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Alzheimer’s disease (AD) is a growing global challenge, representing the

most common neurodegenerative disorder and affecting millions of lives.

As life expectancy continues to rise and populations expand, the number

of individuals coping with the cognitive declines caused by AD is projected

to double in the coming years. By 2050, we may see over 115 million

people diagnosed with this devastating condition. Unfortunately, while we

currently lack effective cures, there are preventative measures that can slow

disease progression in symptomatic patients. Thus, research has shifted toward

early detection and intervention for AD in recent years. With technological

advances, we are now harnessing large datasets and more efficient, minimally

invasive methods for diagnosis and treatment. This review highlights critical

demographic insights, health conditions that increase the risk of developing AD,

and lifestyle factors in midlife that can potentially trigger its onset. Additionally,

we delve into the promising role of plant-based metabolites and their sources,

which may help delay the disease’s progression. The innovative multi-omics

research is transforming our understanding of AD. This approach enables

comprehensive data analysis from diverse cell types and biological processes,

offering possible biomarkers of this disease’s mechanisms. We present the

latest advancements in genomics, transcriptomics, Epigenomics, proteomics,

and metabolomics, including significant progress in gene editing technologies.

When combined with machine learning and artificial intelligence, multi-omics

analysis becomes a powerful tool for uncovering the complexities of AD

pathogenesis. We also explore current trends in the application of radiomics and

machine learning, emphasizing how integrating multi-omics data can transform
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our approach to AD research and treatment. Together, these pioneering

advancements promise to develop more effective preventive and therapeutic

strategies soon.

KEYWORDS

multi-omics, biomarkers, proteomics, metabolomics, genomics, CRISPR, radiomics,
Alzheimer’s biomarkers, machine learning and radiomics

1 Background

Alzheimer’s disease (AD) is primarily characterized by
the dysfunction of several brain networks responsible for
maintaining homeostasis and intracellular signaling. This disease
poses numerous healthcare challenges, particularly the increasing
prevalence of aging populations and the lack of effective curative
treatments. Current therapies mainly aim to alleviate symptoms
rather than target the underlying causes. Furthermore, the lack of
early detection methods complicates the diagnosis. The complex
pathology of AD, marked by the accumulation of amyloid plaques
and tau tangles, makes developing targeted treatments challenging.
The impact of AD extends beyond medical issues, affecting
caregivers both financially and emotionally, thus contributing
to broader societal challenges (Passeri et al., 2022). Diagnosing
AD often requires years of observed cognitive decline, and
this timeline can be even longer in the absence of genetic
markers. A family history of Alzheimer’s often correlates with the
disease’s progression, and with no cure available, early diagnosis
and preventive strategies are critical to prevent irreversible
brain damage. To improve our molecular understanding of AD
and enhance both treatments and early diagnoses, exploring
various biological processes, including genomics, Epigenomics,
transcriptomics, proteomics, lipidomics, and metabolomics, is
crucial. Unlike other conditions, diagnosing AD cannot be done
through brain biopsy, making advancing research on cellular
structures and imaging technologies vital, given the disease’s
rising prevalence. Recent studies have also utilized radiomic
imaging analysis and artificial intelligence (AI) to investigate
cognitive impairments linked to minor vessel diseases associated
with AD (Shi et al., 2020). Efforts from prevention trials and
clinicians are underway to quantify and detect AD earlier and
with greater accuracy through multi-omics approaches, facilitating
more comprehensive analyses of neurodegenerative disorders like
Alzheimer’s (Rawat et al., 2022).

