F1, F2, F3)
 • Mel-frequency cepstral coefficients (spectral envelope shape)
 • Intensity and energy contours
 • Speaking rate, articulation rate, and pause duration
 • Stress and syllable timing patterns

All features will be standardized using z-scores to facilitate cross-
subject comparisons. Collinear and low-variance features will 
be identified using correlation matrices and variance inflation factors, 
and removed to prevent overfitting. The final feature set will 
be  determined based on a combination of theoretical relevance, 
distributional properties, and predictive power.

Figure 2 illustrates the complete computational workflow of our 
speech analysis pipeline, from data collection through feature 
extraction to predictive modeling. This visual roadmap demonstrates 
the modular nature of our approach, facilitating adaptation to other 
clinical populations or linguistic contexts by modifying specific 
components while maintaining the overall analytical framework.

Statistical analysis

Pearson correlations will be used to estimate bivariate associations 
between speech features and MoCA scores at each timepoint, as well 

as change scores across timepoints. Partial correlations adjusting for 
age, education, gender, and stroke severity (National Institutes of 
Health Stroke Scale score) will also be  computed. Correlation 
magnitudes will be compared using Fisher’s r-to-z transformation. 
Statistical significance will be set at p < 0.05 after Benjamini-Hochberg 
correction for multiple comparisons.

Machine learning models will be developed to predict MoCA-
defined cognitive impairment (binary classification) and MoCA scores 
(regression). For binary classification, logistic regression, decision 
trees, random forests, and support vector machines with various 
kernel functions will be  compared. For regression, linear and 
regularized linear models (ridge, lasso, elastic net), decision trees, 
random forests, support vector regression, and Gaussian process 
regression will be evaluated.

Given the modest sample size, model validation will employ leave-
one-out cross-validation with bootstrap resampling (1,000 iterations) 
for confidence interval estimation. Hyperparameter tuning will 
be  performed within each fold using Bayesian optimization to 
maximize balanced accuracy. A maximum of 5 predictors will be used 
per model to maintain an appropriate case-to-predictor ratio. 
Performance metrics will be aggregated across all folds, with external 
validation performed using public datasets where available to 
assess generalizability.

The selection of the five key predictors will follow a principled, 
multi-stage approach combining theoretical knowledge with data-
driven methods. Initially, we will categorize potential predictors into 
conceptual domains (lexical-semantic, syntactic, acoustic-prosodic, 
discourse-level, and pragmatic) based on prior literature in stroke and 
dementia research. Within each domain, we will identify features 
showing the strongest bivariate correlations with MoCA scores 
(|r| > 0.3) while demonstrating acceptable reliability (test–retest 
r > 0.7 in a subset of recordings).

Our approach is informed by recent findings from Mirheidari et al. 
(2024), who demonstrated that combining different feature types—
particularly acoustic features capturing emotion (eGeMAPS) and 
linguistic features capturing contextual information (BERT)—yielded 
superior performance in predicting cognitive status in stroke survivors 
compared to using either feature set alone. This supports our strategy 
of selecting features across multiple linguistic and acoustic domains.

To ensure model parsimony and interpretability, feature reduction 
will employ a multi-stage approach. Firstly, we will eliminate features 
with near-zero variance or high multicollinearity (r > 0.85). Secondly, 
we will employ recursive feature elimination with cross-validation 
(RFECV) to identify the optimal feature subset across domains, using 
elastic net regularization to handle multicollinearity. This process will 
be constrained to select at least one feature from each domain to 
ensure comprehensive representation of language dimensions. Finally, 
we will implement principal component analysis (PCA) to identify 
latent dimensions underlying our feature set, retaining components 
explaining at least 80% of variance. For clinical interpretability, we will 
rotate these components and map them to functional linguistic 
domains (lexical access, syntactic complexity, coherence, etc.).

To enhance interpretability and clinical utility, we will prioritize 
features that: (1) show consistent relationships with MoCA across 
education and language proficiency levels; (2) demonstrate 
longitudinal sensitivity to cognitive change in preliminary analyses; 
and (3) have established neurobiological rationales linking them to 
cognitive processes affected by stroke.
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The final predictor set will be  validated through bootstrap 
resampling to assess stability and generalizability. If different predictor 
sets emerge as optimal for different subgroups (e.g., based on stroke 
location or education), we will develop parallel models and report 
comparative performance metrics to inform personalized 
assessment approaches.

To evaluate the performance of the machine learning models, 
we will use a comprehensive set of metrics. For the binary classification 
models predicting MoCA-defined cognitive impairment, we  will 
calculate the area under the receiver operating characteristic curve 
(AUC-ROC), accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1 score. These metrics will 

FIGURE 2

Speech analysis pipeline for PSCI detection.

https://doi.org/10.3389/fnagi.2025.1581891
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Shankar et al. 10.3389/fnagi.2025.1581891

Frontiers in Aging Neuroscience 08 frontiersin.org

provide a holistic assessment of the models’ ability to discriminate 
between impaired and non-impaired individuals.

