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Objective: Parkinson’s disease (PD) is a progressive neurodegenerative disorder 
that significantly impacts motor function and speech patterns. Early detection 
of PD through non-invasive methods, such as speech analysis, can improve 
treatment outcomes and quality of life for patients. This study aims to develop 
an interpretable machine learning model that uses speech recordings and 
acoustic features to predict PD.

Methods: A dataset of speech recordings from individuals with and without PD was 
analyzed. The dataset includes features such as fundamental frequency (Fo), jitter, 
shimmer, noise-to-harmonics ratio (NHR), and non-linear dynamic complexity 
measures. Exploratory data analysis (EDA) was conducted to identify patterns and 
relationships in the data. The dataset was split into 70% training and 30% testing 
sets. To address class imbalance, synthetic minority oversampling technique 
(SMOTE) was applied. Several machine learning algorithms, including K-Nearest 
Neighbors (KNN), Support Vector Machine (SVM), Decision Trees, Random Forests, 
and Neural Networks, were implemented and evaluated. Model performance was 
assessed using accuracy, recall, F1 score, and area under the receiver operating 
characteristic curve (AUC-ROC) metrics. SHapley Additive exPlanations (SHAP) 
were used to explain the models and evaluate feature contributions.

Results: The analysis revealed that features related to speech instability, such 
as jitter, shimmer, and NHR, were highly predictive of PD. Non-linear metrics, 
including Recurrence Plot Dimension Entropy (RPDE) and Pitch Period Entropy 
(PPE), also made significant contributions to the model’s predictive power. 
Random Forest and Gradient Boosting models achieved the highest performance, 
with an AUC-ROC of 0.98, recall of 0.95, ensuring minimal false negatives. SHAp 
values highlighted the importance of fundamental frequency variation and 
harmonic-to-noise ratio in distinguishing PD patients from healthy individuals.

Conclusion: The developed machine learning model accurately predicts 
Parkinson’s disease using speech recordings, with Random Forest and Gradient 
Boosting algorithms demonstrating superior performance. Key predictive features 
include jitter, shimmer, and non-linear dynamic complexity measures. This study 
provides a reliable, non-invasive tool for early PD detection and underscores the 
potential of speech analysis in diagnosing neurodegenerative diseases.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder primarily affecting motor functions, leading to tremors, 
muscle rigidity, and coordination difficulties. It is one of the most 
common neurodegenerative diseases (Kouli et al., 2018). As the aging 
of population, the prevalence of PD is expected to rise, making early 
diagnosis and intervention crucial for improving patient prognosis. 
Currently, PD is diagnosed through clinical assessments such as 
neurological exams and imaging techniques, but these methods are 
limited by their reliance on observable symptoms, which may only 
appear after significant disease progression. Speech changes are 
increasingly recognized as early indicators of Parkinson’s disease, 
often manifesting as reduced vocal intensity, monotone speech, and 
impaired pitch modulation (Ciucci et al., 2013). These changes are 
typically caused by bradykinesia and rigidity affecting the laryngeal 
and respiratory muscles. Importantly, speech abnormalities may 
appear years before classical motor symptoms, making them valuable 
for early screening. In addition to speech changes, other prodromal 
markers of PD have been identified, including REM sleep behavior 
disorder (RBD), hyposmia, constipation, and subtle cognitive decline 
(Kang et al., 2016). Among these, RBD is currently considered one of 
the most specific early indicators, often preceding PD diagnosis by 
several years. Combining speech-based biomarkers with established 
non-motor indicators like RBD could enhance the sensitivity and 
robustness of early detection strategies. These changes can be subtle 
and are frequently overlooked during clinical evaluations. However, 
recent advances in machine learning have made it possible to develop 
models capable of accurately predicting the presence of PD from 
speech recordings (Suppa et al., 2022). This non-invasive approach 
offers the potential for early detection, enabling timely intervention 
and better management of PD.

