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Objective: To identify key cerebrospinal fluid (CSF) metabolomic biomarkers 
associated with Parkinson’s disease (PD) and prodromal PD, providing insights 
for intervention strategy development.

Methods: Six hundred and thirty-nine participants from the Parkinson’s 
Progression Markers Initiative (PPMI) cohort were included: 300 PD patients, 112 
healthy controls (HC), and 227 prodromal PD patients. Regression analysis and 
OPLS-DA identified metabolic biomarkers, while pathway analysis examined 
their relationship to clinical features. An XGBoost-based early prediction model 
was developed to assess the distinction between PD, prodromal PD, and HC. 
A two-sample bidirectional Mendelian randomization analysis was performed 
to examine the association between differential metabolites and Parkinson’s 
disease.

Results: Sixty-four metabolites were significantly altered in PD patients compared 
to HC, with 58 elevated and 6 reduced. In prodromal PD, 19 metabolites 
were increased, and 34 were decreased. Key metabolic pathways involved 
glutathione and amino acid metabolism. Dopamine 3-O-sulfate correlated with 
PD progression, levodopa-equivalent dose, and non-motor symptoms. The 
XGBoost model demonstrated high specificity in predicting the onset of PD. 
The MR analysis results showed a positive correlation between higher genetic 
predictions of dopamine 3-O-sulfate levels and the risk of Parkinson’s disease. 
In contrast, the reverse MR analysis found that Parkinson’s disease susceptibility 
significantly increased dopamine 3-O-sulfate levels.

Conclusion: The differential expression of CSF metabolites reveals early cellular 
metabolic changes, providing insights for early diagnosis and monitoring PD 
progression. A bidirectional causal relationship exists between genetically 
determined PD susceptibility and metabolites.
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Introduction

Parkinson’s disease (PD) is a motor disorder characterized by the 
progressive loss of dopaminergic neurons in the substantia nigra and 
the abnormal aggregation of α-synuclein. The motor symptoms of PD 
are primarily tremor, bradykinesia, and rigidity. In addition to these 
motor deficits, PD also encompasses a range of non-motor and 
prodromal symptoms, such as sleep disturbances, olfactory dysfunction, 
psychiatric and mood changes, cognitive impairment, and autonomic 
dysfunction. These non-motor symptoms may appear either before or 
concurrently with the onset of motor symptoms (Marinus et al., 2018).

Although numerous hypotheses regarding the pathogenesis of PD 
have been proposed, there is currently no effective method to slow the 
progression of the disease. This complexity arises from the involvement 
of multiple brain regions and various neurotransmitter systems. These 
systems include the co-release of dopamine, a typical neurotransmitter, 
and other excitatory or inhibitory neurotransmitters, which contribute 
to clinical heterogeneity (Barcomb and Ford, 2023). While the accuracy 
of clinical diagnosis has improved in the past decade, especially in the 
early stages, reaching up to 90.3% in some studies (Virameteekul et al., 
2023), predicting disease progression in the early stages remains 
challenging. This is primarily due to the overlap of early clinical features, 
the complexity of disease subtypes, and the limitations of diagnostic 
criteria (Tolosa et al., 2021). The prodromal phase is considered a critical 
window for intervention, making early and accurate diagnosis essential. 
Predicting disease progression based on reliable and sensitive early 
biomarkers and quantifying different pathological states of PD remain 
key research focuses (Theis et al., 2024).

Early diagnosis of PD primarily involves clinical symptom 
assessment, biochemical testing, imaging techniques, and genetic 
analysis (Parab et al., 2023; Mitchell et al., 2021). Cerebrospinal fluid 
(CSF), which directly interacts with brain cells, offers an accurate 
reflection of the underlying molecular mechanisms of PD. While the 
α-synuclein seed amplification assay in CSF demonstrates high 
sensitivity and specificity, it reflects only part of the disease pathology, 
highlighting the need for additional biomarkers to fully characterize 
PD (Postuma and Berg, 2016). CSF metabolomics, through the 
mapping and quantification of various small-molecule metabolites, 
provides a comprehensive insight into cellular metabolism and 
neurotransmitter alterations (Stoessel et  al., 2018). With recent 
advancements in liquid chromatography-mass spectrometry (LC-MS/
MS), key biomarkers related to lipid metabolism, polyamines, amino 
acids, and purine metabolism have garnered increasing attention 
(Trezzi et al., 2017; Kremer et al., 2021).