For the regression models predicting continuous MoCA scores, 
we will compute the mean absolute error (MAE), root mean square 
error (RMSE), coefficient of determination (R2), and Pearson 
correlation between the predicted and actual scores. These metrics will 
quantify the models’ predictive accuracy and their ability to capture 
the variance in cognitive performance.

95% confidence intervals for each metric will be computed using 
bootstrap resampling with 1,000 iterations. Pairwise comparisons 
between models will be  conducted using dependent t-tests or 
Wilcoxon signed-rank tests as appropriate. Comparisons with baseline 
models using demographic variables alone will also be performed to 
assess the incremental predictive value of speech features.

The best-performing model in each category will be  selected 
based on a holistic evaluation of performance metrics, parsimony, and 
interpretability. Feature importance scores will be computed using 
permutation importance or SHAP (SHapley Additive exPlanations) 
values to identify the most predictive speech markers (Breiman, 2001).

To characterize trajectories of MoCA scores and speech features 
over time, linear mixed-effects models will be  fit using the lme4 
package in R. Fixed effects will include time (in months from stroke 
onset) and relevant covariates such as age, gender, education, stroke 
type and severity (Oxfordshire Community Stroke Project 
classification and National Institutes of Health Stroke Scale score), 
lesion location, and treatment status. Random intercepts and slopes 
will be  included to account for within-subject correlations and 
heterogeneity in baseline levels and rates of change. Missing data, 
which may occur due to participant attrition, incomplete assessments, 
or technical failures, will be addressed using multiple imputation by 
chained equations (MICE) for variables with less than 20% 
missingness. This approach preserves statistical power while 
accounting for uncertainty in imputed values. For participants with 
greater than 20% missing data or those lost to follow-up, sensitivity 
analyses will compare complete-case results with those including 
imputed values. Linear mixed-effects models will incorporate all 
available timepoints for each participant, naturally accommodating 
missing data under the missing-at-random assumption. Pattern-
mixture models will be  explored if missingness appears to 
be informative of cognitive status. Model selection will be performed 
u sing likelihood ratio tests and Akaike information criteria. 
Parametric bootstrapping will be used to compute 95% confidence 
intervals for fixed effect estimates.

The fitted models will provide estimates of the average MoCA and 
speech feature trajectories in the sample, as well as individual 
deviations from the mean trends. They will also quantify the effects of 
potential modifiers on these trajectories. Exploratory analyses will 
examine cross-lagged relationships between speech and MoCA 
changes to infer leadlag effects and elucidate the temporal dynamics 
of speech-cognition coupling.

Acceptability and usability evaluation

At study end, all participants will be invited to participate in a 
semi-structured interview to evaluate their experience with the 
assessment protocol. The interview guide will explore four primary 
domains of interest: participants’ overall experience with both the 

MoCA and speech tasks, including their perceptions of task difficulty, 
comfort level during administration, and the relevance of these 
assessments to their daily functioning; their suggestions for optimizing 
task content, instructions, and administration procedures to enhance 
acceptability; their attitudes regarding the use of speech analysis for 
cognitive screening, particularly their views on its benefits, potential 
risks, and perceived trustworthiness compared to traditional 
assessment methods; and their preferences for how speech-based 
screening might be integrated into clinical care, including optimal 
frequency of administration, preferred settings, and desired formats 
for receiving feedback. All interviews will be  audio-recorded and 
transcribed verbatim to ensure accurate data capture. Following 
qualitative research best practices (DeJonckheere and Vaughn, 2019), 
the interview guide will evolve through iterative refinement while 
maintaining consistency across interviews.

Qualitative analysis of interview transcripts will follow an 
inductive thematic approach based on Braun and Clarke’s six-phase 
framework (Braun and Clarke, 2006). Initial semantic codes will 
be generated through line-by-line reading, then collated into themes 
that capture patterns of meaning relevant to the research questions. 
Themes will be iteratively refined to ensure internal homogeneity and 
external heterogeneity. The final thematic structure will be validated 
through peer debriefing, member checks, and triangulation with 
quantitative findings. Reporting will follow the Consolidated Criteria 
for Reporting Qualitative Research (COREQ) (Tong et al., 2007).

NVivo software will be used to manage the coding process and 
maintain a detailed audit trail (Bazeley and Jackson, 2015). Rigor will 
be  enhanced through a combination of investigator and data 
triangulation, thick description, reflexive journaling, and negative 
case analysis.

