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Machine learning models based 
on location-radiomics enable the 
accurate prediction of early 
neurological function 
deterioration for acute stroke in 
elderly patients
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Changcheng Li 2, Miaomiao Li 1, XiaoRan Li 1, Zhijun Gao 1, 
Mingyang Peng 2, Hui Xu 2* and Wenli Zhu 1*
1 Department of Radiology, The Affiliated Gaochun Hospital of Jiangsu University, Nanjing, China, 
2 Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China

Background: The timely and accurate identification of elderly stroke patients 
at risk of early neurological deterioration (END) is crucial for guiding clinical 
management. The present study aimed to create a comprehensive map of 
lesion location in elderly stroke, and build a machine learning model integrating 
location features and radiomics to predict END in elderly stroke patients.

Methods: A cohort of 709 elderly stroke patients from two centers patients were 
enrolled. Three machine learning models [logistic regression (LR), random forest 
(RF), and support vector machine (SVM)] based on location features, radiomics, 
and Loc-Rad were constructed to predict END in elderly stroke patients, 
respectively. The performance of models was evaluated using the receiver 
operating characteristic curves (ROC) and decision curve analysis (DCA). The 
SHapley Additive exPlanations (SHAP) was used to interpret and visualize the 
impact of the model predictors on the risk of END.

Results: The location maps for elderly stroke patients showed the bilateral 
cerebellum, left basal ganglia, left corona radiata, and right occipital lobe were 
significantly associated with END (p < 0.05). For three ML algorithms, the Loc-
Rad models based on location features and radiomics demonstrated better 
performance than the separate location and radiomics-based models in the 
training cohort (p < 0.05), and the Loc-Rad model constructed with the RF 
algorithm performed best, with an AUC of 0.883 and accuracy of 0.888, and 
showed strong prediction performance in the external validation set (AUC of 
0.818; accuracy of 0.811). The SHAP plots demonstrated that the most significant 
contributors to model performance were related to postcentral gyrus left, 
superior frontal gyrus right, w−HLH_glcm_Correlation, large vessel occlusion 
and lateral ventricle_body left.

Conclusion: We constructed comprehensive maps of strategic lesion network 
localizations for predicting END in elderly stroke patients and developed a 
predictive ML model that incorporates both location and radiomics features. 
This model could facilitate the rapid and robust prediction of the risk of END, 
enabling timely interventions and personalized treatment strategies to improve 
patient outcomes.
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Introduction

Stroke incidence rises with age, with about one-third of acute 
ischemic strokes occurring in those aged 80 and above. Elderly 
patients face more complications, higher in-hospital and 3-month 
mortality rates, and are less likely to return home compared to 
younger patients (Song et al., 2024). Elderly patients often have 
comorbidities, reduced physiological reserve, and a higher 
likelihood of complications, which can exacerbate the impact of 
even strokes (Bao et  al., 2022; Tian et  al., 2023). Therefore, 
predicting early neurological deterioration (END) in elderly stroke 
patients is particularly critical due to their increased vulnerability 
to adverse outcomes. Early prediction allows for the 
implementation of preventive measures, such as optimizing blood 
pressure control, managing hyperglycemia, and initiating 
neuroprotective therapies, which may mitigate the risk 
of deterioration.