2 History and pathogenesis

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that German psychiatrist Alois Alzheimer first identified.
He observed the presence of amyloid plaques and significant
neuronal loss in patients experiencing memory loss and personality
changes. Later, Emil Kraepelin emphasized the severity of the
disease, particularly in the cerebral cortex and medial temporal
lobe, contributing to cognitive decline (Braun et al., 2022).
The pathophysiology of AD involves shrinkage of the cerebral
cortex and hippocampus, enlargement of the ventricles, and

the presence of amyloid-beta (Aβ) plaques, as well as tau
neurofibrillary tangles. Neuroinflammation arises as blood vessels
age, impairing the glymphatic system and leading to the buildup of
Aβ plaques. Notably, AD presents features such as granulovacuolar
degeneration, which is characterized by large, double membrane-
bound vacuoles in neurons (Funk et al., 2011). In 1984, the
National Institute of Neurological and Communicative Disorders
and Stroke (NINCDS) and the Alzheimer’s Disease and Related
Disorders Association (ADRDA) established diagnostic criteria
based on neuropsychological testing, progressive memory loss,
and impairment in daily activities. These symptoms are most
found in late-onset Alzheimer’s disease (LOAD), which usually
appears after the age of 65, and early-onset Alzheimer’s disease
(EOAD), which can manifest as early as a person’s 40s or
50s. Both forms often begin with mild cognitive impairment
(MCI), a transitional stage between normal aging and dementia
characterized by subtle cognitive deficits. While individuals with
MCI can typically maintain their independence in daily life, they
may experience difficulties in critical thinking, memory retention,
and executive functioning. Early symptoms of MCI may include
forgetting recently learned information, becoming disoriented in
familiar environments, and experiencing trouble with planning
or problem-solving. These impairments can be overlooked or
dismissed as normal aging; however, they represent the earliest
clinical indicators of Alzheimer’s disease pathology (Campbell et al.,
2025). Recognizing MCI is crucial as it serves as an early marker
of neurodegenerative decline and reflects the onset of underlying
brain changes such as synaptic dysfunction, the accumulation of
beta-amyloid plaques, and tau pathology. An increasing number of
patients without cognitive or behavioral symptoms are presenting
with positive biomarkers, commonly referred to as “stage 1”
cases. However, in the absence of active disease progression,
these findings merely indicate susceptibility to the disease (Gale,
2024). Utilizing updated criteria released in 2011, biomarkers
obtained from positron emission tomography (PET) scans and
cerebrospinal fluid analysis, combined with machine learning, will
aid in classifying these asymptomatic disease models. Nevertheless,
current diagnostic methods typically identify the disease only after
it has significantly progressed and caused irreversible damage (Jack
et al., 2024).

3 Demographics at risk

3.1 Age and gender

Aging is the primary risk factor for AD, and sex differences
significantly affect its development and progression. Research
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shows that women generally have lower synapse density but
higher tau and amyloid-beta (Aβ) levels than men (Sundermann
et al., 2020). Key contributors to these differences include
gonadal hormones and sex chromosomes. Hormones such as
estrogen and testosterone influence susceptibility to the disease;
estrogen plays a vital role in processes involving mitochondrial
function, inflammation, glucose transport and metabolism, and
cholesterol homeostasis. Both testosterone and estrogen regulate
apolipoprotein E (ApoE), a key biomarker for AD (Gamache et al.,
2020). Additionally, the XX chromosomes in females and the XY
chromosomes in males are responsible for genetic factors affecting
AD risk. For example, the loss of the Y chromosome in male AD
patients can increase Aβ toxicity and lead to premature cell death
(Guo et al., 2022). Postmenopausal women experience increased
levels of luteinizing hormone and follicle-stimulating hormone,
which may contribute to AD pathology and cognitive decline
(Valencia-Olvera et al., 2023). Research has shown that estrogen can
lower Aβ levels by inhibiting the production of vesicles containing
amyloid precursor proteins (Arjmand et al., 2024). However, after
menopause, the decline in estrogen diminishes this protective
mechanism, resulting in similar metabolic conditions in both sexes
(Lopez-Lee et al., 2024).