We aim to recruit a sample of 30 participants, which is feasible 
within the study timeframe and budget while allowing for attrition. 
This sample size was determined based on the exploratory aims of 
characterizing speech-MoCA correlations and modeling cognitive 
trajectories, aligning with previous proof-of-concept studies of speech 
biomarkers in neurocognitive disorders (Asgari et al., 2017; Alhanai 
et  al., 2017; Themistocleous et  al., 2020). While not powered for 
definitive diagnostic validation, this sample size will provide valuable 
preliminary data to inform future larger-scale research. For qualitative 
analyses, 30 participants is expected to achieve thematic saturation 
based on established guidelines (Guest et al., 2006) and our prior 
experience with similar patient populations.

Ethics and dissemination

This study has been approved by the National Healthcare Group 
Domain Specific Review Board (NHG DSRB Ref: 2024–4,101). All 
participants will provide written informed consent, with the option to 
withdraw at any point. No monetary incentives will be provided.

Speech recordings and transcripts will be stored on secure servers 
with multi-factor authentication and encryption. Identifiable 
information will be  stored separately from research data in a 
password-protected database accessible only to authorized study 
personnel. Only de-identified, aggregated data will be  reported 
in publications.

The study team has completed training in responsible conduct of 
research, data privacy and security, and human subjects protection. 
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The study will be  monitored by an independent Data and Safety 
Monitoring Board.

Results will be disseminated through peer-reviewed publications, 
conference presentations, and public data sharing within 1 year of 
study completion. Lay summaries will be shared with participants, 
clinicians, and stroke support organizations.

Discussion

This protocol describes a longitudinal pilot study to identify 
speech markers of post-stroke cognitive impairment (PSCI) and 
evaluate their prognostic utility. By leveraging state-of-the-art ASR 
and NLP methods, we aim to develop a sensitive, language-agnostic 
tool for detecting and monitoring PSCI.

Our study builds upon a growing body of research using speech 
analysis to detect cognitive impairment in various neurological 
conditions. In Alzheimer’s disease (AD), numerous studies have 
identified linguistic markers of cognitive decline, including reduced 
semantic content, syntactic complexity, and discourse coherence 
(Fraser et al., 2016; Mueller et al., 2018; Eyigoz et al., 2020). These 
features have shown promising diagnostic and predictive validity, with 
some models achieving over 90% accuracy in distinguishing AD from 
healthy controls (Orimaye et al., 2014; Noorian et al., 2017).

More recently, researchers have begun to explore speech-based 
cognitive assessment in stroke and vascular dementia. Corbett et al. 
(2009) found that measures of lexical diversity and content word 
frequency could discriminate between patients with PSCI and healthy 
controls. Tomoeda et al. (1996) demonstrated that semantic content 
during picture description was associated with overall cognitive 
function in stroke survivors. Pou-Prom and Rudzicz (2018) used word 
embedding to identify stroke patients with or without cognitive 
impairment based on spontaneous speech transcripts.

However, most previous studies have been cross-sectional and 
focused on group-level differences rather than individual prediction. 
They have also been limited by small, heterogeneous samples, manual 
transcription methods, and a narrow range of language features. In 
contrast, our study employs a longitudinal design, automated speech 
processing, and a comprehensive feature set to characterize both 
between-person and within-person variation in speech and cognition 
over time. Our focus on the subacute-to-chronic stages of stroke 
recovery addresses a critical gap, as most research to date has 
examined the acute phase.

Methodologically, our approach draws upon best practices for 
ASR development, such as transfer learning, data augmentation, and 
multi-level evaluation (Xiong et al., 2018). The use of Transformer-
based acoustic models pretrained on large, multilingual corpora is 
expected to yield high transcription accuracy for Singaporean English. 
Extensive feature engineering guided by linguistic theory captures the 
multidimensional nature of language impairment in PSCI.

Our analytical framework also extends previous work by 
integrating modern machine learning techniques with traditional 
longitudinal modeling. The use of elastic net regularization, nested 
cross-validation, and bootstrap CIs helps guard against overfitting and 
enhances the reliability of predictive models (Zou and Hastie, 2005; 
Cawley and Talbot, 2010). Mixed effects models offer a flexible way to 
estimate both population-averaged and subject-specific cognitive 
trajectories while accounting for missing data.

Qualitatively, our study is among the first to explore the acceptability 
and usability of speech-based cognitive assessment from the patient 
perspective. While a few studies have examined user experiences with 
digital tools for stroke rehabilitation (Tatla et  al., 2015), none have 
focused specifically on speech analysis or cognitive screening. Insights 
from participant interviews will inform the design of future speech-
based interventions to maximize engagement and adherence.

A key strength of this study is the interdisciplinary team, which 
combines expertise in stroke neurology, neuropsychology, linguistics, 
and AI. This allows us to approach the problem of PSCI detection 
from multiple angles and develop a solution that is both technically 
robust and clinically meaningful. The study also benefits from 
Singapore’s diverse, multilingual population and advanced 
technological infrastructure.