Growing evidence indicates that imaging factors as well as 
clinical factors could be crucial for determining the risk of END in 
stroke patients (Harada et  al., 2019; Zhou et  al., 2024). The 
American Stroke Association has suggested the use of diffusion-
weighted imaging (DWI) in the management of stroke patients 
(Powers et al., 2019). Preliminary region-of-interest (ROI) analysis 
(infarct volume) and emerging radiomic approaches involving 
MRI have been well established for stroke diagnosis, prognosis, 
and therapeutic intervention (Gerschenfeld et  al., 2024; Sorby-
Adams et al., 2024; Li et al., 2022). However, recent research has 
shown that there is only a moderate correlation between the lesion 
volume and the END (Samuels et  al., 2023). Lesion location is 
another factor that should be  considered with respect to brain 
symptoms and outcome prediction. Preliminary pilot studies have 
shown that incorporating lesion location and size into patient 
assessments can provide a more accurate estimation of stroke 
severity than relying solely on volume measurements (Menezes 
et  al., 2007). Recently, a novel approach known as voxel-based 
lesion-symptom mapping (VLSM) was shown to quantitatively 
represent the location of brain lesions in a statistical manner 
(Moon et al., 2022). The individual’s brain image is normalized to 
a common spatial template with standard coordinates (e.g., 
Montreal Neurological Institute (MNI) or Talairach), followed by 
population-based analysis to calculate the frequency of lesion 
locations in the normalized space and generate a map displaying 
the anatomic lesion distribution probability. This analysis enables 
easy statistical inference with respect to brain  location, 
subsequently leading to the independent prediction of the 
functional outcomes in acute stroke patients.

Machine learning (ML), a branch of artificial intelligence, has 
been utilized to create predictive models more effectively than 
conventional approaches by identifying latent patterns in extensive, 
intricate datasets (Banerjee et al., 2023). Numerous studies have 
described the use of machine learning methodologies for 
enhancing prognosis in stroke patients, developing ML-based 
models that may have a number of advantages when integrated 

into clinical settings (Heo et  al., 2019; Bonkhoff and Grefkes, 
2022). In this study, we  first explored the location on DWI 
associated with END using VLSM. We subsequently developed and 
compared radiomics and location features (location omics) models 
constructed using three machine learning algorithms to identify 
the model with the optimal prediction performance. Finally, 
we developed and validated an interpretable ML model to predict 
END in elderly stroke patients based on the above optimal model. 
Importantly, we hypothesized that the use of location omics would 
yield the best accuracy and generalization performance in 
predicting END by complementarily exploiting location features.

Methods

Data acquisition and dataset description

This study included acute stroke patients seen at Chinese hospitals 
between January 2020 and June 2023. Patients were divided into a 
training cohort (Nanjing First Hospital) and an independent external 
validation cohort (The Affiliated Gaochun Hospital of Jiangsu 
University). This study was approved by the Institutional Ethics 
Review Boards of the involved hospitals. As this was a retrospective 
study, the requirement for informed consent was waived.

Patients were included according to the following criterion: (1) 
diagnosed as ischemic stroke with 24 h of onset; (2) aged ≥ 65 years 
old; (3) examined with brain MRI on admission. Patients were 
excluded if they (1) with excessively small lesions (< 1 cc); (2) MRI 
with motion artifact. All patients in this study provided written 
informed consent before MRI examined and received standard stroke 
treatment [intravenous thrombolysis [alteplase; recombinant tissue 
plasminogen activator (rt-PA)] (IVT), endovascular treatment (EVT), 
bridging therapy (both IVT and EVT) or antiplatelet treatment 
(conservative treatment)]. A detailed flowchart of the patient selection 
process is provided in Figure 1.

Age, sex, NIHSS score on admission, systolic pressure on 
admission, diastolic pressure on admission, blood glucose level on 
admission, HbA1c level, triglyceride level, and any history of 
hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation 
(AF), smoking or drinking were recorded.

END was defined as NIHSS score increase ≥4 NIHSS points 
within 72 h of symptom onset compared to NIHSS score on 
admission. The NIHSS score was assessed by a neurologist and was 
determined by the superior doctor from their assigned medical team. 
In cases of disagreement in NIHSS scoring, a third neurologist from 
each center was consulted to reach a final decision.

Imaging analysis

DWI examinations
All admission MR examinations were performed according to 

standardized protocols. MRI examinations were performed with a 3.0 
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Tesla MRI scanner (Ingenia, Philips Medical Systems) with an 
8-channel receiver array head coil. The MRI protocol included DWI 
[spin echo (SE) sequence, repetition time (TR), 2,501 ms; echo time 
(TE), 98 ms; acquisition matrix, 152*122; 3 directions; field of view 
(FOV), 230 mm*230 mm; flip angle (FA), 90°; slices, 18; section 
thickness, 6 mm; intersection gap, 1.3 mm; b values, 0 and 
1,000 s/mm2].

