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Background: Alzheimer’s disease (AD) requires early intervention at preclinical 
stages like subjective memory complaints (SMC). Traditional static brain network 
analyses lack sensitivity to detect early functional disruptions in SMC. This study 
aimed to improve preclinical AD stratification by integrating dynamic gray-white 
matter functional connectivity (DFC) and machine learning.

Methods: Using multi-cohort ADNI data [N = 1,415 participants across cognitive 
normal[CN], SMC, and cognitive impairment [CI]groups],dynamic functional 
networks were constructed via sliding-window analysis (20–50 TR windows, 
98% overlap) of 200 gray matter (Schaefer atlas) and 128 data-driven white 
matter nodes. DFC metrics (standard deviation of Fisher z-transformed 
correlations) were used to identify group differences and classify AD spectrum 
stages. Support vector machine (SVM) models were trained to differentiate CN/
SMC/CI, with subgroup analyses in Aβ + and APOE E4 + populations.

Results: DFC with short sliding windows (20–50 TRs, 98% overlap) demonstrated 
greater sensitivity than SFC in detecting early functional disruptions in gray-
white matter networks, identifying 34 CN-SMC [p < 0.05, e.g., ventral attention 
network (VAN)-white matter 2 (WM2) via Gau20-DFC], 44 CN-CI (p < 0.001), 
and 49 SMC-CI (p < 0.01) differential connections. Key early abnormalities were 
identified in the anterior cingulate network (WM4) and sensorimotor network 
(WM5), with WM4-WM5 disconnections in Aβ + subgroups strongly correlated 
with Aβ deposition and APOE ε4 genotype. Dynamic graph theory models using 
SVM achieved superior AD spectrum classification (ADNI2/3 AUCs: 0.85–0.92 
vs. static 0.77–0.87), particularly in Aβ + subgroups (ΔAUC = 0.15 for SMC+/
CI + discrimination, p < 0.001), with the VAN-WM2 feature in short-window 
DFC strongly correlating with cognitive scales (MMSE: r = 0.40, p < 10−11; CDR-
SB: r = −0.41, p < 10−12). Window function type (e.g., Gau20 for early changes, 
Ham50 for late stability) and data sampling points influenced sensitivity, with 
short windows optimizing early detection and long windows capturing late-
stage network degeneration. These findings establish dynamic gray-white 
matter connectivity, particularly WM4-WM5 disruptions and VAN-WM2/DMN-
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WM8 features, as sensitive preclinical AD biomarkers enabled by machine 
learning for early SMC stratification.

Conclusion: This study confirms that dynamic gray-white matter connectivity 
serves as a sensitive biomarker for preclinical Alzheimer’s disease. The WM4-
WM5 disruption hub and machine learning framework provide effective tools 
for early stratification of SMC, facilitating timely intervention within the disease’s 
therapeutic window.

KEYWORDS

brain imaging, dynamic network, gray and white matter, functional network, 
Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is a prevalent neurodegenerative 
disorder with a progressive, irreversible course, significantly 
threatening elderly physical and mental health (Singh et al., 2016; 
Østerhus, 2020). Early intervention is critical due to AD’s 
irreversible damage and progression (Rasmussen and Langerman, 
2019). Subjective memory complaints (SMC) represent a 
potential preclinical AD stage, where identification and treatment 
may delay progression (Choe et al., 2018; Warren et al., 2022; 
Amariglio et al., 2012). Amyloid-β (Aβ) and apolipoprotein E 
(APOE) E4 status are incorporated into AD spectrum 
classification criteria, playing key roles in early diagnosis 
(Schmechel, 1995; Castellano et  al., 2011). Resting-state 
functional MRI (rs-fMRI)-based brain network analysis, effective 
for characterizing complex network topology, is a valuable early 
AD diagnostic tool (Supekar et al., 2008). Prior studies report 
altered functional network topology in AD and preclinical stages, 
such as declining node clustering and modularity with increasing 
Clinical Dementia Rating Scale (CDR) scores, indicating large-
scale connectivity disruptions (Brier et al., 2012; Zhao et al., 
2012). Global functional connectivity assessments show reduced 
efficiency and clustering coefficients in AD, particularly in 
bilateral hippocampi (Supekar et al., 2008; Yang et al., 2018).

Current dynamic functional magnetic resonance imaging (fMRI) 
methods often use fixed sliding windows with strong prior 
assumptions, limiting generalizability across ethnic groups and 
scanners (Qin et al., 2024; Liuzzi et al., 2019; Filippi et al., 2019). High 
individual heterogeneity in SMC further challenges existing 
approaches (Warren et al., 2022). Machine learning advancements 
have improved fMRI-based AD diagnosis by integrating detailed 
image features and optimizing classification (Klöppel et  al., 2013; 
Khan et  al., 2021; Jia and Lao, 2022). Unlike static functional 
connectivity (SFC), which assumes constant networks, dynamic 
functional connectivity (DFC) captures transient fluctuations, 
enhancing sensitivity to early pathology (Supekar et  al., 2008) 
(Córdova-Palomera, 2017). For example, 20-TR sliding-window DFC 
detects subtle A𝛽-related disruptions in the posterior default mode 
network (DMN) and white matter tracts, correlating with amyloid 
PET load (Palmqvist, 2017; Ali et al., 2023; Reijmer et al., 2016).