This study aims to explore the differences in various metabolites, 
particularly lipid metabolites, at different clinical stages of PD (including 
healthy controls, prodromal PD, and clinically diagnosed PD patients) 
using CSF metabolomics as a data-driven source. The study further 
aims to predict the risk of PD progression. The objectives of this study 
are as follows: (1) to identify cerebrospinal metabolic biomarkers at 
different stages of PD progression; (2) to assess the reliability of 
predictive models by developing a clinical risk model for PD; (3) to link 
lipid metabolism biomarkers with clinical manifestations to provide 
clinical utility; (4) to uncover potential mechanisms underlying PD 
progression through metabolic biomarkers and associated molecular 
pathways; (5) MR analysis was conducted using publicly available 
genome-wide association data to evaluate the causal relationship 
between differential metabolites and Parkinson’s disease.

Materials and methods

Study participants

This study utilized data from the Parkinson’s Progression Markers 
Initiative (PPMI) database, a large-scale clinical observational study 
aimed at identifying biomarkers of PD progression from the 
prodromal phase through to disease onset. A total of 639 participants 
were included in the analysis, with data collection completed by 
January 2020. The sample size was determined based on previous 
studies (Huntwork-Rodriguez et  al., 2023). Participants were 
classified into three groups based on predefined inclusion criteria: (1) 
PD patients: individuals diagnosed with PD, who were undergoing 
levodopa treatment. (2) Healthy controls: individuals with no history 
of neurological disorders, no first-degree family history of PD, and 
normal dopamine transporter (DAT) single-photon emission 
computed tomography (SPECT) imaging. (3) Prodromal participants: 
individuals who had not been clinically diagnosed with PD but 
exhibited one or more of the following risk factors: rapid eye 
movement sleep behavior disorder (RBD), olfactory dysfunction, 
dopamine transporter (DAT) deficiency, or genetic variants 
associated with an increased risk of PD. The prodromal cohort has as 
inclusion criteria age >60 years (with the exception of SCNA and 
other rare mutations).

Baseline demographic information, motor and non-motor 
assessments, and biochemical test results were collected for all 
participants. All participants underwent lumbar puncture for CSF 
collection, followed by metabolite and lipid analysis. Data for this 
study were accessed via the PPMI online database.1 The PPMI study 
received ethical approval from the institutional review boards of 
over 50 research centers globally. Detailed information regarding the 
ethics committees of the clinical centers can be  found in 
Supplementary Table 1. All participants provided written informed 
consent before inclusion in the study, in accordance with ethical 
guidelines (Brumm et  al., 2023). The methodology of this study 
complies with the relevant guidelines of the PPMI Data and 
Publications Committee (DPC), and the manuscript was submitted 
to the DPC for review. Genetic association summary data were 
obtained from GWAS, with dopamine 3-O-sulfate GWAS data 
sourced from the Wisconsin Alzheimer’s Disease Research Center 
(WADRC) and the Wisconsin Registry for Alzheimer’s Prevention 
(WRAP) cohorts, two European populations (Panyard et al., 2021). 
The data included 412 cerebrospinal fluid metabolites from 291 
samples. Parkinson’s disease GWAS data were sourced from the 
International Parkinson’s Disease Genomics Consortium (Nalls 
et  al., 2019), comprising 33,674 PD cases and 449,056 
control samples.