DWI segmentation and preprocessing
High-intensity signal infarction areas on DWI images and 

apparent diffusion coefficient (ADC) < 620 × 10−3 mm2/s were 
drawn as volumes of interest (VOIs) using ITK-SNAP.1 The 
infarct volume segmentations were performed together by two 
neuroradiology staff (CZ, an attending doctor with 5 years of 
experience in neuroradiology, and MP a director with 15 years of 
experience in neuroradiology) who were blinded to the clinical 
data. To facilitate voxel comparison between groups, all images 
were aligned within the same coordinate space for voxel analysis. 
The DWI images were normalized to standard MNI coordinates 
with a cost-function masking approach using SPM 12 software.2 
All the DWI image registration results were subject to visual 
quality assessment, and any necessary adjustments 
were implemented.

1 www.itksnap.org

2 http://www.fl.ion.ucl.ac.uk/spm/

Location mapping
The frequency of infarct occurrence at each voxel was computed 

to produce a probabilistic map. To observe the specific patterns of 
anatomical infarct distribution for different outcomes, probabilistic 
maps and voxelwise chi-square tests were performed between 
favorable outcomes and unfavorable outcomes.

ML model development

Location models
The location feature set was constructed by extracting the volumes 

of infarct lesions for each patient under the Johns Hopkins University 
(JHU) template, which contains 189 annotated brain regions covering 
68 white matter, 110 Gy matter, and 11 ventricle parcellations.3 
Subsequently, least absolute shrinkage and selection operator (LASSO) 
to select potential features that were associated with END.

To avoid overfitting, a regularization parameter (λ) that controls 
the strength of the penalty applied to the coefficients were included, 
and five cross-validation was used to select the optimal value of λ. The 
individual prediction was conducted by using logistic regression (LR), 
random forest (RF), and support vector machine (SVM). We used 
5-fold cross-validation in the training cohort to choose the optimal 
parameters and avoid overfitting.

3 https://github.com/JLhos-fmri/ClinicalFrequencyAnalysisToolkit

FIGURE 1

Study flowchart.
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Radiomics models
The radiomics features were extracted from the VOIs with 

PyRadiomics software (version: 3.0.1),4 which conforms to the Image 
Biomarker Standardization Initiative (IBSI). A total of 1,143 features 
were extracted from the DWI images (shape-based (3D) features, first-
order statistical features, GLCM, GLRLM, GLSLM, GLDM). The 
features selection and prediction models were constructed using the 
method above.

Loc-Rad models
To develop an optimal diagnostic model, we constructed a fusion 

model by integrating location and radiomics models. We employed 
average information fusion strategies to amalgamate the prediction 
scores produced by the location model and the radiomics model, 
thereby formulating the Loc-Rad model.

In the development of the three models, each incorporated not 
only the features specific to their respective subsets (radiomics, 
location features, or integrating location and radiomics features) but 
also included clinical variables that exhibit statistical differences.

Statistical analysis

The R software package (version 4.0.3) was used to perform the 
statistical analyses. The Kolmogorov–Smirnov test was used to assess 
whether the data followed a normal distribution. Continuous variables 
are presented as medians (interquartile ranges) and were compared 
groups with the t test if they were normally distributed or the Mann–
Whitney U test if not. Categorical variables are presented as 
percentages and were compared between groups with the chi-square 
test or Fisher’s exact test. All the statistical tests were two-sided, and p 
values < 0.05 were deemed to indicate statistical significance.