Dynamic graph theory metrics (e.g., modularity, path length 
variability) reflect network integration/segregation dynamics 
(Ghanbari et  al., 2023; Liao et al., 2018; Xia et al., 2010), 
outperforming static metrics in early AD classification (Chen et al., 
2021; Yang et al., 2022; Hu et al., 2020). These spatiotemporal 

features improve machine learning models; e.g., Karim et  al. 
achieved 92% AD classification accuracy using rs-fMRI and graph 
metrics with SVM (Karim et al., 2024), while Hojjati et al. reported 
89–97% accuracy for MCI conversion prediction using multimodal 
MRI (Lin et al., 2023). Chen et al. distinguished SMC from controls 
with 79.23% accuracy via functional connectivity and graph 
parameters (Hao et al., 2019).

Despite progress, SMC-stage research remains limited (Sajid et al., 
2024). Therefore, developing a computer-aided diagnosis model for 
SMC using dynamic brain network graph theory parameters and 
machine learning methods holds significant clinical value. Building 
on these prior findings, our study addresses this gap by integrating 
dynamic gray-white matter connectivity and machine learning. Using 
multi-cohort ADNI data, we hypothesized that short-window 20 TR 
DFC metrics would surpass SFC in detecting early SMC disruptions. 
Combining data-driven white matter parcellation with dynamic graph 
theory, we aimed to identify A𝛽/APOE E4-linked connectivity hubs 
(e.g., anterior cingulate WM4, sensorimotor WM5) and develop an 
SVM-based classifier for CN/SMC/CI discrimination, with subgroup 
analyses in A𝛽+ and APOE E4 + populations. Our findings seek to 
establish dynamic brain networks as reliable tools for preclinical AD 
stratification and timely SMC intervention (Figures 1–4).

2 Materials and methods

2.1 Participants

Data used in the preparation of this article were obtained from 
the Alzheimer’s disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to test whether 
serial MRI, positron emission tomography, other biological 
markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of MCI and early AD. This 
study utilized neuroimaging and clinical data from the Alzheimer’s 
disease Neuroimaging Initiative phases ADNI-2 and ADNI-3, with 
cohort partitioning based on fMRI temporal acquisition protocols. 
The combined sample comprised 1,415 participants: 562 from 
ADNI-2 (139 cognitive normal [CN], 47 SMC, 376 cognitive 
impairment [MCI/AD]) and 853 from ADNI-3 (440 CN, 91 SMC, 
322 cognitive impairment). Inclusion criteria required: (1) complete 
T1-MRI and resting-state fMRI scans (ADNI-3 subjects had 
synchronized multimodal imaging); (2) APOE genotype and CSF 
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Aβ42 data (for Aβ + classification: Aβ42 < 980 pg./mL); (3) 
stringent motion control (framewise displacement <0.5 mm). 
Diagnostic categorization followed ADNI criteria: CN (CDR = 0, 
MMSE ≥ 26, no cognitive deficits), SMC (self-reported memory 
decline >6 months with intact neuropsychological scores), MCI 
(CDR = 0.5, objective memory impairment >1.5 SD), and AD 
(CDR ≥ 1, MMSE < 24, NIA-AA criteria). The APOE4+/
Aβ + subgroup required ε4 allele positivity and biomarker-
confirmed amyloid pathology (Centiloid > 20). Ethical approval for 
all studies was obtained from the respective institutional review 
committees, and written informed consent was obtained from 
each participant.

2.2 fMRI imaging scanning and 
preprocessing

Structural and functional MRI data were preprocessed using the 
standardized pipeline implemented in DPARSF.1 Initial fMRI 
volumes (n = 10) were discarded to ensure magnetization 
equilibrium, followed by slice-timing correction and rigid-body 
motion realignment. Participants demonstrating excessive head 

1 http://restfmri.net/forum/DPARSF

FIGURE 1

The flowchart of all participants in this study.

FIGURE 2

The workflow of this study.
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movement (>3.0 mm translation or >3.0° rotation across any axis) 
were systematically excluded. Functional images were co-registered 
to individual T1-weighted anatomical scans and normalized to MNI 
space (3 × 3 × 3 mm3 isotropic resolution). Subsequent 
preprocessing included: (1) nuisance regression (24-parameter 
motion profiles, white matter/CSF signals) to mitigate physiological 
artifacts; (2) temporal bandpass filtering (0.01–0.08 Hz) for 
low-frequency drift removal; and (3) spatial smoothing (6 mm 