Cerebrospinal fluid metabolite and lipid 
analysis

CSF samples collected from participants were analyzed using 
liquid chromatography–tandem mass spectrometry (LC-MS/MS), 

1 https://www.ppmi-info.org/access-data-specimens/download-data/
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employing both targeted metabolomics/lipidomics and untargeted 
metabolomics approaches. A total of 348 compounds were 
identified, including sphingolipids, polyamines, cholesterol, 
gangliosides, ceramides, amino acids, caffeine, and purine 
metabolites. To minimize batch effects, internal references were 
established separately for PD patients and healthy controls prior 
to analysis. The primary outcome measure was the batch-
normalized area ratio for each compound, quantified as the 
adjusted area ratio.

Data processing and analysis

Descriptive statistical analysis and intergroup comparisons 
were performed for demographic data and clinical assessment 
parameters. For CSF metabolite area ratio data, log10 
transformation, mean centering, and scaling normalization were 
performed using MetaboAnalystR 6.0. Statistical differences in 
metabolite concentrations between groups were assessed using 
fold-change analysis and unpaired t-tests (or paired t-tests, as 
applicable). Bonferroni correction was applied to adjust the 
p-values for multiple comparisons, ensuring that the family-wise 
error rate was controlled. Orthogonal partial least squares 
discriminant analysis (OPLS-DA) was used for enhancing the 
differentiation between PD, healthy control, and 
prodromal groups.

Metabolites were considered significantly different if they met the 
following criteria: fold-change, Bonferroni-corrected p-value <0.05, 
and variable importance in projection (VIP) score >1. Differential 
metabolites between PD, healthy HC, and prodromal groups were 
subsequently identified and mapped to the Small Molecule Pathway 
Database (SMPDB), Relational database of Metabolomic Pathways 
(RaMP-DB), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway databases for enrichment analysis to identify 
relevant biological pathways. From the list of differential metabolites, 
the top 8–15 compounds, based on VIP values, were selected for 
machine learning models. The dataset was randomly divided into a 
training set (70%) and a validation set (30%). A predictive model was 
constructed using the XGBoost algorithm to assess PD risk and the 
ability to distinguish PD from the prodromal phase. The SHapley 
Additive exPlanations (SHAP) method was applied to provide 
interpretable explanations for the model’s predictions, elucidating the 
contribution of each feature to the model outcomes. Furthermore, 
Spearman’s correlation tests were performed to assess the 
relationships between the identified differential metabolites and 
various clinical evaluation parameters in both PD and healthy 
control groups.

MR analysis included SNPs closely related to the exposure, with 
significance set at p < 5 × 10−5 and a linkage disequilibrium threshold 
of r2 < 0.001. Sensitivity analysis was performed using inverse 
variance weighted (IVW) method, weighted median (WM), and 
MR-Egger regression methods. False discovery rate (FDR) was used 
to control the adjusted significance levels. Horizontal pleiotropy was 
tested using the MR-Egger intercept test and MR pleiotropy residual 
sum and outlier (MR-PRESSO) analysis. Cochran’s Q test was used 
to assess heterogeneity in causal estimates for each SNP. All statistical 
analyses were conducted using R version 4.4.2.

Results

Baseline descriptive characteristics

This study included 300 PD patients, 112 HC, and 227 prodromal 
individuals. The demographic characteristics of each group are 
summarized in Table  1. No significant differences were observed 
among the three groups in terms of age, sex, handedness, or body 
mass index (BMI). The majority of participants were Caucasian, with 
four healthy controls having a secondary family history of Parkinson’s 
disease. Interestingly, prodromal individuals had a significantly higher 
level of education compared to the HC. This may reflect increased 
health awareness in individuals with higher education, potentially 
leading to earlier detection of abnormal symptoms. Compared to HC, 
prodromal individuals exhibited more significant cognitive 
impairments, depression, anxiety, and autonomic dysfunction. Among 
PD patients, most were classified as stage 2 on the Hoehn and Yahr 
(HY) scale.