4 https://pyradiomics.readthedocs.io/en/latest/

Intra-rater consistency between the two VOI segmentations 
was calculated using the Dice coefficient. Nine independent ML 
models (three algorithms, and radiomic, location features) were 
used to predict END in elderly stroke patients. The area under the 
curve (AUC) was used to evaluate model performance, and the 
optimal model was selected for further analysis using Delong’s 
tests. The performance of the optimal model was evaluated with 
the sensitivity, specificity, negative predictive value (NPV) and 
positive predictive value (PPV). The clinical benefit of the models 
was evaluated with decision curve analysis (DCA). Calibration 
curves were assessed graphically by plotting the observed rates 
against the RF-predicted probabilities, and a concordance index 
(C-index) was calculated via a bootstrap method with 1,000 
resamples. Furthermore, we used SHapley Additive exPlanations 
(SHAP) to interpret and visualize the impact of predictors on END 
risk based on the best performing model.

Results

Patient characteristics

Among the 1,248 patients initially screened, 709 were included for 
analysis in the present study (500 patients for training set and 209 for 
validation set). The baseline characteristics of the END group 
(n = 271) and non-END group (n = 438) are presented in Table 1. 
There were statistically significant in age, male, large vessel occlusion 
(LVO), NIHSS on admission and AF between END and non-END. The 
Dice coefficient between the two researchers for VOI segmentations 
reached 0.95.

Infarction location probabilistic maps

An overview of location maps for the END and non-END after 
stroke are presented in Figure 2. Overall, the infarct lesions were 

TABLE 1 Baseline characteristics of the END and non-END groups.

Characteristics END (n = 271) Non-END (n = 438) p-value

Age, median (IQR) 78 (72, 84) 74 (69, 80) < 0.001

Male, n (%) 146 (53.9%) 277 (63.2%) 0.013

LVO, n (%) 156 (57.6%) 89 (20.3%) < 0.001

NIHSS on admission, median (IQR) 12 (6.5, 17) 3 (2, 7) < 0.001

Hypertension, n (%) 215 (79.3%) 341 (77.9%) 0.641

Diabetes, n (%) 93 (34.3%) 164 (37.4%) 0.400

Hyperlipemia, n (%) 9 (3.3%) 27 (6.2%) 0.094

Smoking, n (%) 78 (28.8%) 117 (26.7%) 0.549

Drinking, n (%) 51 (18.8%) 85 (19.4%) 0.847

AF, n (%) 60 (22.6%) 38 (11.6%) < 0.001

Therapy, n (%) 0.103

EVT 22 (8.1%) 19 (4.3%)

IVT 76 (28%) 134 (30.6%)

Conservative treatment 173 (63.8%) 285 (65.1%)

END, early neurological deterioration; AF, atrial fibrillation; LVO, large vessel occlusion; IVT, intravenous thrombolysis; EVT, endovascular treatment.
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nearly symmetrically, but spatially heterogeneously distributed, 
with predilection in the blood supply of the bilateral medial 
lenticulostriate artery, temporal parts of the bilateral MCA, 
insular portion of the bilateral MCA, occipital pars of the bilateral 
posterior cerebral artery, the bilateral anterior choroidal and 
thalamoperforators, and the brainstem of the basilar artery. 
Infarcts in the left superior frontal gyrus, left middle frontal 
gyrus, and left central posterior gyrus were associated with END 
(p < 0.05).

Feature selection

A total of 1,143 radiomics features and 189 location features were 
extracted from the DWI images. The top  9 radiomics features 
(Figure 3A), location features (Figure 3B), and location-radiomics 
features (Figure 3C) that were ultimately obtained from the training 
cohort were screened for further analysis. The best features related to 
END in the Loc-Rad model were highly consistent with individual 
radiomics model and location model.

Performances of models

In the training cohort, the 3 machine learning methods used the 
selected features to train the predictive models. Among the models 
built from the different feature sets, the Loc-Rad models demonstrated 
superior performance compared with the location models and 
radiomics models in the training cohort (Table  2). Delong’s tests 
demonstrated statistical significance across all tasks (p < 0.05). The 
AUCs of the 3 ML models based on Loc-Rad features ranged from 
0.853 to 0.883 in the training cohort (Figure 4), with the RF model 
yielding the highest AUC [0.883 (95% CI: 0.854–0.912)] (Table 2).