FWHM Gaussian kernel). Given the multi-site nature of ADNI-2/3 
data, we addressed inherent heterogeneity arising from inter-scanner 
variability, acquisition parameter differences, and demographic 
confounders (age/gender distribution) through ComBat 
harmonization. This empirical Bayes framework, originally 
developed for genomic data integration, effectively removes site-
specific technical biases while preserving biological variance, as 
demonstrated in recent neuroimaging applications (Fortin et al., 

FIGURE 3

Presents an analysis of inter-group differences based on static and dynamic brain gray and white matter functional networks, visualized as chord 
diagrams that illustrate functional connectivity (FC) pairs showing group differences. At the ROI level, FC pairs with group differences were identified 
using two - sample t-tests. ROIs were categorized according to 7 gray matter sub- networks and 12 white matter sub-networks. For each sub-
network, the sum of connection strengths exhibiting differences was computed. The circumference of each chord diagram is segmented into 7 parts, 
where the length of each segment represents the connection strength of the corresponding sub - network. The thickness of the connecting lines 
indicates the strength of connectivity between brain regions. Panel (A) displays SFC (static functional connectivity) for the group comparisons of SMC 
vs. CN, SMC vs. CI, and CN vs. CI. Panel (B) shows both SFC and DFC (dynamic functional connectivity) with Gaussian window of 20 s (Gau20) and 
Hamming window of 20 s (Ham20) for the SMC vs. CN comparison. Panel (C) presents SFC and DFC with Gaussian window of 50 s (Gau50) and 
Hamming window of 50 s (Ham50) for the CN vs. CI comparison.
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FIGURE 4

Static functional connectivity (SFC) as a complement to dynamic network analysis in APOE4 × Aβ subgroups (A) SFC differences between 
APOE4 + Aβ + and APOE4 − Aβ − groups under the Gau20 window (20 s Gaussian). Thicker edges reflect stable connectivity disruptions, which persist 
despite transient dynamic changes (e.g., Ham20 window DFC). This highlights SFC’role in capturing long-term network damage from combined 

(Continued)
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2018). Full acquisition parameter specifications across scanners are 
provided in online website.2

2.3 Dynamic brain network construction

This study constructs dynamic gray-white matter functional 
connectivity networks based on fMRI data, integrating gray matter 
and white matter information to investigate the dynamic interactions 
within the brain. The detailed process is as follows:

2.3.1 Node definition
Cortical gray matter nodes were defined using the Schaefer 200 

atlas (Schaefer et al., 2018), partitioning the cerebral cortex into 200 
functionally homogeneous regions reorganized into seven 
subnetworks: default mode, visual, somatomotor, limbic, 
frontoparietal control, dorsal attention, and salience/ventral attention. 
These include AD-susceptible regions like the posterior cingulate 
cortex and medial prefrontal cortex. For white matter, a data-driven 
clustering approach (Peer et al., 2017) was applied: a group-averaged 
white matter mask was created, and K-means clustering (2–22 
clusters) identified 128 white matter regions across 12 functional 
networks, validated via four subsets with a Dice coefficient >0.85.

2.3.2 Functional network construction
Average blood oxygen level-dependent (BOLD) signals were 

extracted from gray/white matter regions, and Pearson correlations 
were computed for all node pairs (gray-gray, white-white, gray-white) 
to construct 200 × 200 gray matter, 128 × 128 white matter, and 
328 × 328 gray-white matter functional connectivity matrices.

2.3.3 DFC network construction
To comprehensively assess the dynamic changes in brain 

functional networks, we  employed a sliding window approach to 
construct DFC networks, quantifying the functional connections 
between gray matter, white matter, and gray-white matter regions.

 • Sliding window selection: 20, 30, and 50 TR windows (1 TR step, 
98% overlap) were tested. The optimal 30 TR window balanced 
dynamic sensitivity and noise control, with permutation tests 
correcting autocorrelation.

 • Window function selection: Hamming (reducing edge effects) and 
Gaussian (noise resistance) windows were used to 
comprehensively evaluate connectivity dynamics.

2 https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/

mri-scanner-protocols/

 • Dynamic functional connectivity quantification:

For each sliding window, Pearson correlation coefficients were 
calculated between the time series of gray and white matter nodes. The 
formula is:
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where ix  and iy  are the BOLD signals of two nodes, and x  and y
are their respective means.

 • Fisher z-transformation: To normalize the distribution of 
correlation coefficients for accurate statistical comparisons, 
Fisher’s r -to-z transformation was applied:
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where ,x yr denotes the correlation coefficient between node x and 
node y, ,x yz denotes the transformed z-score.

 • Dynamic variability metric: The dynamic variability of functional 
connectivity was quantified by calculating the standard deviation 
(SD) of the z-transformed correlation values across all windows:

 ( )=Dynamic Variability SD valuesz

This metric reflects the amplitude of connectivity strength 
fluctuations over time.