Cerebrospinal fluid metabolite analysis

To preliminarily identify differential metabolites, metabolites were 
selected based on adjusted p-values (after t-test analysis) and VIP 
scores greater than 1.0 (from OPLS-DA model calculations). 
Compared to HCs PD patients showed significant differences in 64 
metabolites, of which 58 were increased and 6 were decreased. 
Compared to prodromal individuals, PD patients exhibited 19 
metabolites with increased levels and 34 metabolites with significantly 
reduced levels. Notably, dopamine 3-O-sulfate was significantly 
elevated in PD patients (PD vs. HC: FC = 10.066, p-adjust <0.001, 
VIP = 3.638; PD vs. prodromal: FC = 3.039, p-adjust <0.001, 
VIP = 5.257), while caffeine levels were decreased (PD vs. HC: 
FC = 0.709, p-adjust = 0.026, VIP = 1.663; PD vs. prodromal: 
FC = 0.591, p-adjust <0.001, VIP = 3.169). Additionally, compared to 
HC, prodromal individuals showed increased levels in 41 metabolites, 
with CE (20:5) being higher in the prodromal group (FC = 1.481, 
p-adjust = 0.002, VIP = 1.343). Figure 1 illustrates the visual results of 
univariate and multivariate statistical analyses, and Table 2 provides a 
detailed list of the top 15 core differential metabolites ranked by VIP 
scores (8 metabolites are shown due to the limited number of 
differential metabolites between PD and prodromal groups).

Metabolic pathway analysis

We performed pathway enrichment analysis using the KEGG 
database for the core differential metabolites across the PD, HC, and 
prodromal groups. Compared to HC and prodromal individuals, the 
most significantly regulated pathways in the CSF of PD patients were 
metabolism of glutathione, metabolism of arginine and proline, and 
the biosynthesis of arginine. Additionally, compared to HC, 
prodromal individuals showed the highest enrichment levels in 
glycine, serine, and threonine metabolism. A total of 13 shared 
pathways were identified across the PD, HC, and prodromal groups, 
primarily involving amino acid metabolism. Further annotation 
using the SMPDB database confirmed these findings, highlighting 
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TABLE 1 Demographic and clinical characteristics of PD patients, healthy controls, and prodromal individuals.

Demographic or clinical 
characteristics

Group p-value

PD (n = 300) HC (n = 112) Prodromal 
(n = 227)

PD vs. HC PD vs. 
prodromal

Prodromal 
vs. HC

Demographics

Age (years) 64.55 [57.81, 70.18] 63.63 [57.44, 69.36] 63.84 [58.34, 69.00] 0.475 0.578 0.710

Gender (male) (%) 170 (56.67) 61 (54.46) 124 (54.63) 0.7724 0.705 0.907

Race 0.1576 0.0716 0.0185

  White 276.00 (92.00) 105.00 (93.75) 218.00 (96.04)

  Black 6.00 (2.00) 5.00 (4.46) 1.00 (0.44)

  Asian 4.00 (1.33) 1.00 (0.89) 2 (0.88)

  Other (includes multi-racial) 14.00 (4.67) 1.00 (0.89) 6.00 (2.64)

Fampd bin 122.00 (40.67) 4.00 (3.57) 194.00 (85.46) <0.001 <0.001 <0.001

Handed

  Right 261.00 (87.00) 91.00 (81.25) 191.00 (84.14)

  Left 29.00 (9.67) 14.00 (12.50) 26.00 (11.45)

  Mixed 10.00 (3.33) 7.00 (6.25) 10 (4.4)

BMI (kg/m2) 26.56 [23.81, 29.72] 26.05 [23.69, 29.59] 26.66 [24.42, 29.75] 0.630 0.128 0.099

Education

EDUCYRS 16.00 [14.00, 18.00] 16.00 [13.00, 17.25] 18.00 [16.00, 19.00] 0.121 <0.001 <0.001

Duration 1.09 [0.40, 2.83]

sym_tremor 230.00 (76.67)

sym_rigid 209.00 (69.67)

sym_brady 209.00 (69.67)

sym_posins 38.00 (12.67)

sym_other 46.00 (15.33)

PDTRTMNT 197.00 (65.67)

LEDD 300.00 [0.00, 599.25]

Non-motor assessments

MOCA score 27.00 [25.00, 29.00] 28.00 [27.00, 29.00] 27.00 [25.00, 29.00] <0.001 0.596 <0.001