3.2 Cardiovascular diseases, diabetes,
and other midlife risk factors

Alzheimer’s interacts with various comorbidities, such as
cardiovascular disease and diabetes, which can worsen its
progression. Common health problems related to AD include
high cholesterol, hypertension, and diabetes. Many cases can be
traced back to midlife risk factors, including smoking, elevated
blood pressure, and diabetes, accounting for up to 45% of
dementia cases (Malik et al., 2021). It is essential to explore these
interactions to foster the development of new treatments, especially
by repurposing existing medications for Alzheimer’s management.
The influence of fats and proteins on brain function and dementia
risk is an area that warrants additional investigation, particularly
regarding AD and vascular dementia (VD). In Type 2 diabetes
mellitus (T2DM), chronic hyperglycemia exacerbates amyloid beta
production and tau hyperphosphorylation, which intensifies AD
pathology. Impaired insulin signaling further disrupts neuronal
energy metabolism, contributing to neurodegeneration in late-
onset AD. Elevated blood glucose levels in T2DM can trigger
the formation of advanced glycation end-products (AGEs), which
promote Aβ accumulation and tau phosphorylation, leading to
increased neurodegeneration.

Genetic links between dementia and conditions like
hypertension and type 2 diabetes highlight the need to understand
these pathways for effective prevention and treatment. Factors such
as 20-Hydroxyeicosatetraenoic acid (20-HETE), which is involved
in hypertension regulation and cerebral blood flow, suggest further
connections with AD and stroke risks (Gonzalez-Fernandez et al.,
2021). Preventing AD relies on genetic factors, cardiovascular
health, and lifestyle changes, including smoking cessation and
proper nutrition (Khan et al., 2023). Therefore, focusing on
cardiovascular health through lifestyle modifications and nutrition
is crucial for minimizing the risk of AD and related health issues.

Chronic inflammation and oxidative stress exacerbate these
health conditions, and lifestyle factors like poor diet and inactivity
contribute to obesity and metabolic issues impacting cognitive
and cardiovascular health. While high-density lipoprotein (HDL)
cholesterol is known for lowering heart disease risk, some studies
have found that elevated HDL cholesterol levels may increase risks
of dementia and other health problems, highlighting the need for
further exploration of these associations. In older populations,
metabolic syndrome (MetS) has been linked to an increased risk
of cognitive decline and cardiovascular issues, emphasizing the
importance of managing lipid levels to support brain health.
The brain contains substantial cholesterol, essential for nerve
cell function. The transport of lipoproteins, such as low-density
lipoprotein (LDL) and HDL, along with apolipoproteins like ApoE,
plays a crucial role in brain fat processing. The ε4 variant of
ApoE is mainly associated with a heightened susceptibility to late-
onset AD. Studies surrounding obesity-related dementia implicate
sedentary lifestyles, chronic stress, and genetic predisposition,
particularly regarding specific ApoE alleles. The relationship
between cholesterol transport and cognitive decline is an evolving
research area, often yielding conflicting results. Research suggests
that abdominal obesity might protect cognitive health in older
adults (Pereira et al., 2023). Variations in clusterin expression
may impact lipid transport in the brain, structural integrity, and
cognitive function. Clusterin, or apolipoprotein J (ApoJ), is a
glycoprotein associated with protein folding and linked to AD,
metabolic disorders, and cardiovascular diseases. At the same
time, its connection to insulin resistance and dyslipidemia implies
potential as a biomarker for linking AD risk with obesity-related
metabolic dysfunction.

The oral microbiota may also play a role in AD progression
through various mechanisms, including oxidative stress, vascular
complications, neurotoxicity, and inflammation. By causing
systemic inflammation, oral bacteria could disrupt the blood-
brain barrier, allowing bacteria to enter the brain. Furthermore,
since amyloid-β has antibacterial properties, the interactions
between oral microbiota and Aβ accumulation may be significant.
Oral health can also influence dementia risk by affecting sleep,
physical activity, glucose metabolism, and cardiovascular health.
Moreover, midlife obesity has been linked to 7.3% of AD cases,
and approximately 37% of dementia patients over 65 are also
diagnosed with diabetes.