2.4 Machine learning analysis

To develop a robust classification model for distinguishing 
between different cognitive stages (CN, SMC, and CI) using DFC 
metrics, we employed a comprehensive machine learning pipeline 
with Support Vector Machine (SVM) as the classification model. The 
detailed analysis pipeline is described as follows:

2.4.1 Feature extraction

2.4.1.1 Dynamic connectivity metrics
We extracted dynamic connectivity metrics from the sliding-

window analysis of the gray-white matter functional networks. These 

APOE4 and Aβ risk factors. (B) SFC differences between APOE4 + Aβ + and APOE4 − Aβ + groups under the Gau20 window. Static connectivity 
patterns here contrast with dynamic reverse regulation (e.g., Ham20 DFC), suggesting APOE4 × Aβ interactions modulate both stable and transient 
network states. (C) SFC differences between APOE4 − Aβ + and APOE4 − Aβ − groups under the Gau30 window (30 s Gaussian). Subtle static changes 
in APOE4-deficient subgroups align with dynamic instability (e.g., Ham30 DFC), supporting Aβ’s independent impact on both static and dynamic 
networks. Subnetworks include 7 gray-matter networks (e.g., Default Mode) and 12 white-matter tracts (WM01–WM12). SFC = Static Functional 
Connectivity; DFC = Dynamic Functional Connectivity; Gau20/30 = 20/30 s Gaussian windows.

FIGURE 4 (Continued)
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metrics included the standard deviation of Fisher z-transformed 
correlation values across all windows, reflecting the temporal 
variability of functional connections. This process generated a 
comprehensive set of features representing the dynamic interactions 
between gray matter and white matter regions.

2.4.1.2 Feature set size
The initial feature set included over 21,000 dynamic connectivity 

metrics derived from the 328 × 328 gray-white matter network. Each 
feature represented the dynamic variability of a specific functional 
connection between two nodes (gray-gray, white-white, and 
gray-white).

2.4.2 Feature selection

2.4.2.1 LASSO regularization
To identify the most relevant features for classification and reduce 

dimensionality, we applied LASSO (Least Absolute Shrinkage and 
Selection Operator) regression. LASSO helped in selecting a subset of 
features that contributed most significantly to the classification 
performance while minimizing overfitting. The optimal regularization 
parameter was determined through cross-validation. Ultimately, 
LASSO selected 1,200 features that were most relevant for 
distinguishing between the different cognitive stages.

2.4.3 Clinical relevance validation of selected 
features

To ensure the biological and clinical interpretability of the selected 
features, Pearson correlation analyses were performed between 
dynamic connectivity metrics (e.g., VAN-WM2 Gau20 std) and 
neuropsychological scales (MMSE, CDR-SB). This step aimed to 
assess whether the features aligned.

2.4.4 Model training and validation

2.4.4.1 Cross-validation
We employed 10-fold cross-validation to train and validate the 

SVM model, a robust approach to assess generalizability across the 
ADNI multi-cohort dataset (1,415 participants). The dataset was 
partitioned into 10 subsets, with 9 subsets used for training and 1 for 
validation in each iteration, ensuring each sample was validated once. 
This method minimized selection bias and provided reliable 
performance estimates, particularly for detecting subtle differences in 
the SMC stage.

2.4.5 Performance evaluation

2.4.5.1 Evaluation metrics
Model performance was quantified using accuracy, sensitivity, 

specificity, and AUC-ROC, with a focus on differentiating early (SMC) 
vs. late (CI) stages. For example, in Aβ + subgroups, the dynamic 
model achieved an AUC of 0.92 for SMC + vs. CI + discrimination 
(ΔAUC = 0.15 vs. static model, p < 0.001; Table 1), highlighting its 
sensitivity to early pathology.

2.4.5.2 Class imbalance handling
To address skewed class distributions (e.g., CI: SMC ratio ~8:1 in 

ADNI-2), SMOTE was applied to synthetically oversample minority 
classes during training. This improved the model’s ability to detect 
SMC cases, as evidenced by a 12% increase in F1 score for the SMC 
class (Supplementary Table S5). Confusion matrices confirmed 
balanced performance across CN/SMC/CI categories, with 
misclassification rates <15% in cross-validation.

2.5 Statistical analyses

In our study, one-way analysis of variance (ANOVA) was 
performed to analyze the demographic information, plasma 
biomarkers, and mean functional connectivity (FC) of subnetworks 
across different groups. To further explore differences between groups, 
Tukey’s multiple comparisons test was employed following the 
ANOVA. We applied two-sample t-tests to identify region of interest 
(ROI)-level FC pairs that exhibited differences between groups. The 
chi-square test was used to examine group differences for discrete 
variables, and the independent two-sample t-test was used to examine 
statistical differences between continuous variables. Significance level 
was set at p < 0.05. To establish the clinical relevance of identified 
dynamic connectivity features, Pearson correlation coefficients were 
calculated between dynamic metrics (e.g., standard deviation of Fisher 
z-transformed correlations for VAN-WM2, DMN-WM5, and other 
key connections across different window types) and clinical cognitive 
scales (MMSE, MoCA, and CDR-SB). A significance level of p < 0.05 
was used, with Bonferroni correction applied to address multiple 
comparisons. These analyses were performed to evaluate whether 
temporal fluctuations in gray-white matter connectivity correlate with 
cognitive impairment severity. Receiver operating characteristic 
(ROC) curves were used to assess the ability to discriminate among 
different groups.