GDS 2.00 [1.00, 4.00] 1.00 [0.00, 2.00] 1.00 [0.00, 3.00] <0.001 <0.001 0.002

STAI 65.00 [52.00, 80.00] 54.00 [44.75, 65.00] 54.00 [46.00, 68.25] <0.001 <0.001 0.149

STAI_state 32.00 [25.00, 41.00] 25.00 [21.00, 32.25] 26.00 [21.00, 32.25] <0.001 <0.001 0.269

STAI_trait 33.00 [26.00, 39.00] 27.00 [22.75, 33.00] 29.00 [24.00, 37.00] <0.001 0.001 0.044

SCOPA 11.00 [6.50, 16.00] 5.00 [3.00, 8.50] 7.00 [4.00, 10.25] <0.001 <0.001 0.002

NP1DPRS 0.008 0.001 0.987

  Normal 219.00 (73.00) 96.00 (85.71) 195.00 (85.90)

  Slight 64.00 (21.33) 13.00 (11.61) 18.00 (7.93)

  Mild 9.00 (3.00) 3.00 (2.68) 9.00 (3.96)

  Moderate 5.00 (1.67) 0.00 (0.00) 4.00 (1.76)

  Severe 3.00 (2.68) 0.00 (0.00) 1 (0.44)

NP1ANXS <0.001 0.003 0.124

  Normal 177.00 (59.00) 87.00 (77.68) 159.00 (70.04)

  Slight 91.00 (30.33) 24.00 (21.43) 58.00 (25.55)

  Mild 20.00 (6.67) 1.00 (0.89) 8.00 (3.52)

  Moderate 9.00 (3.00) 0.00 (0.00) 1.00 (0.44)

  Severe 3.00 (2.68) 0.00 (0.00) 1.00 (0.44)

(Continued)
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nine shared pathways, including glutathione metabolism, amino acid 
metabolism, methionine metabolism, purine metabolism, and the 
urea cycle (Figure 2). Figure 2C, based on RaMP-DB annotations, 
presents biological and lipid metabolism pathways. Specifically, PD 
was associated with synaptic interaction pathways and polyamine 
oxidation processes, while prodromal individuals showed changes in 
choline metabolism, glucose metabolism, and creatine 
metabolism pathways.

Clinical relevance and risk prediction

We analyzed the association of the 15 core differential metabolites 
between PD and HC with clinical assessments of PD patients. 
Dopamine 3-O-sulfate, which was significantly elevated in PD 
patients’ CSF, showed positive correlations with several clinical 
parameters, including disease duration, levodopa equivalent daily 
dose (LEDD), the first and fourth sections of the Unified Parkinson’s 

TABLE 1 (Continued)

Demographic or clinical 
characteristics

Group p-value

PD (n = 300) HC (n = 112) Prodromal 
(n = 227)

PD vs. HC PD vs. 
prodromal

Prodromal 
vs. HC

Motor assessments

NHY staging 1 [2, 2]

MDS-UPDRS I score 7.00 [4.00, 10.00]

MDS-UPDRS II score 6.00 [4.00, 10.00]

MDS-UPDRS III score (OFF) 24.00 [17.00, 31.00]

MDS-UPDRS IV score (OFF) 0.00 [0.00, 3.00]

MDS-UPDRS total score (OFF) 37.00 [27.00, 50.00]

Non-normally distributed continuous variables are presented as median [quartiles], categorical variables are presented as number (percentage). GDS, Geriatric Depression Scale score; STAI, 
STAI total score; sym_, initial symptoms; PDTRTMNT, dopa-treated patients; NP1DPRS, MDS-UPDRS Part I Depressed Mood; NP1ANXS, MDS-UPDRS Part I Anxious Mood.