Emerging evidence suggests that obstructive sleep apnea (OSA)
and other sleep disorders could increase dementia risk. The exact
mechanism underlying the direct relationship between OSA and
elevated dementia risk remains unknown, even as numerous
epidemiological studies investigate this association with cognitive
decline. These factors are often assessed in more extensive cohort
studies, but the precise interplay with OSA is not yet fully
understood. Clarifying these connections could enhance clinical
practices and dementia prevention strategies by improving risk
prediction and informing personalized treatments, particularly for
individuals with mild OSA. Lifestyle and overall health delay
mild cognitive impairment as individuals age. Mild cognitive
impairment is often seen as a precursor to AD or dementia,
and research indicates that these cognitive disorders can be
influenced by ethnicity. For example, some studies have found a
more significant association of symptoms in Mexican Americans
compared to non-Hispanic White populations (Morgenstern et al.,
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2024). Conversely, research involving older Black and White
Brazilian communities shows minimal racial differences in the
experience of these symptoms (Wilson et al., 2021). While the
influence of gender is also examined, it has been determined
that brain health and neuroprotection largely depend on everyday
lifestyle choices and comorbidities (Mian et al., 2024).

3.3 Early detection and long-term effects
of Alzheimer’s disease

AD’s preclinical stage can span 20–50 years before noticeable
symptoms, during which Aβ and oligomer formation changes
begin to affect cognitive functions. However, daily life remains
largely unaffected. Individuals may notice minor cognitive declines
that minimally impact daily activities as the disease progresses to
the symptomatic stage. Late-onset AD typically arises after age
65, while early-onset AD is less common and often linked to
hereditary factors (Li et al., 2022). Key markers of AD pathogenesis
include senile plaques, synaptic loss, and neurofibrillary tangles,
primarily affecting memory-related areas in the brain, such as
the hippocampus and cortex. Despite advancements in identifying
AD biomarkers, the disease’s exact mechanisms remain poorly
understood (Monteiro et al., 2023). Noteworthy symptoms of AD’s
long-term effects include memory loss and impaired judgment,
complicating decision-making and task management as the disease
advances. The accumulation of plaques and tangles results in
irreversible brain damage, impairing cognitive function, mood, and
behavior (DeTure and Dickson, 2019). At the same time, memory
impairments can lead to falls and challenges in maintaining
adequate nutrition and hydration (Volkert et al., 2024). These
enduring effects highlight the significance of early intervention and
continuous supportive care before mild to moderate symptoms
of cognitive impairment begin to affect a patient’s quality of life.
Utilizing biomarkers to evaluate plaques and tangles while patients
remain asymptomatic may help slow the progression of AD before
irreversible damage occurs (Mozersky et al., 2022).

Integrating multi-omics data with machine learning and
artificial intelligence (AI) offers a deeper insight into AD
pathologies. AI can simultaneously analyze the relationships
between various biological components of omics studies, resulting
in a comprehensive dataset model. This methodology has also
proven beneficial in treating and preventing other diseases,
including identifying biomarkers and developing early detection
strategies. In cardiovascular diseases, advancements in multi-omics
and AI utilizing RNA sequencing, whole-genome sequencing, and
other classification models have achieved accurate risk predictions
and efficient patient classification for further treatment (DeGroat
et al., 2024). In cases of leukemia, machine learning, and deep
learning methods employing multi-omics have refined unclassified
datasets for predicting blood cancer outcomes. Analysis techniques
used in this field include gradient boosting, logistic regression,
recurrent neural networks, and feedforward neural networks.
These diverse datasets, which consider patient age, sex, mutation
type, treatment methods, and chromosomal data, contribute to
improved care and treatment (Abbasi et al., 2024). Patients
undergoing dialysis have benefited from personalized medical
treatments driven by AI for kidney disease. Kidney Online program

utilizes deep learning and health data to offer recipes, lifestyle
interventions, early health warnings, answers to inquiries, and
follow-up plans. Research indicates that this intelligent online care
system effectively reduces the risk of worsening kidney disease
(Liu et al., 2024). As illustrated across various diseases and health
conditions, integrating these multi-omics approaches into geriatric
medicine and AD research can enhance patient care through
comprehensive dataset assessments. Employing new technologies
like AI, stem cells, and multi-omics to bridge gaps in AD research
will facilitate the creation of human models to achieve improved
outcomes in personalized neuropsychiatric care (Tanaka, 2025).