TABLE 1 Classification results of Aβ subgroup and ApoE ε4 gene subgroup.

Aβ subgroup ApoE ε4 subgroup

Classification 
features

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Clinical 55.47 ± 12.11 56.25 ± 11.46 54.07 ± 13.93 57.18 ± 8.97 51.33 ± 10.98 59.15 ± 10.54

ReHo 64.51 ± 2.03 66.92 ± 4.23 60.17 ± 8.10 68.55 ± 4.35 68.67 ± 5.03 68.51 ± 5.54

ALFF 66.72 ± 2.98 70.69 ± 5.68 59.59 ± 4.30 69.57 ± 2.71 66.07 ± 8.27 70.75 ± 5.23

Static graph theory 78.25 ± 6.73 78.77 ± 9.45 79.31 ± 9.48 77.91 ± 6.26 77.33 ± 8.36 80.11 ± 8.02

Dynamic graph theory 83.63 ± 4.02 83.25 ± 4.71 84.31 ± 6.9 85.16 ± 3.96 82.26 ± 6.1 86.14 ± 4.63

Data are presented as mean ± standard deviation.
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TABLE 3 Subset-level static vs. dynamic FC in ADNI 3.

Differential 
connections 
(Pairs)

ADNI-3

Site1 Site2

SMC 
vs. 
CN

SMC 
vs. 
CI

CN 
vs. 
CI

SMC 
vs. 
CN

SMC 
vs. 
CI

CN 
vs. 
CI

SFC 2 54 118 2 22 94

DFC Ham20 38 60 8 6 6 14

Ham30 22 40 6 6 6 12

Ham40 10 28 8 8 18 16

Ham50 6 32 2 6 18 14

Gau20 36 60 12 10 6 16

Gau30 32 42 10 6 6 12

Gau40 16 22 8 10 16 14

Gau50 10 32 6 8 18 20

Ham20 refers to a Hamming window with a size of 20 s. Gau20 refers to a Gauss window 
with a size of 20 s. Similarly, Gau30, Gau40, and Gau50 represent Gauss windows with sizes 
of 30 s, 40 s, and 50 s accordingly. Site 1 and Site 2 differ in the number of fMRI time points, 
where Site 1 includes data with 187 time points, and Site 2 with 140 time points.

3 Results

3.1 Demographic and clinical 
characteristics

Table 2 summarizes the baseline characteristics of ADNI-2 and 
ADNI-3 cohorts. In ADNI-2, significant differences were observed 
between the SMC and CI groups in APOE ε4 allele frequency (34.0% 
vs. 56.7%, p < 0.001), Aβ positivity (29.8% vs. 21.5%, p = 0.032), 
MMSE scores (28.9 ± 1.1 vs. 25.7 ± 3.8, p < 0.001), and CDR-SB scores 
(0.21 ± 0.72 vs. 2.68 ± 2.18, p < 0.001). Similar trends were replicated 
in ADNI-3, with APOE ε4 prevalence (31.9% vs. 45.3%, p = 0.002) 
and MMSE scores (29.0 ± 1.2 vs. 25.9 ± 4.0, p < 0.001) differing 
significantly between SMC and CI groups. No significant age or 
gender differences were noted across cognitive stages (*p* > 0.05).

3.2 Stability and differential analysis of DFC 
and SFC across ADNI cohorts

Stability of functional connectivity (FC) networks across ADNI 
cohorts is presented in Supplementary Table S2. For cognitively 
normal (CN) groups, similarity coefficients of SFC were 0.769 (ADNI2 
internal), 0.769 (ADNI3 internal), and 0.777 (ADNI2 vs. ADNI3). In 
subjective memory concern (SMC) groups, SFC coefficients ranged 
from 0.783–0.785. DFC showed higher consistency than SFC across 
all window types (Hamming/Gaussian, 20–50 TRs), with similarity 
coefficients spanning 0.862–0.933. The lowest DFC coefficient was 
0.862 (Ham50, ADNI2 CN), while the highest was 0.933 (Gau20, 
ADNI2 vs. ADNI3 SMC), indicating stronger cross-cohort stability 
for short-window dynamic metrics.

Supplementary Table S3 and Table 3 (main text) show group-wise 
FC differences. In ADNI2 Site 3, SMC vs. CN revealed 30 differential 
DFC connections (Ham20) in ventral attention networks and white 

matter subnetworks (WM2/WM5), whereas CN vs. CI had 54 SFC 
connections in default mode and visual networks. In ADNI3 Site 1, 
CN vs. CI exhibited 118 SFC connections—significantly more than 
SMC vs. CN (2 connections)—reflecting progressive static network 
degradation in late stages.