FIGURE 1

Univariate and multivariate metabolomic analysis. Metabolomic profiling. (A) Volcano plots showing differential metabolites between PD and HC, 
highlighting dopamine 3-O-sulfate and timethylamine. (B) Violin plots depicting key metabolites [dopamine 3-O-sulfate, caffeine, CE (20:5)] in HC, PD, 
and prodromal groups. (C) OPLS-DA score plots illustrating group separation based on metabolic profiles. (D) VIP score plots for top differential 
metabolites between groups.
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Disease Rating Scale (UPDRS), the total score during the “off ” period, 
and The Scale for Outcomes in Parkinson’s disease for Autonomic 
symptoms (SCOPA-AUT) scores (Figure 3).

To evaluate the risk of progression from HC to PD and from 
prodromal to PD, XGBoost models were developed using both 

training and validation datasets. These models performed excellently, 
with the area under the curve (AUC) exceeding 0.9 in both datasets. 
However, the model’s generalization ability from HC to prodromal 
was slightly lower, with an AUC of 0.834 for the training set and 0.869 
for the testing set. The SHapley Additive exPlanations (SHAP) 

TABLE 2 Differential metabolomic analysis of cerebrospinal fluid among Parkinson’s disease (PD) patients, healthy controls (HC), and prodromal 
individuals.

Group Compound name VIP value Fold change p adjust

PD vs. HC Dopamine 3-o-sulfate 3.638 10.066 <0.001

Cadaverine 3.258 1.406 <0.001

N1-Acetylspermidine 3.251 1.281 <0.001

N-Acetylputrescine 2.683 1.519 <0.001

Putrescine 2.241 1.253 <0.001

(3-O-sulfo)GalCer(d18:1/24:1) 2.004 1.232 <0.001

HexCer(d18:1/24:1) 1.917 1.236 <0.001

(3-O-sulfo)GalCer(d18:1/24:0) 1.893 1.253 <0.001

HexCer(d18:1/24:0) 1.871 1.250 <0.001

Cer(d18:1/24:1) 1.847 1.234 0.002

GalCer(d18:1/24:1) 1.839 1.214 <0.001

SM(d18:1/24:1) 1.805 1.196 0.001

GalCer(d18:1/20:0) 1.782 1.192 0.001

HexCer(d18:1/22:0) 1.757 1.221 0.002

GalCer(d18:1/24:0) 1.731 1.204 0.001

Cadaverine 4.499 1.318 <0.001

Dopamine 3-o-sulfate 5.257 8.221 <0.001

Homoserine 1.809 1.101 0.002

PD vs. 

prodromal

N-Acetylputrescine 3.052 1.333 <0.001

N1-Acetylspermidine 3.115 1.136 <0.001

Putrescine 3.213 1.207 <0.001

Spermidine 2.348 1.128 0.014

Threonine 1.683 1.094 0.007

(3-O-sulfo)GalCer(d18:1/24:1) 1.214 1.141 0.013

alpha-Tocopherol 1.754 1.281 0.009

Butyrylcarnitine 1.739 1.099 0.026

CE(18:2) 1.471 1.171 0.041

CE(20:5) 1.343 1.481 0.002

Cer(d18:1/24:1) 1.158 1.196 0.005

Choline 1.253 1.230 0.005

Prodromal 

vs. HC

Citrulline 1.782 1.145 0.033

Cystine 1.989 1.177 0.005

DG(16:0_18:1) 1.055 1.218 0.041

DHA 1.128 1.178 0.013

Dimethylglycine 1.439 1.122 0.046

Epinephrine 1.943 1.095 0.008

GalCer(d18:1/16:0) 1.409 1.143 0.007

GalCer(d18:1/24:1) 1.279 1.155 0.014

VIP, variable importance in projection; FC, fold change; HexCer, hexosylceramide; SM, sphingomyelin; Cer, ceramide; GalCer, galactosylceramide; CE, cholesteryl ester; DHA, 
docosahexaenoic acid; DG, diacylglycerol.
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method was used to interpret the XGBoost model and identify the 
most important predictors. The SHAP algorithm identified the 
variables with the greatest impact on the model’s predictions. Figure 4 
uses a waterfall plot to illustrate the contribution of various 
metabolites to PD risk prediction in HC, prodromal, and PD groups. 
Notably, dopamine 3-O-sulfate had the strongest predictive power for 
PD risk. Additionally, increased levels of DG (16:0_18:1) were 
associated with a higher risk of prodromal symptoms, while elevated 
GalCer.d18.1.24.0 levels appeared to lower the risk of 
progression to PD.