In the realm of PD diagnosis, several studies have utilized 
speech features to predict the presence of the disease. For instance, 
researchers have analyzed speech characteristics such as jitter, 
shimmer, and fundamental frequency (F0) to distinguish PD 
patients from healthy controls (Zheng et  al., 2024). Machine 
learning can automatically capture both linear and non-linear 
relationships between input features. Previous studies have applied 
support vector machines (SVM), Random Forests, and deep 
learning models, to classify PD using speech data (Hossain and 
Amenta, 2024; Ali et al., 2024; Moro-Velazquez et al., 2021). With 
advancements in feature engineering, this study applied 
Multinomial Naive Bayes (Multinomial NB) for dysarthria 
detection in PD, achieving 95% classification accuracy, 
demonstrating the effectiveness in high-dimensional sparse feature 
selection (Alshammri et al., 2023). The deep learning techniques 
(Meghraoui et al., 2016; Ul Haq et al., 2022; Liang et al., 2023) has 
significantly improved the ability to model non-linear relationships. 
For example, Quan et al. (2022) innovatively developed a time-
domain-space-domain joint deep learning framework 
(TD-2DCNN + 1D-CNN) that achieved high cross-language 
detection accuracy in complex speech tasks (sustained vowels, short 
sentence reading) for Mandarin (75.3–81.6%) and Spanish (92%), 
and visualized the Mel-spectrogram features to reveal the key role 
of low-frequency regions (<2 kHz) in PD-related voice variability, 
providing interpretable evidence for clinical diagnosis.

These models have shown promising results, but challenges 
remain, including insufficient statistical validation, limited 
interpretability, and the risk of overfitting when training deep learning 
models on small sample sizes. Therefore, there is a need for more 
robust machine learning models to explain the complex non-linear 
relationships between various speech features and disease status. This 
study aims to bridge this gap by developing a machine learning model 
that could accurately predict PD using speech recordings. By analyzing 
features extracted from patient speech, including jitter, shimmer, and 
fundamental frequency, we seek to identify key biomarkers associated 
with PD. Ultimately, a powerful, scalable model can be established and 
serve as a non-invasive diagnostic tool for early PD detection, 
contributing to improved clinical decision-making.

2 Materials and methods

2.1 Dataset description

This study utilized a PD speech dataset, which comprises 
biomedical speech measurements from 31 individuals, including 23 PD 
patients. Each column in the dataset represents a specific speech 
measurement, and each row corresponds to one of the 195 speech 
recordings from these individuals. The “status” column indicates the 
health status of each individual, with healthy subjects marked as “0” and 
PD patients marked as “1.” The dataset is stored in ASCII CSV format, 
with each row representing a single speech recording instance. Each 
patient has approximately six speech recordings, and the individual’s 
name and recording number are indicated in the first column.

The dataset attributes include: Individual name and recording 
number; MDVP:Fo (Hz): Average fundamental frequency of the vocal 
cords; MDVP:Fhi (Hz): Maximum fundamental frequency of the vocal 
cords; MDVP:Flo (Hz): Minimum fundamental frequency of the vocal 
cords; MDVP:Jitter (%), MDVP:Jitter (Abs), MDVP:RAP, MDVP:PPQ, 
Jitter:DDP: Several measures of variation in the fundamental frequency 
of the vocal cords; MDVP:Shimmer, MDVP:Shimmer (dB), 
Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA: 
Several measures of variation in the amplitude of the vocal cords; NHR, 
HNR: The ratio of noise to harmonic components in the speech signal; 
status: Health status of the individual (1 for PD patients, 0 for healthy 
individuals); RPDE, D2: Two non-linear dynamic complexity measures; 
DFA: The fractal scaling exponent of the signal; spread1, spread2, PPE: 
Three non-linear measures of variation in the fundamental frequency. 
For detailed information about the dataset, please refer to reference 
(Little et  al., 2008; Little et  al., 2007). The data collection and 
de-identification processes have been approved by the relevant 
ethics committee.