However, some limitations should be acknowledged. First, the 
modest sample size may limit statistical power, especially for 
detecting interaction effects or subgroup differences. We have tried 
to mitigate this through a parsimonious modeling approach and the 
use of bias-corrected CIs. Second, as a single-center study, findings 
may have limited generalizability to other settings. Multi-site 
validation using a common protocol would help establish external 
validity. Third, while the MoCA is a well-validated screening tool, 
it is not a substitute for comprehensive neuropsychological testing. 
Incorporation of additional domain-specific tests could provide a 
more nuanced picture of cognitive deficits.

Another potential limitation is the use of semi-controlled speech 
tasks, which may not fully capture the richness and complexity of 
spontaneous discourse. However, these tasks are necessary to ensure 
comparability across participants and time points. They also simulate 
the types of questions commonly asked during clinical encounters. 
Future studies could explore the use of free conversation or narrative 
storytelling to elicit more naturalistic speech samples.

Finally, as an observational study, we cannot directly infer causal 
relationships between speech features and cognitive outcomes. The 
proposed analyses can only establish associations and generate 
hypotheses for future testing. Experimental designs that manipulate 
speech parameters or compare different assessment modalities would 
provide stronger evidence of causality.

Despite these caveats, our study has important implications for 
research and practice. Methodologically, it demonstrates the feasibility 
and utility of combining NLP and ML techniques to analyze speech 
data at scale. The proposed feature engineering and modeling 
pipelines could be readily adapted to other languages, accents, and 
neurological conditions. Clinically, our findings could inform the 
development of speech-based screening tools for early detection and 
monitoring of PSCI. Such tools could be integrated into telemedicine 
platforms or mobile apps, enabling remote cognitive assessment 
between clinic visits. This could help optimize resource allocation, 
identify high-risk patients, and evaluate the effects of interventions.

In the longer term, speech biomarkers could serve as objective, 
language-agnostic endpoints for clinical trials of novel therapies for 
PSCI. They could also be combined with other digital markers such as 
gait, sleep, social media activity and so on to create multi-modal risk 
scores and care pathways. As speech interfaces become increasingly 
ubiquitous, there will be even greater opportunities to harness natural 
language interactions for health monitoring.

Future studies should aim to replicate and extend our findings in 
larger, more diverse cohorts. This will require close collaboration 
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among stroke centers to harmonize data collection and processing 
methods. More work is also needed to establish the minimal clinically 
important differences and predictive values of speech biomarkers, as 
well as their incremental utility over traditional cognitive tests. User-
centered design principles should guide the translation of research 
findings into practical tools that are easy to use and interpret.

This study represents an important step toward a vision of 
personalized, precision medicine for stroke recovery. By harnessing 
the power of artificial intelligence and real-world language data, 
we can develop more sensitive, efficient, and equitable approaches to 
detecting and treating PSCI. Our hope is that this work will not only 
advance scientific understanding of post-stroke cognition, but also 
make a meaningful difference in the lives of stroke survivors.

Specifically, this approach could enable earlier detection of subtle 
cognitive changes before they manifest as functional impairment, 
allowing for timely initiation of cognitive rehabilitation therapies and 
secondary stroke prevention measures. For patients, automated 
speech analysis could reduce the burden of frequent in-person clinical 
visits by enabling remote cognitive monitoring through telephone or 
video calls, particularly valuable for those with mobility limitations or 
living in areas with limited access to specialists. The technology could 
also provide more frequent assessment points without increasing 
clinician workload, creating a more continuous picture of cognitive 
trajectories rather than the widely-spaced snapshots afforded by 
traditional testing. Additionally, by detecting domain-specific 
cognitive changes with greater sensitivity than global screening tools, 
this approach could enable more personalized rehabilitation strategies 
targeting specific cognitive weaknesses.
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Glossary

AD - Alzheimer’s disease

AI - artificial intelligence

ASR - automatic speech recognition

AUC-ROC - area under the receiver operating characteristic curve

BDAE - Boston diagnostic aphasia examination

CI - confidence interval

COREQ - consolidated criteria for reporting qualitative research

F0 - fundamental frequency

F1 - first formant

F2 - second formant

F3 - third formant

MAE - mean absolute error

ML - machine learning

MMSE - mini-mental state examination

MoCA - Montreal cognitive assessment

NHG DSRB - National Healthcare Group Domain Specific 
Review Board

NLP - natural language processing

NLTK - natural language toolkit

NSC - national speech corpus

PSCI - post-stroke cognitive impairment

RMSE - root mean square error

SHAP - Shapley additive explanations

SUBTLEX-SG - Singapore subtitle word frequency database

WER - word error rate
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