Subgroup analyses (Supplementary Table S4; Table 4) showed 
that within Aβ + groups, APOE4 + carriers had 70 differential DFC 
connections (Gau20) compared to 34  in APOE4– carriers. The 
APOE4 + Aβ + vs. APOE4–Aβ– comparison revealed 136 SFC 
connections in default mode and limbic networks, indicating 
synergistic genetic-pathological effects. Additionally, Table 5 further 

TABLE 2 Clinical and baseline demographic characteristics of subjects from ADNI.

ADNI-2 (n = 562) ADNI-3 (n = 853)

CN
n = 139

SMC
n = 47

CI
n = 376

CN
n = 440

SMC
n = 91

CI
n = 322

Sex

(M/F)

58/81 20/27 207/169 176/264 34/57 185/137

Age

(years)

75.0 ± 6.3 72.6 ± 5.2 73.4 ± 7.2 73.2 ± 7.4 76.6 ± 5.5 76.4 ± 8.2

Education

(years)

16.7 ± 2.1 16.9 ± 3.0 15.9 ± 2.6 16.8 ± 2.2 16.6 ± 2.4 15.7 ± 2.7

ApoE ε4

(−/+)

83/56 31/16 163/213 261/142 62/29 172/121

Aβ

(−/+)

31/13 20/14 38/81 191/60 47/18 64/72

MMSE 29.0 ± 1.4 28.9 ± 1.1a* 25.7 ± 3.8a* 29.0 ± 1.8 29.0 ± 1.2b* 25.9 ± 4.0b*

MoCA 25.8 ± 2.25 26.1 ± 2.25a* 21.2 ± 4.9a* 26.2 ± 2.63 26.6 ± 2.8b* 20.8 ± 4.6b*

CDR-SB 0.09 ± 0.21 0.21 ± 0.72a* 2.68 ± 2.18a* 0.08 ± 0.27 0.39 ± 0.69b* 2.76 ± 2.74b*

All data are expressed as mean ± standard deviation. MMSE, Mini-mental State Examination; MoCA, Montreal cognitive assessment; CDR-SB, The sum of boxes of clinical dementia rating 
scale, CN Cognitively normal, SMC Subjective Memory Concerns, CI cognitive impairment, Aβ:β-amyloid; * indicates p < 0.05; aindicates a significant statistical difference between the SMC 
group and the CI group in ADNI2. bindicates a significant statistical difference between the SMC group and the CI group in ADNI3. Age, Education, MMSE, MoCA-B, CDR-SB performed a 
nonparametric rank sum test to compare differences in demographic and clinical characteristics between the training/validation and test groups under each label, i.e., CN, CI, and SMC; 
gender was tested by chi-square between the two groups under each label.

https://doi.org/10.3389/fnagi.2025.1589018
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnagi.2025.1589018

Frontiers in Aging Neuroscience 09 frontiersin.org

analyzes the independent impact of APOE4  in Aβ + and Aβ- 
populations. Results show that within the Aβ + group, the number of 
SFC differential connections between APOE4 + and APOE4- was 82 
pairs, and the number of DFC (such as Gau20) differential 
connections was 70 pairs. In the Aβ- group, the number of SFC and 
DFC differential connections between APOE4 + and APOE4- 
decreased significantly (70 pairs and 18 pairs, respectively). This 
suggests that the effect of APOE4 on brain networks is more 
pronounced in the context of Aβ positivity, possibly through 
accelerating amyloid-β deposition or independent neurodegenerative 
mechanisms, such as myelin maintenance abnormalities (Table 6).

Supplementary Figure S1 (chord diagrams) visualized that short-
window DFC (e.g., Gau20) detected early-stage differences in ventral 
attention and WM2/WM5, while long-window DFC (e.g., Ham50) 
and SFC highlighted late-stage alterations in default mode and 
visual networks.

3.3 Classification performance of 
cross-validated models across ADNI 
cohorts and subgroups

Prior to presenting cross-validation results, the selection of SVM 
kernel functions was guided by Supplementary Table S6. The 
Gaussian radial basis function (RBF) kernel achieved the highest 
classification accuracy (76.7% ± 5.95%) for differentiating SMC from 
CN across ADNI2 and ADNI3 cohorts, outperforming linear 
(70.19% ± 7.58%), polynomial (69.06% ± 7.38%), and sigmoid 
(68.33% ± 8.13%) kernels. This superiority motivated its use in 
subsequent analyses.

Classification results for full cohorts are summarized in Table 7. 
The dynamic graph theory model with RBF-SVM achieved the highest 
accuracy: 76.7% ± 5.95% (ADNI2) and 72.73% ± 5.86% (ADNI3), 
significantly surpassing static graph theory, traditional metrics, and 
clinical models (all p < 0.001).

For Aβ and APOE ε4 subgroups (Table 1), the dynamic model 
achieved 83.63% ± 4.02% accuracy in Aβ + individuals and 
85.16% ± 3.96% in APOE ε4 + subgroups. Notably, it showed a 0.15 
AUC improvement in distinguishing SMC + from CI + within 
Aβ + subgroups, highlighting sensitivity to early pathology.