2.2 Data preprocessing

In the data preprocessing stage, the first step was processing 
missing data. Features with missing values exceeding 10% were 
excluded from the dataset. For other features with missing values, 
random forest imputation was applied. All data were standardized 
and normalized to ensure compatibility with the subsequent 
model construction.
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2.3 Feature selection

This study included data from 195 speech recordings, with 48 
healthy speech recordings (labeled as 0) and 147 PD speech 
recordings (labeled as 1). The data were randomly divided into 
training and validation sets in a 7:3 ratio. Feature selection and model 
construction were performed on the training set, while the validation 
set was used to test the model’s performance. The study involved a 
total of 22 features, and the feature selection process is illustrated in 
Figure  1. Initially, an independent sample t-test (Kim, 2015) or 
Mann–Whitney U test (McKnight and Najab, 2010) (p < 0.05) was 
used to perform preliminary selection of differentially significant 
features. Subsequently, the max-min normalization method 
(Mazziotta and Pareto, 2022) was applied to the selected features to 
eliminate the influence of units and dimensions, ensuring the 
reliability of the results. Next, Pearson correlation analysis (Cohen 
et al., 2009) was used to further refine the features. The LASSO (Least 
Absolute Shrinkage and Selection Operator) (Ranstam and Cook, 
2018) regression method was then used for dimensionality reduction. 
LASSO reduces all regression coefficients to zero by adjusting the 
weight λ, setting the coefficients of many irrelevant features to zero. 
The optimal λ value was determined by 10-fold cross-validation to 
minimize the cross-validation error. The non-zero features were used 
to fit the regression model and were combined into the optimal set of 

imaging features. The scikit-learn package (Kramer and Kramer, 
2016) was used to build the LASSO regression model.

2.4 Model construction and training

Based on the selected features, eight commonly used machine 
learning algorithms were employed to construct the predictive model, 
including Naive Bayes, Logistic Regression, Decision Trees, Random 
Forest, Gradient Boosting Machine (GBM), Support Vector Machines 
(SVM), Multi-layer Perceptron (MLP), and LightGBM. During model 
training, 10-fold cross-validation was used to evaluate the stability and 
performance of the models, and grid search was applied to optimize 
the hyperparameters of each model.

2.5 Evaluation metrics

The classification performance of the models was assessed using 
accuracy, sensitivity, specificity, F1 score, positive predictive value, 
and negative predictive value. Additionally, ROC curves, calibration 
curves, and decision curves were generated to provide a more 
comprehensive evaluation of the model’s performance. SHapley 
Additive exPlanations (SHAP) were used to explain the models and 

FIGURE 1

Flowchart of study.
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evaluate feature contributions. The independent variables in the 
dataset were measured using various units (such as Hz, dB, %, and 
absolute values), resulting in significant variations in data units and 
considerable disparities between feature values. To address this issue, 
a z-score data scaling technique was employed to standardize 
the measurements.

2.6 Statistical analysis

Data extraction and management for this study were performed 
using the Scipy.stats package (Gommers et al., 2024) in Python. For 
each feature, the Shapiro–Wilk test was first used to assess its 
normality of distribution. For features that did not follow a normal 
distribution, the Mann–Whitney U test was used to evaluate their 
correlation with the target variable. For normally distributed features, 
Levene’s test was applied to assess variance homogeneity, and based 
on the variance properties, either the Student’s t-test or Welch’s t-test 
was used for further analysis.

Additionally, 1,000 bootstrap resampling iterations were used to 
calculate confidence intervals for AUC values and Brier scores. The 
binary classification threshold for the predicted probabilities was 
determined by the maximum Youden index in the training set. All 
statistical tests were conducted with a two-tailed p-value of less than 
0.05 considered statistically significant.

3 Results

3.1 Characteristics of study participants

A total of 195 speech recording were included in the study. The 
training set consisted of 137 voice recording, while the test set 
included 58 voice recording. Detailed statistics of the clinical 
characteristics are presented in Table 1.

The analysis revealed significant correlations between variables 
such as ‘MDVP_APQ,’ ‘MDVP_Shimmer,’ ‘DFA,’ ‘spread1,’ ‘D2,’ 
‘MDVP_Jitter,’ ‘NHR,’ ‘spread2,’ ‘MDVP_Fhi,’ ‘MDVP_Fo,’ and 
‘MDVP_Flo,’ indicating that these variables are highly correlated and 
represent different measurements of the same underlying attributes. 
These findings align with the descriptive data, supporting the notion 
that these variables reflect the same fundamental properties. The 
analysis also showed that PD patients showed significantly higher 
MDVP_APQ (0.028 ± 0.018), MDVP_Shimmer (0.034 ± 0.02), DFA 
(0.725 ± 0.055), spread1 (−5.333 ± 0.967), D2 (2.456 ± 0.374), MDVP_
Jitter (0.007 ± 0.005), NHR (0.029 ± 0.044), and spread2 (0.248 ± 0.078).