4 Status of treatment

Treatments for AD are designed to address the underlying
mechanisms of Aβ production and alleviate symptoms. Two
main classes stand out among the approved pharmacological
treatments: N-methyl aspartate receptor antagonists (NMDA) and
cholinesterase inhibitors. NMDA receptor antagonists regulate
glutamate activity, thereby preventing excitotoxicity due to
excessive glutamate release, often linked to amyloid-induced
neuronal damage. Meanwhile, cholinesterase inhibitors preserve
acetylcholine levels by inhibiting the enzyme cholinesterase, which
helps mitigate cognitive decline. Beyond pharmacotherapy, several
herbal treatments exhibit the potential to influence the biological
processes associated with AD.

Research into bioactive compounds from various plants
highlights their promising applications in human health and
natural remedy therapies. Phytochemicals are bioactive compounds
found in plants that can be used in clinical applications
when extracted. Panax ginseng is rich in compounds like
gintonin, ginseng, and polysaccharides, all recognized for their
health-promoting properties (Table 1). Gintonin is explicitly
involved in AD management by modulating neurotransmitter
levels, including acetylcholine, dopamine, and norepinephrine,
promoting autophagy, and diminishing Aβ production. Natural
products, including herbs and extracts, have been shown to
target tau protein formation and amyloid beta effectively (Aβ)
plaques due to their antioxidant properties (Lobine et al., 2021).
These harmful agents arise from radical and non-radical oxygen
species, reactive nitrogen species, and reactive oxygen species,
which are highly chemically reactive and can contribute to
oxidative damage in Alzheimer’s disease (AD), thereby impairing
neuronal function. Antioxidants help mitigate this toxic stress by
transforming free radicals into harmless byproducts, providing
neuroprotection (Chen et al., 2021). Examples of antioxidants
include Centella Asiatica, Withania somnifera, and Crocus sativus
(Zieneldien et al., 2022). In addition to antioxidant therapies,
anti-inflammatory treatments have also been found to support
neuronal health. Studies in mice have demonstrated that mulberry
extract can provide neuroprotection, reducing neuronal and
astrocytic apoptosis. This effect is associated with an increase
in anti-inflammatory cytokines (such as IL-4) and a decrease in
pro-inflammatory cytokines (such as IL-1β, IL-6, and TNF-α),
suggesting its potential as a therapeutic agent for neurodegenerative
diseases like AD (Liu and Du, 2020). Similar studies have
investigated on Hypericum perforatum extract and found it
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TABLE 1 Neuroprotective properties of selected herbs commonly used in AD treatment to restore and enhance memory and cognitive function.

Herb Neuroprotective effect Bioactive compounds References

1 Allium Sativum Antioxidant, anti-inflammatory,
neuroprotection

Allicin, ajoene, S-allyl-cysteine, diallyl
sulfide

(Saini et al., 2021)

2 Anemone altaica Antioxidant, anti-inflammatory,
neuroprotection, Aβ degredation

Triterpenoid saponins, ranunculin,
anemonin, protoanemonin,
flavonoids, phenolic compounds

(Zieneldien et al.,
2022)

3 Centella asiatica Reduces oxidative stress, Aβ formation,
mitochondiral health, mood memory

Triterpenes, phenolic compounds,
rutin, kaempferol, quercetin, gallic
acid, luteolin, catechin

(Zieneldien et al.,
2022)

4 Curcuma longa Antioxidant, anti-inflammatory, blocks Aβ

formation
Curcumin, demethoxycurcumin,
bisdemthoxycurcumin, volatile oil

(Kushwah et al.,
2023)

5 Glycyrrhiza uralensis Apoptosis, antioxidant, neuroprotective Trirerpene saponins, flavonoids,
licochalcones, pheolic compounds