Independent external validation

In the validation cohort, The AUCs of Loc-Rad model in 
predicting END was 0.768–0.818 (Figure 4). The loc-rad models also 
were significantly better than that of the location and radiomics 
models (p < 0.05). The RF model yield the highest AUC [0.818 (95% 
CI: 0.784–0.852)], and the corresponding accuracy, sensitivity, 

FIGURE 2

Probability atlas of infarct location in the training cohorts (N = 500). The top row depicts the anatomic distribution pattern of all elderly stroke patients. 
The bottom panels show the location patterns of patients with END (N = 438) and with non-END (N = 271), and the comparison maps (chi-square test, 
p < 0.05).
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specificity, PPV, and NPV were 0.811, 0.830, 0.799, 0.718, and 0.884 
(Table 3). Figure 5 shows the decision curves of Loc-Rad in RF-based 
model with good performance. The RF model displays a consistent 
positive net benefit in the training cohort (Figure 5A) and external 
validation cohort (Figure 5B). The calibration plots for the probability 
of END were predicted well in both the training cohort (C-index 
0.811, 95% CI 0.798–0.825; Figure 5C) and validation cohort (C-index 
0.809, 95% CI 0.792–0.828; Figure 5D).

SHAP interpretable model

The SHAP method was used to assess the importance of each 
variable in predicting END of the optimal RF model. The top five 
variables from the Loc-Rad model in the training cohort included 
postcentral gyrus left, superior frontal gyrus right, w−HLH_glcm_
Correlation, large vessel occlusion and lateral ventricle_body left 
(Figure 6). Figure 6A shows the SHAP plots for the RF model. The 
SHAP plots illustrated that the lower levels of these top 5 predictors 
(i.e., blue dots) were associated with a lower probability of END (i.e., 
SHAP value<0). Figures 6A,B provides two examples for predicting 
the risk of END in elderly stroke patients.

Discussion

In this study, we integrated a coordinatized lesion location analysis 
into the classical ROI-based analysis of radiomics. By comparing with 
single models of location and radiomics, we found that the fusion 
Loc-Rad model combining location and radiomic features 
demonstrated a high AUC (0.883) and accuracy (0.888) when 
constructed with the RF algorithm; a similar prediction performance 
was achieved in the validation cohort (AUC: 0.818; accuracy: 0.811), 
indicating the high clinical utility and generalizability of the prediction 
model. The results of this study also indicated that the postcentral 
gyrus left, superior frontal gyrus right, w−HLH_glcm_Correlation, 
large vessel occlusion and lateral ventricle_body left were important 
contributing factors to model performance. These findings contribute 
to the early identification of elderly stroke patients at high risk of END 
and who should receive targeted clinical care through 
timely interventions.

The correlation between brain lesion location and functional 
outcomes has been extensively studied (Biesbroek et al., 2017), with 
early case series from the 19th century documenting individuals 
with a specific deficit who had a lesion at a particular location. To 
date, more than 100 studies have applied modern lesion-symptom 

TABLE 2 Performance of different models for predicting END in elderly stroke patients for train cohort.

Classifiers Features AUC Accuracy Sensitivity Specificity PPV NPV

LR

Radiomics 0.694 0.712 0.487 0.852 0.670 0.729

Location 0.793 0.770 0.786 0.760 0.670 0.852

Loc-Rad 0.853 0.860 0.826 0.881 0.811 0.891

RF

Radiomics 0.667 0.712 0.539 0.820 0.649 0.742

Location 0.775 0.819 0.672 0.911 0.824 0.818

Loc-Rad 0.883 0.888 0.856 0.909 0.853 0.911

SVM

Radiomics 0.710 0.740 0.583 0.838 0.690 0.765

Location 0.759 0.798 0.672 0.877 0.771 0.812

Loc-Rad 0.872 0.879 0.830 0.909 0.849 0.896

ML, machine learning; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; LR, logistic regression; RF, random forest; SVM, support vector machine. 
Best results are marked in bold.