3.2 Feature selection

Using independent sample t-test or Mann–Whitney U test, the 
number of features was reduced from 22 to 21 (p < 0.05). Pearson 

TABLE 1 Statistical information of clinical characteristics.

Feature Non-Parkinson’s 
disease
(N = 48)

Parkinson’s 
disease

(N = 147)

Coefficient Standard Error z P-value

MDVP_Fo_Hz 181.938 ± 52.179 145.181 ± 32.238 −0.0221 0.004 −4.960 0.000

MDVP_Fhi_Hz 223.637 ± 95.714 188.441 ± 88.038 −0.0037 0.002 −2.212 0.027

MDVP_Flo_Hz 145.207 ± 58.142 106.894 ± 32.164 −0.0191 0.004 −4.845 <0.001

MDVP_Jitter 0.004 ± 0.002 0.007 ± 0.005 462.128 107.799 4.287 <0.001

MDVP_RAP 0.002 ± 0.001 0.004 ± 0.003 810.971 192.905 4.204 <0.001

MDVP_PPQ 0.002 ± 0.001 0.004 ± 0.003 937.909 210.070 4.465 <0.001

Jitter_DDP 0.006 ± 0.003 0.011 ± 0.01 270.457 64.323 4.205 <0.001

MDVP_Shimmer 0.018 ± 0.005 0.034 ± 0.02 119.999 25.989 4.617 <0.001

MDVP_Shimmer_dB 0.163 ± 0.057 0.321 ± 0.207 12.353 2.681 4.607 <0.001

Shimmer_APQ3 0.01 ± 0.003 0.018 ± 0.011 177.112 39.744 4.456 <0.001

Shimmer_APQ5 0.011 ± 0.003 0.02 ± 0.013 189.555 42.553 4.455 <0.001

MDVP_APQ 0.013 ± 0.004 0.028 ± 0.018 206.004 42.223 4.879 <0.001

Shimmer_DDA 0.029 ± 0.01 0.053 ± 0.032 59.034 13.247 4.456 <0.001

NHR 0.011 ± 0.019 0.029 ± 0.044 39.860 14.879 2.679 0.007

HNR 24.679 ± 3.399 20.974 ± 4.324 −0.258 0.055 −4.658 <0.001

RPDE 0.443 ± 0.091 0.517 ± 0.101 7.406 1.806 4.101 <0.001

DFA 0.696 ± 0.051 0.725 ± 0.055 10.233 3.248 3.150 0.002

spread1 −6.759 ± 0.636 −5.333 ± 0.967 2.397 0.373 6.417 <0.001

spread2 0.16 ± 0.062 0.248 ± 0.078 17.535 3.157 5.555 <0.001

D2 2.154 ± 0.307 2.456 ± 0.374 2.619 0.587 4.458 <0.001

PPE 0.123 ± 0.044 0.234 ± 0.084 32.291 5.182 6.231 <0.001
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correlation analysis resulted in 14 imaging features. The LASSO 
regression method was then used to select the optimal 11 features. 
When the LASSO λ value was set to 0.015625, the optimal model was 
achieved (Figures 2–4).

The dotted line indicates the optimal log (λ) = 0.015625 value and 
the location of 1 standard error.

The curves are generated based on the λ value of the crossover 
operation. Each curve represents the change trajectory of the first 

FIGURE 2

Model deviation versus parameter variation curve.

FIGURE 3

Least absolute shrinkage and selection operator (LASSO) convergence coefficient diagram with the curve of feature coefficients changing with log (λ).
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FIGURE 4

The coefficients of screened features.

feature. As the penalty coefficient λ gradually increases, an increasing 
number of feature coefficients are compressed to zero. The dotted line 
indicates the 11 features selected in this study.