Figure 5 presents scatter plots of correlations between the salient 
dynamic connectivity feature VAN-WM2 (Gau20 std) and clinical 

cognitive scales (MMSE, MoCA, CDRSB). The feature demonstrated 
significant positive correlations with MMSE (r = 0.40, p = 4.44 × 10−12) 
and MoCA (r = 0.39, p = 7.23 × 10−11), and a negative correlation with 
CDRSB (r = −0.41, p = 8.79 × 10−13), indicating that reduced dynamic 
connectivity in this white matter–gray matter interface is associated 
with worse cognitive performance (Figures 6, 7).

4 Discussion

4.1 Implications of demographic and 
clinical characteristics

The significant differences in APOE ε4 allele frequency and Aβ 
positivity between SMC and CI groups in both ADNI-2 and ADNI-3 
cohorts (Table 2) confirm APOE ε4 as a major genetic risk factor for 
Alzheimer’s disease (AD) and highlight the association between Aβ 
pathology and cognitive decline. APOE ε4 carriers are more 
susceptible to Aβ deposition and synaptic damage, which accelerates 
the transition from subjective memory complaints to clinical 
cognitive impairment. The progressive decline in MMSE and CDR-SB 
scores suggests that the SMC stage already involves potential 
neurofunctional degradation, supporting the necessity of using DFC 
as an early monitoring indicator.

TABLE 4 Impact of Aβ pathology in the context of APOE4 and gene-pathology interaction.

Differential connections 
(Pairs)

Within APOE4 + Group 
(Aβ + vs. Aβ-)

Within APOE4- 
Group (Aβ + vs. Aβ-)

APOE4 + Aβ + vs. 
APOE4-Aβ-

APOE4 + _Aβ- vs. 
APOE4-_Aβ+

SFC 6 8 136 28

DFC Gau20 4 34 12 120

Gau30 10 22 26 96

Gau40 8 20 24 64

Gau50 6 14 18 54

Ham20 4 26 14 110

Ham30 12 22 24 76

Ham40 6 16 20 56

Ham50 12 12 16 50

TABLE 5 Independent impact of APOE4 (Within Aβ+/− Groups).

Differential 
connections 
(Pairs)

Within 
Aβ + Group 

(APOE4 + vs. 
APOE4-)

Within Aβ- 
Group 

(APOE4 + vs. 
APOE4-)

SFC 82 70

DFC Gau20 70 18

Gau30 50 12

Gau40 46 8

Gau50 38 10

Ham20 62 12

Ham30 42 12

Ham40 34 6

Ham50 24 8
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4.2 Stage-dependent features of DFC and 
SFC

DFC demonstrated superior cross-cohort stability compared to 
SFC (Supplementary Table S2), especially for short-window DFC 
(e.g., 20 TRs), with high similarity coefficients (0.862–0.933) 
indicating the conservation of neural dynamic fluctuations across 

different scanning conditions. Early-stage differences in DFC (30 
connections in ventral attention and white matter networks) were 
observed before changes in SFC, suggesting that synaptic 
transmission efficiency or local field potential abnormalities may 
be among the earliest functional impairments in AD. In contrast, 
the marked increase in SFC differences in the late CI stage (118 
connections involving the default mode network) aligns with 
neurodegenerative processes leading to brain network 

TABLE 6 SVM classification using fMRI dynamic graph parameters and kernel functions.

ADNI2 ADNI 3

Kernel function Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Linear 70.19 ± 7.58 71.45 ± 11.95 69.65 ± 11.45 67.8 ± 5.3 66.81 ± 8.52 69.24 ± 9.76

Polynomial 69.06 ± 7.38 67.3 ± 11.19 72.07 ± 10.41 64.1 ± 5.12 63.16 ± 11.44 65 ± 11.05

RBF 76.7 ± 5.95 75.51 ± 6.12 78.27 ± 5.43 72.73 ± 5.86 73.33 ± 7.52 72.22 ± 5.86

Sigmoid 68.33 ± 8.13 68.2 ± 11.97 69.44 ± 12.89 65.66 ± 5.39 66.67 ± 8.2 64.91 ± 10.81

ADNI Cohort Aβ subgroup ADNI Cohort ApoE ε4 subgroup

Kernel function Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Linear 76.92 ± 3.78 77.78 ± 6.23 76.19 ± 6.15 76.92 ± 4.55 78.95 ± 5.97 75 ± 6.74

Polynomial 77.26 ± 4.28 72.33 ± 6.2 82.47 ± 6.77 78.25 ± 2.81 76.49 ± 9.16 79.61 ± 6.56

RBF 83.63 ± 4.02 83.25 ± 4.71 84.31 ± 6.9 85.16 ± 3.96 82.26 ± 6.1 86.14 ± 4.63

Sigmoid 75.57 ± 4.19 72.78 ± 6.72 78.53 ± 7.46 75.77 ± 3.97 71.22 ± 5.69 80.59 ± 6.54

Data are presented as mean ± standard deviation.

TABLE 7 Classification results of different models for ADNI2 vs. ADNI3.