The association between dopamine 
3-O-sulfate and PD

Forward MR analysis showed a positive correlation between 
increased dopamine 3-O-sulfate levels and PD risk (OR = 1.14, 95% 
CI: 1.060–1.225, p-adjust = 0.002). Reverse MR also confirmed a 
causal relationship between PD and increased cerebrospinal fluid 
dopamine 3-O-sulfate levels (OR = 1.337, 95% CI: 1.038–1.337, 
p = 0.011, p-adjust = 0.057) (Supplementary Table  2). MR-Egger 
regression intercepts indicated no significant directional pleiotropy 
between the SNPs in both groups, with p-values greater than 0.05. 

Cochran’s Q test did not detect any detectable heterogeneity 
(Supplementary Table 3).

Discussion

The early stages of PD present a critical window for identifying 
biomarkers that reflect the evolving pathophysiological mechanisms 
of the disease. Among these, mitochondrial dysfunction, oxidative 
stress, and energy metabolism are considered primary contributors, 
particularly in the interaction between dopaminergic neurons and 
α-synuclein. The accumulation of α-synuclein may induce oxidative 
stress in dopaminergic neurons, creating a feedback loop that 
accelerates disease progression (Lai et al., 2024).

In this study, we employed both targeted and untargeted analytical 
approaches to investigate metabolic differences across various clinical 
stages of PD: HC, individuals in the prodromal phase, and diagnosed 
PD patients. Notably, the differences observed between PD versus HC 
and PD versus prodromal groups exhibited considerable overlap in core 
metabolites and metabolic pathways. This finding suggests that as PD 
progresses to its clinical diagnostic stage, CSF metabolic alterations 
become more pronounced and stable. Dopamine 3-O-sulfate, an 
inactive form of endogenous dopamine, is likely to cross the 

FIGURE 2

Metabolic pathway enrichment analysis. (A) KEGG pathway enrichment showing key pathways, such as glutathione and amino acid metabolism, across 
PD, prodromal PD, and HC groups. (B) SMDB pathway analysis highlighting metabolic disruptions in amino acid and steroid metabolism. (C) RaMP-DB 
network illustrating the connection between altered pathways and neurodegenerative diseases.
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blood-brain barrier (Suominen et al., 2015). Its increased concentration 
may reflect compensatory mechanisms following dopamine depletion 
(Le Witt et al., 1992). Caloric restriction has been shown to protect 
dopaminergic neurons by reducing dopamine 3-O-sulfate levels in the 
substantia nigra, which could potentially provide therapeutic insights 
(Green et al., 2018). In agreement with previous studies linking CSF 
dopamine sulfate levels to motor symptom fluctuations and LEDD in 
advanced PD, our results showed a significant correlation between 
dopamine 3-O-sulfate levels and both LEDD and UPDRS scores, 
supporting the involvement of dopamine metabolism in PD 
progression. Additionally, a bidirectional causal relationship exists 
between dopamine 3-O-sulfate levels and genetic susceptibility to 
Parkinson’s disease (PD), suggesting that cerebrospinal fluid dopamine 
3-O-sulfate may serve as a biomarker for both the onset and clinical 
progression of PD. Furthermore, studies indicate that the key enzyme 
responsible for its production, dopamine sulfotransferase, is associated 
with the risk of early-onset PD (Butcher et al., 2018).

Dysregulation of dopamine sulfotransferase may contribute to the 
abnormal accumulation of dopamine 3-O-sulfate in cerebrospinal 
fluid. Moreover, enzyme imbalance leading to dopamine metabolism 
abnormalities may trigger the aggregation of abnormal proteins in PD, 
as well as oxidative stress and neurotoxicity.