3.3 Performance of machine learning 
models

The performance metrics of the machine learning models are 
summarized in Table 2. The ROC curves are shown in Figure 5, with 
calibration curves in Figure 6, and decision curve analysis (DCA) in 
Figure 7. Notably, tree-based models (RF and LightGBM) exhibited 
higher AUC, outperforming other models. Specifically, the Random 
Forest model achieved the highest AUC of 0.936. The calibration 
curve showed a Brier score of 0.096 for the Random Forest model, and 
DCA demonstrated strong practical value in clinical decision-making.

3.4 SHAP value analysis

Figure  8 displays the SHAP values. The results indicated that 
elevated values of ‘MDVP_APQ’ (Amplitude Perturbation Quotient), 
‘DFA’ (Detrended Fluctuation Analysis), ‘spread1’ and ‘spread2’ 

(non-linear measures of frequency variation), ‘D2’ (Correlation 
Dimension), ‘NHR’ (Noise-to-Harmonics Ratio), and ‘MDVP_Fo’ 
(Average Fundamental Frequency) were associated with a higher 
likelihood of PD. Conversely, lower levels of ‘MDVP_Shimmer’ 
(Amplitude variation), ‘MDVP_Jitter’ (Frequency variation), ‘MDVP_
Fhi’ (Maximum Fundamental Frequency), and ‘MDVP_Fo’ were also 
indicative of PD presence.

4 Discussion

The PD is a progressive neurodegenerative disorder that affects 
motor function and speech patterns. As symptoms appear, patients 
may experience a significant decline in quality of life. Early 
identification of the disease, particularly when symptoms are not yet 
obvious, can significantly improve treatment outcomes and slow 
disease progression. Early diagnosis enables timely initiation of 
pharmacological treatments and supportive therapies including 
speech and physical therapy, which are more effective when 
introduced in the early stages. This study developed a novel method 
for predicting PD using speech data and machine learning techniques, 
demonstrating the enormous potential of speech analysis for 
early diagnosis.
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This study demonstrates that multiple acoustic features in speech 
are highly correlated with PD, especially those related to speech 
stability (such as jitter, shimmer, NHR) and non-linear dynamic 
complexity measures (RPDE, PPE), which show a significant impact 
on disease prediction. Tree-based models, such as Random Forest 
and Gradient Boosting Trees, exhibited excellent performance in our 
experiments, with an AUC-ROC of 0.936. This indicates that these 
models can accurately differentiate between PD patients and healthy 
individuals, with a low false-negative rate. Additionally, SHAP value 
analysis further revealed the core role of fundamental frequency 
variation and harmonic-to-noise ratio in distinguishing patients 
from healthy individuals, providing valuable insights for 
future research.

By comparing with machine learning algorithms, such as Support 
Vector Machine, LightGBM, and K-Nearest Neighbors, we found that 
Random Forest and Gradient Boosting Tree outperformed traditional 
statistical methods in terms of AUC values and classification 

performance. The RF model achieved the highest AUC value of 0.936, 
indicating its strong ability to handle high-dimensional and 
imbalanced speech data. Furthermore, tree-based models not only 
improved classification accuracy but also ensured model 
interpretability, which is crucial for practical clinical applications. 
Calibration curves and decision curve analysis further demonstrated 
that the RF model has strong clinical decision support capabilities, 
with a Brier score of 0.096, indicating high reliability of 
the predictions.

Feature selection was a key part of this study, employing methods 
such as t-tests, Mann–Whitney U tests, Pearson correlation analysis, 
and LASSO regression to successfully identify key acoustic features 
associated with Parkinson’s disease. Through an in-depth analysis of 
these features, we  confirmed the importance of jitter, shimmer, 
fundamental frequency, and non-linear dynamic complexity measures 
(such as RPDE and PPE) in disease prediction. Notably, some features 
(such as MDVP:APQ, DFA, and NHR) have significant biological 

TABLE 2 Performance of models in training and test set.