FIGURE 3

Top nine important features and weights for predicting the END in radiomics (A), location features (B), and Loc-Rad features (C).
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mapping techniques to analyze associations between infarct location 
and cognition at the group level (Biesbroek et al., 2017; Ding et al., 
2023). In contrast, few studies have assessed the predictive value of 
infarct location for END in elderly patients. In our study, we enrolled 
709 elderly stroke patients with lesions that covered the vast majority 
of the volume of the brain, allowing us to evaluate and externally 
validate the predictive value of most infarct locations across the 

brain. We  found that the left superior frontal gyrus, left middle 
frontal gyrus, and left central posterior gyrus were associated with 
unfavorable outcomes. The left central posterior gyrus played a vital 
role in integrating sensory inputs, which are essential for motor 
planning, coordination, and the perception of body position and 
movement (proprioception). Damage to the central posterior gyrus 
can lead to somatosensory deficits, such as impaired tactile 

FIGURE 4

Prediction performance of the three machine learning models for END in the elderly stroke in the training cohort (A) and validation cohort (B).

TABLE 3 Performance of different models for predicting END in elderly stroke patients for validation cohort.

Classifiers Features AUC Accuracy Sensitivity Specificity PPV NPV

LR

Radiomics 0.649 0.669 0.539 0.749 0.570 0.724

Location 0.706 0.704 0.672 0.724 0.601 0.781

Loc-Rad 0.768 0.801 0.598 0.927 0.835 0.788

RF

Radiomics 0.622 0.695 0.590 0.760 0.604 0.750

Location 0.705 0.749 0.716 0.769 0.658 0.814

Loc-Rad 0.818 0.811 0.830 0.799 0.718 0.884

SVM

Radiomics 0.670 0.719 0.546 0.826 0.661 0.746

Location 0.720 0.757 0.579 0.868 0.730 0.769

Loc-Rad 0.778 0.777 0.727 0.808 0.701 0.827

ML, machine learning; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; LR, logistic regression; RF, random forest; SVM, support vector machine. 
Best results are marked in bold.
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sensation, proprioception, or the ability to perceive pain and 
temperature. Studies have shown that the extent of sensory 
impairment following a stroke is a strong predictor of motor 
recovery (Kessner et  al., 2019). Patients with preserved 
somatosensory function tend to have better motor outcomes, as 
sensory feedback is essential for relearning motor skills during 
rehabilitation. Conversely, severe sensory deficits can limit the 
effectiveness of motor rehabilitation, as the brain struggles to 
integrate sensory information necessary for movement (Lamorie-
Foote et al., 2024).

Previous studies have shown that malnutrition, Cystatin C, 
internal carotid artery occlusion, and brain atrophy can be used to 

assess the END of stroke patients (Bao et al., 2022; Kim et al., 2017; 
Boulenoir et al., 2021; Tschirret et al., 2018). However, most existing 
studies have not reported the prognostic value of these factors, making 
it difficult to identify elderly stroke patients with an END risk in the 
early stages in terms of accurate evaluation. Advances in ML 
technology have allowed clinicians to utilize large datasets to develop 
effective models for improving disease identification (Heo et al., 2019; 
Sung et al., 2020; Kim et al., 2021; Sheth et al., 2023). An increasing 
body of research has focused on the development of ML models for 
evaluating functional outcomes in stroke patients (Sung et al., 2020; 
Kim et  al., 2021). While current predictive models for early 
neurological deterioration (END) in stroke patients often rely on 