(Wei et al., 2021)

6 Hypericum perforatum Improve microglial viability, Aβ toxicity,
relieve nerve pain, anti-inflammatory

Hyperforin, hypericin, flavonoids,
phenolic acids like tannin and
xanthone

(El Menuawy et al.,
2024)

7 Panax ginseng Antioxidant, anti-inflammatory,
neuroprotection, immunomodulation

Ginsenosides, gintonin, pectin,
polysaccharides

(Zhang et al., 2023)

8 Rosmariunus officinalis Helps cognitive function, imrpoves memort,
prevents damage to nerves, anti-inflammatory,
reduces anxiety and stress

Rosmarinic acid, carnosic acid,
carnosol, flavonoids

(Chen et al., 2021)

9 Salvia officinalis Improves cognitive functions, pain reliving,
improve memory, anti-inflammatory,
antioxidant

Flavonoids, phenolic acids, terpenes,
rosmarinic acid, ellagic acid, volatile
components

(Markova et al.,
2022)

10 Withania somnifera Energy, free radical scavenging activity,
antioxidant, anti-inflammatory, memory,
cognitive function and blocks Aβ formation

Ergostane-type steroidal lactones,
phytosterols sitoinodsines VII-X, beta
sitosterols, and alkaloids

(Zieneldien et al.,
2022)

exhibits biological activity against Aβ-related effects (El Menuawy
et al., 2024). Other anti-inflammatory herbs, such as Scutellaria
baicalensis, Bacopa monnieri, and Chlorella zofingiensis, have also
been shown to alleviate cognitive impairment; however, their
specific neuroprotective effects in the context of AD remain unclear
(Peng and Zhou, 2024). A range of additional herbal remedies with
anti-inflammatory and neuroprotective properties may contribute
to reducing neuronal stress and fostering repair mechanisms via the
regulation of long non-coding RNAs (lncRNAs) and microRNAs
(Li et al., 2024). Herbs like Ginkgo biloba and Anemone altaica offer
distinctive therapeutic benefits. At the same time, ashwagandha
is noted as a nerve tonic and antioxidant, potentially enhancing
memory and cognitive function by raising acetylcholine levels
(Mikulska et al., 2023; Supplementary Table 1).

The bioactive compounds identified and isolated from these
medicinal plants include flavonoids, phenolic lignans, tannins,
polyphenols, triterpenes, sterols, and alkaloids. Research indicates
these phytochemicals exhibit antioxidant, anti-inflammatory, anti-
amyloidogenic, anti-tau, and anticholinesterase activities (Chen
et al., 2021).

Despite the availability of these treatments, it is important
to note that there is currently no cure for AD; existing
therapies broadly address symptomatic relief without stopping
disease progression. However, future therapies, including
immunotherapies that target amyloid plaques, are undergoing
clinical trials and show promise for more specific interventions.
Additionally, innovative high-throughput multi-omics approaches
are making strides in identifying biomarkers that could aid in

understanding AD’s pathophysiology and refining therapeutic
strategies. These approaches strive to uncover reliable biomarkers
associated with the characteristic features of Alzheimer’s, such as
Aβ plaques and neurofibrillary tangles, highlighting the significant
hurdles in biomarker discovery and disease characterization.

5 Multi-omics studies to detect early
biomarkers for Alzheimer’s disease

Multi-omics studies that integrate comprehensive molecular
data analysis across different stages of the disease, including
preclinical, symptomatic, and advanced stages, offer valuable
insights into the mechanisms of AD causes and progression
while improving diagnostic accuracy. Biomarkers, measurable
molecular indicators of disease presence and progression,
play a crucial role in this approach. In AD, biomarkers
obtained from biofluids such as urine, blood, and plasma can
offer important molecular signatures. These signatures aid
in early detection, targeted therapies, and ongoing disease
monitoring, ultimately contributing to the development of
potential treatments.