Model AUC Accuracy Sensitivity/
recall

Specificity F1-score PPV/
precision

NPV Cut-off

LR 0.860|0.840 0.845|0.774 0.881|0.781 0.750|0.750 0.892|0.841 0.902|0.911 0.706|0.511 0.500|0.500

NB 0.857|0.861 0.655|0.693 0.548|0.619 0.938|0.938 0.697|0.756 0.958|0.970 0.441|0.429 0.500|0.500

DT 0.869|0.795 0.810|0.752 0.738|0.714 1.000|0.875 0.849|0.815 1.000|0.949 0.593|0.483 0.500|0.500

GB 0.948|0.863 0.862|0.766 0.810|0.724 1.000|0.906 0.895|0.826 1.000|0.962 0.667|0.500 0.500|0.500

RF 0.967|0.936 0.872|0.852 0.886|0.875 0.967|0.906 0.898|0.863 1.000|0.986 0.640|0.483 0.500|0.500

MLP 0.772|0.789 0.672|0.715 0.643|0.676 0.750|0.844 0.740|0.785 0.871|0.934 0.444|0.443 0.500|0.500

LGBM 0.922|0.858 0.862|0.788 0.810|0.752 1.000|0.906 0.895|0.845 1.000|0.963 0.667|0.527 0.500|0.500

KNN 0.784|0.804 0.621|0.606 0.500|0.495 0.938|0.969 0.656|0.658 0.955|0.981 0.417|0.369 0.500|0.500

The left side of “|” is in the training set, and the right side is in the test set. AUC, the area under the curve; PPV, positive predictive value; NPV, Negative predictive value.

FIGURE 5

ROC curves of the training set (left) and the test set (right).

https://doi.org/10.3389/fnagi.2025.1586273
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnagi.2025.1586273

Frontiers in Aging Neuroscience 08 frontiersin.org

FIGURE 7

Decision curve analysis (DCA) curves of the training set (left) and the test set (right).

meaning in distinguishing PD patients and may reflect early acoustic 
changes in Parkinson’s disease, providing new biomarkers for early 
clinical screening.

With the development of artificial intelligence (Li et al., 2023; 
Saw, 2023), many studies have used AI technology to detect 
Parkinson’s disease. For example, Teixeira and Fernandes (2014) 
proposed a voice health classification framework based on Jitter, 
Shimmer, and HNR parameters. They found that gender differences 
significantly influenced the Jitter parameter in healthy populations, 
while different vowels (/a/, /i/, /u/) and pitch (high/low/middle) 
caused significant differences in multiple parameters such as 
Shimmer, apq3, and HNR. This work established an acoustic 

parameter benchmark for healthy voices, which serves as a critical 
baseline for pathological voice detection. Ji et al. (2025) proposed a 
graph-based multi-label voice feature selection algorithm that 
modeled Parkinson’s disease (PD) subtypes (tremor, gait freezing, 
swallowing disorder) as a multi-label learning task. By integrating 
continuous vowels (/a/) and dynamic pronunciation tasks (/pa-ka-
la/) with acoustic features, they combined a graph model to select key 
biomarkers, achieving a 12.6% improvement in subtype joint 
recognition accuracy over traditional single-label methods (such as 
LASSO), significantly optimizing classification specificity. Ahsan 
et al. (2022) proposed a multi-dimensional framework for machine 
learning disease diagnosis through systematic bibliometric analysis 

FIGURE 6

Calibration curves for the training set (left) and the test set (right).
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(Scopus/WOS database, 1,216 papers). They reviewed the evolution 
of ML in disease diagnosis from the perspectives of algorithms, 
disease types, data types, and application scenarios. They identified 
explainable models and multi-modal data fusion as future core 
directions, providing a methodological benchmark for medical AI 
research. Pramanik and Sarker (2021) proposed an optimized 

framework for Parkinson’s disease detection based on high-
dimensional small-sample voice data. Through multi-stage data 
preprocessing (normalization, multicollinearity elimination, 
dimensionality reduction) combined with ensemble learning 
strategies, they achieved an accuracy of 94.1% on a voice dataset, an 
8% improvement over similar studies, and validated the robustness 

FIGURE 8

SHapley Additive exPlanations (SHAP) interpretability of random forest (a–e).
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of random forest in imbalanced class scenarios. Almeida et al. (2019) 
proposed a multi-channel voice analysis framework. By comparing 
the performance differences between heart-shaped directional 
microphones (AC) and smartphone microphones (SP) in Lithuanian 
pronunciation tasks (sustained vowel /a/) and short sentence tasks, 
they verified that pronunciation task classification performed 
significantly better than speech tasks (AC accuracy 94.55% vs. 
SP 92.94%). Their multi-metric evaluation (AUC 0.87–0.92, EER 
14.15–19.01%) revealed the impact of device type on Parkinson’s 
disease detection sensitivity, providing key parameters for optimizing 
mobile medical devices.