ADNI2 ADNI3

Classification 
features

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Clinical 54.27 ± 8.6 55.54 ± 6.99 58.41 ± 5.41 52.17 ± 6.92 58.65 ± 6.04 49.18 ± 10.51

ReHo 60.59 ± 6.38 57.82 ± 9.69 64.14 ± 11.41 60.33 ± 6.05 56.93 ± 11.51 62.51 ± 11.71

ALFF 63.66 ± 6.41 62.71 ± 8.55 65.95 ± 10.08 60.28 ± 4.28 57.55 ± 8.61 64.08 ± 7.54

Static graph theory 69.37 ± 6.91 68.41 ± 6.46 71.23 ± 5.68 62.01 ± 5.72 61.89 ± 6.36 62.11 ± 6.86

Dynamic graph theory 76.7 ± 5.95 75.51 ± 6.12 78.27 ± 5.43 72.73 ± 5.86 73.33 ± 7.52 72.22 ± 5.86

Data are presented as mean ± standard deviation.

FIGURE 5

Scatter plots of correlations between salient dynamic connectivity features (VAN - WM2) and clinical cognitive scales (MMSE, MoCA, CDRSB). VAN - 
WM2 stands for Voxel - wise Alteration of Network - White Matter 2; MMSE for Mini - Mental State Examination; MoCA for Montreal Cognitive 
Assessment; CDRSB for Clinical Dementia Rating Scale - Sum of Boxes.
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disintegration, confirming the hypothesis that “static connectivity 
reflects cumulative structural damage.

4.3 Interactions between genetics and 
pathology

The synergistic effect of APOE ε4 and Aβ was particularly evident 
in static connectivity, with 136 SFC differences in the default mode 
and limbic networks for APOE4 + Aβ + groups (Table  4; 
Supplementary Table S4), likely due to APOE4 promoting Aβ 

aggregation and neuroinflammation. Notably, APOE4 independently 
affected DFC in Aβ-negative individuals (70 connections in WM4/
WM5), suggesting APOE4’s role in white matter dynamic stability 
through pathways unrelated to amyloid, such as myelin maintenance 
or axonal transport deficits, findings that align with Carrasco-Gómez 
et al. (2025). Further combining the results of Table 5, the network 
perturbation of APOE4  in the Aβ + population was significantly 
stronger than that in the Aβ- population (for example, the number of 
DFC differential connections between APOE4 + and APOE4- in the 
Aβ + group was 3.9 times that in the Aβ- group). This supports the 
hypothesis that “APOE4 mainly accelerates AD progression by 

FIGURE 6

The receiver operating characteristic (ROC) curves of five models evaluated on ADNI - 3 (A) and ADNI - 2 (B) datasets. The five models include the 
fMRI dynamic graph theory model, fMRI static graph theory model, fMRI traditional metric ReHo model, fMRI traditional metric ALFF model, and clinical 
model.

FIGURE 7

ROC curves of five models evaluated on Aβ subgroup (A) and APOE E4 gene subgroup (B) datasets. The five models include the fMRI dynamic graph 
theory model, fMRI static graph theory model, fMRI traditional metric ReHo model, fMRI traditional metric ALFF model, and clinical model.
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enhancing the pathological effect of Aβ.” At the same time, the 
independent effect of APOE4  in the Aβ- group (such as 18 DFC 
differential connections) suggests that it may pre - disrupt the dynamic 
balance of brain networks through other pathways (such as lipid 
metabolism abnormalities), providing imaging evidence for “APOE4 
being an independent risk factor for AD.

4.4 Clinical translation value of machine 
learning models

The high accuracy of the RBF-SVM model in distinguishing SMC 
from CN (76.7% ± 5.95%) is attributed to its ability to capture non-linear 
features of multi-window DFC. In Aβ + and APOE ε4 + subgroups, the 
model’s accuracy further increased to over 83%, with a 0.15 AUC 
improvement in early pathological conversion, indicating that DFC can 
serve as a biomarker for genetic-pathological stratification. The strong 
correlation between the VAN-WM2 dynamic connectivity feature and 
cognitive scales directly links functional network abnormalities to clinical 
phenotypes, providing a basis for interventions targeting the ventral 
attention-white matter interaction network in Figure 5.

4.5 Limitations and future directions

This study is based on cross-sectional data and requires 
longitudinal follow-up to validate the predictive value of DFC changes. 
Although cross-cohort scanning protocol differences were 
standardized, residual technical biases may still exist. Future research 
could integrate PET imaging (e.g., tau distribution) and single-cell 
sequencing to further elucidate the molecular and cellular mechanisms 
underlying DFC abnormalities, promoting its application in early AD 
diagnosis and treatment monitoring.

5 Conclusion

Dynamic functional connectivity (especially short-window DFC) can 
sensitively capture early functional abnormalities in gray-white matter 
networks in AD, with better stability and genetic-pathological associations 
than static indicators. The classification model combining machine 
learning provides a new paradigm for precise stratification and early 
intervention in AD, potentially becoming a core biomarker linking 
molecular pathology with clinical phenotype.
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