We also observed a marked reduction in caffeine levels in PD 
patients, a finding consistent with earlier reports of lower serum caffeine 
levels in PD (Suominen et al., 2015). Interestingly, long-term caffeine 
consumption has been linked to downregulation of the dopamine 
transporter, which may reduce PD risk (Saarinen et  al., 2024). In 
addition, CE (20:5), a cholesterol ester, was elevated in the prodromal 
group compared to healthy controls (HC). This metabolite, as an 

intermediate product of cholesterol metabolism, may signal neuronal 
injury and membrane disruption in the central nervous system, 
highlighting a potential link between early metabolic dysregulation and 
prodromal PD symptoms (Butcher et al., 2018; Saarinen et al., 2024).

Beyond cholesterol metabolites, other lipid metabolic pathways, 
including phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol 
esters (CE), are disrupted in the PD brain (Qiu et al., 2023). Increased 
α-synuclein levels in the PD brain enhance interactions between cellular 
membrane lipids and α-synuclein, promoting its binding to synaptic and 
mitochondrial membranes, which in turn accelerates its aggregation 
(Gilmozzi et  al., 2020). The resulting synaptic dysfunction further 
exacerbates lipid accumulation, creating a vicious cycle (Erskine et al., 
2021). Intracellular lipid accumulation may be  caused by impaired 
mitochondrial β-oxidation or defective lipid autophagy (Viennet et al., 
2018). Moreover, lipid homeostasis in CSF correlates with the disease 
stage and progression of PD (Fernández-Irigoyen et al., 2021).

Metabolic pathway analysis revealed distinct metabolic features 
across healthy controls, prodromal individuals, and diagnosed PD 
patients. In the prodromal phase, pathways related to glycine, serine, 
and threonine metabolism were prominently activated, suggesting 
disruptions in cellular signaling. Conversely, diagnosed PD patients 
exhibited significant alterations in glutathione metabolism, as well as 
arginine and proline metabolism, indicating increased oxidative stress 
and abnormalities in cell proliferation and apoptosis (Wang et al., 2020).

In terms of clinical risk prediction, we developed an XGBoost 
model using core differential metabolites to predict PD risk. The 
model showed excellent predictive performance, particularly for the 
progression from prodromal symptoms to PD, with an AUC value of 
0.993 achieved using only eight metabolite variables. However, the 

FIGURE 3

Metabolite-clinical correlation analysis. (A) Spearman’s correlation analysis of dopamine 3-O-sulfate with clinical measures, showing significant 
positive correlations with various PD progression indicators. (B) Scatter plots illustrating the correlation between dopamine 3-O-sulfate levels and 
clinical scores, including disease duration, SCOPA, LEED, and MDS-UPDRS.
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prediction ability between healthy controls and the prodromal group 
was less robust due to the subtle metabolic differences, indicating the 
need for further validation in longitudinal cohort studies.

In summary, this study highlights the metabolic changes in 
cerebrospinal fluid across different stages of early Parkinson’s disease. 

By identifying reliable omics features from a range of candidate 
biomarkers, this work contributes to the development of more 
systematic and comprehensive strategies to assess and predict the 
progression of PD, considering both the mechanisms of the disease 
and its potential for early intervention.

FIGURE 4

Clinical prediction model analysis. (A) Beeswarm plot of SHAP values showing the contribution of key metabolites in distinguishing between PD, 
prodromal PD, and HC groups. (B,C) Feature importance plots for prediction accuracy in PD, prodromal, and HC groups, highlighting the significant 
metabolites influencing model predictions. (D) Receiver operating characteristic (ROC) curves and AUC values assessing the predictive performance of 
the model in the training and test datasets.
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Conclusion

This study underscores the potential of metabolomics in 
identifying biomarkers associated with the progression of Parkinson’s 
disease (PD). The findings reveal that early disruptions in the 
homeostasis of neurotransmitters, lipids, and amino acid metabolites 
differ prodromal PD patients and those who have manifested motor 
symptoms. Moreover, alterations in related metabolic pathways also 
reflect changes in cellular functions. Understanding the mechanisms 
underlying these metabolic changes is crucial for gaining deeper 
insights into the early progression of the disease.
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