Compared to previous studies, this research made breakthroughs 
in preventing model overfitting. Previous studies often focused on 
larger datasets, but real-world scenarios are often limited by sample 
size and feature selection. This study used a small dataset with 195 
voice records and employed various advanced machine learning 
algorithms to reduce the risk of overfitting and improve the model’s 
generalization ability. Additionally, SHAP methods were employed to 
assess model interpretability, providing strong support for 
understanding how machine learning models make predictions and 
facilitating their application in practical clinical environments.

From a practical standpoint, the proposed method is cost-
effective compared to traditional diagnostic imaging or laboratory-
based procedures. Voice recording can be collected using standard 
microphone devices or mobile phones, and the analysis process can 
be automated and completed in under a minute using pre-trained 
models. Furthermore, minimal training is required for healthcare 
personnel, as the interface for the system can be designed to be user-
friendly and integrated into electronic health record systems. These 
features make the approach particularly suitable for primary care 
settings, remote screening, or telemedicine applications.

Furthermore, the promising results of this study suggest that the 
proposed voice-based detection framework may hold potential for 
broader clinical applications beyond Parkinson’s disease. Given that 
speech impairments are also prevalent in other neurodegenerative 
disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis 
(ALS), future research could explore the adaptation of this 
methodology to assist in early screening and monitoring of these 
conditions. Integrating such non-invasive tools into the diagnostic 
pipeline may contribute to timely intervention and improved patient 
outcomes across a range of neurodegenerative diseases.

Despite offering a speech data-based PD prediction model, this 
study has several limitations. First, the dataset is relatively limited, 
which affects the model’s generalizability. Future research should 
expand the dataset to include more patients with diverse features, 
such as images and clinical indicators, to improve the model’s 
universality and robustness. Second, although various machine 
learning algorithms were evaluated, the sensitivity of these algorithms 
to noise and atypical samples needs further exploration. Moreover, 
the data collection was limited to a single language and speech 
feature; future research could consider incorporating other languages 
or speech features (such as emotional tone) to further improve 
diagnostic accuracy. Additionally, the UCI Parkinson’s Speech 
Dataset lacks detailed clinical metadata such as Hoehn and Yahr 
(H&Y) staging, UPDRS scores, medication status, and non-motor 
symptoms, which limits the model’s clinical interpretability. 
Specifically, we  plan to integrate acoustic features with detailed 

clinical data, such as Hoehn and Yahr (H&Y) staging, UPDRS scores, 
medication usage, and non-motor symptoms. This integration will 
allow for more comprehensive patient stratification based on disease 
severity, treatment response, and symptom subtypes. Moreover, 
combining these clinical indicators with acoustic biomarkers can 
provide a deeper understanding of the relationship between vocal 
impairments and disease progression in Parkinson’s disease. Future 
research should also explore the potential of longitudinal datasets to 
track changes in speech features over time, offering dynamic insights 
into disease progression and treatment outcomes. By integrating this 
multimodal data, the clinical applicability and diagnostic accuracy of 
the model can be significantly enhanced, making it more effective for 
use in personalized healthcare settings.

5 Conclusion

This study demonstrates the potential of machine learning models 
based on speech data for the early detection of PD. Through feature 
selection, model construction, and SHAP analysis, we  identified 
important speech features associated with PD and proved the 
superiority of models in prediction accuracy and clinical decision 
support. In the future, with the expansion of datasets and further 
optimization of models, this non-invasive diagnostic tool based on 
speech analysis is expected to become an important auxiliary method 
for early detection of PD, providing directions for disease management 
and personalized treatment.
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