FIGURE 5

Net benefits of the RF model by decision curve analysis for predicting END in the Training cohort (A) and external validation cohort (B). Calibration 
curves of the nomogram to predict the probability of END in (C) the training cohort and (D) validation cohort. The actual probability of END is plotted 
on the y-axis; the RF-predicted probability is plotted on the x-axis.
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clinical factors or imaging biomarkers alone, which may not fully 
capture the complex interplay between lesion location and radiomic 
features, leading to moderate predictive accuracy. We  applied 
classifiers constructed from three algorithms to predict END in elderly 
stroke patients. We found that the ML models achieved an AUC of 
0.667–0.710 when constructed with radiomics. However, we observed 
that adding location features significantly increased the AUC to 
0.853–0.883. And the fusion Loc-Rad model combining location and 
radiomic features demonstrated a high AUC (0.883) and accuracy 
(0.888) when constructed with the RF algorithm. The RF algorithm’s 
ability to handle complex, non-linear relationships, its robustness to 
overfitting, its natural feature importance ranking, and its ability to 
handle imbalanced data make it a superior choice for predicting END 
in elderly stroke patients compared to LR and SVM. Wu et al. (2015) 
reported that for a given age and sex, the risk that a patient would have 
greater long-term disability depended on the location of the infarct. 
This effect appears to have a lesser impact on the admission NIHSS 
score, indicating that lesion location may play a distinct role in 
determining stroke severity independent of other factors. Our study 
addresses these limitations by integrating both location and radiomic 
features into a ML model, significantly enhancing predictive 
performance and providing a more comprehensive tool for identifying 
high-risk elderly stroke patients.

Our study utilized the SHAP method to enhance the interpretability 
of the machine learning models at the cohort and individual patient 
levels, employing user-friendly visualization tools for demonstration 
purposes. We found that the postcentral gyrus left, superior frontal 
gyrus right, w−HLH_glcm_Correlation, large vessel occlusion and 
lateral ventricle_body left were the five most important factors in the RF 
model, and these features related to END in the Loc-Rad model were 
highly consistent with individual radiomics model and location model. 
The SHAP value for a feature was calculated as a weighted average of the 
differences in predictions when the feature was included versus 
excluded from all possible subsets. The weights are determined by the 
number of ways a subset of a certain size can be formed. SHAP values 
provided a measure of the importance of each feature for a specific 

prediction. A higher absolute SHAP value indicated that the feature has 
a greater impact on the prediction. Through the use of SHAP, the 
interpretable machine learning model developed in this study addresses 
the issue of trust between clinical doctors and artificial intelligence 
algorithms and helping identify END in elderly stroke patients so that 
they can be  directed toward intervention therapies early in their 
treatment course.

Although our study yielded promising results, it is crucial to 
acknowledge its limitations. The proportion of END in elderly stroke 
patients was relatively low, resulting in an imbalance between the two 
groups. Further augmentation of the sample size of patients with END 
is necessary to validate our findings. Second, this is a retrospective 
study, it is susceptible to selection and recall bias. Future studies 
should aim to address these biases by employing prospective designs, 
ensuring more comprehensive data collection, and validating the 
models in diverse populations. In addition, although external 
validation was used in this study, we did not perform the models on 
data from a different time period, which would better demonstrate the 
model’s robustness and applicability over time. Finally, the Loc-Rad 
and ML models were constructed using data mainly from Chinese 
patients, and therefore validation across various racial groups is 
warranted to ascertain their applicability and generalizability. 
Prospective international multicenter studies are necessary for 
additional validation of the performance of the RF model.

Conclusion

In conclusion, our study provides the first comprehensive maps 
of infarct location, associated with a high risk of END in elderly 
stroke patients. Location features were generated from the maps 
and subsequently integrated into an ML model. The RF model 
based on location features and radiomics constructed in our study 
achieved stable prediction performance across different cohorts. 
Owing to its high accuracy and reliability, the RF model based on 
location features and radiomics could be applied by clinicians to 

FIGURE 6

The SHAP plots for the RF model (A). The SHAP plots illustrated that the lower levels of these top 5 predictors (i.e., blue dots) were associated with a 
lower probability of END (i.e., SHAp value<0). Examples of the RF model output for an individual patient with the determining feature values that 
influenced the classification decision from the non-END (B) and the END (C). The contributing variables are arranged in the horizontal line, sorted by 
the absolute value of their impact. The output value is the predicted risk of unfavorable outcomes. The base value means the expected value of model.
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identify individual patients at risk of END after stroke in 
elderly patients.
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