While AD and other common neurodegenerative disorders
are characterized by the pathological hallmarks of tangles and
plaques, identifying reliable biomarkers has been a significant
challenge. Over the years, high-throughput multi-omics-based
approaches have been employed to explore dependable biomarkers,
creating new opportunities to understand the pathophysiology
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FIGURE 1

The analysis of Alzheimer’s disease (AD) biomarkers begins with tissue sampling, where brain tissue is collected post-mortem through biopsy. The
samples are then prepared, processed, and molecular extraction is performed to isolate proteins, RNA, or metabolites. Researchers utilize
techniques such as mass spectrometry and RNA sequencing, combined with computational models, to detect key biomarkers that aid in diagnosis,
disease tracking, and the development of potential treatments.

associated with different molecular states. Multi-omics studies
advance our understanding of AD by examining genetic
variation, regulatory mechanisms, and epigenetic modifications,
exploring a broad spectrum of biological processes to identify
biomarkers and elucidate disease pathology. Specifically, genomics,
transcriptomics, and Epigenomics provide complementary insights
into genetic predisposition, gene expression patterns, and heritable
modifications that influence disease progression (Figure 1).

5.1 Genomics

The first genetic risk factor identified for AD is the dominant
amyloid precursor protein (APP), a type I transmembrane protein
cleaved to release Aβ. Thirty mutations in the APP gene on
chromosome 21 have been discovered, with twenty-five of these
mutations associated with AD and Aβ accumulation (Sirisi et al.,
2024). Interestingly, a protective mutation, A673T, has been found
to reduce Aβ secretion and lower the risk of developing AD.
Alongside APP, other significant genes involved in AD include
Presenilin-1 (PSEN1) and Presenilin-2 (PSEN2) (Kim et al., 2024).
Mutations in PSEN1 account for around 80% of monogenic
AD cases, while PSEN2 mutations are rarer and have a limited
effect (Supplementary Table 1). It has been proposed that PSEN1
mutations may hinder neurogenesis by increasing the susceptibility
of neural stem cells to amyloid toxicity, potentially leading to
cognitive decline (Maksour et al., 2024). These genes influence
γ-secretase activity, thereby modulating the ratios of Aβ by
elevating Aβ42 levels and decreasing Aβ40 levels; however, the
consequences of these alterations in AD continue to be explored
(Stanciu et al., 2022). Various factors, including metabolic stress
and altered transcription factors, can disrupt cellular homeostasis,
further contributing to neuronal injury. Other genes implicated in

AD are ATP-binding cassette transporter A1, clusterin, bridging
integrator 1, evolutionarily conserved signaling intermediate in
the toll pathway, estrogen receptor, and numerous vitamin D
receptor gene polymorphisms (Breijyeh and Karaman, 2020).
The downregulation of XRCC6, which is crucial for initiating
DNA repair, has been observed in neurons characterized by AD.
Additionally, age-related DNA damage that occurs during the
expression of learning-related genes may accelerate the progression
of AD (Lin et al., 2020).

Furthermore, genetic mutations differ based on ancestry,
underscoring the importance of population-specific research on
AD. Astrocytes in individuals with AD display changes in gene
expression, particularly concerning glutamate receptor subunits,
which can disrupt molecular pathways and ion balance (Young-
Pearse et al., 2023). We present here several variants in individuals
associated with AD that have been reported in ClinVar. These
variants may also be suitable for application in genome editing
technologies (Table 2). Furthermore, a GeneMania interaction
network was deciphered between genes responsible for AD
(Figure 2).

Over the years, advancements in genome editing have
progressed significantly, evolving from zinc finger nucleases
and transcription activator-like effector nucleases (TALENs) to
clustered regularly interspaced short palindromic repeats (CRISPR)
methods (Katam et al., 2022). CRISPR-Cas9, a powerful genome-
editing tool that can target a sizable genetic variant, aids in
uncovering molecular mechanisms behind neurodegeneration,
identifying potential therapeutic targets, and exploring gene-
editing strategies that might ultimately prevent or treat AD.
Scientists can investigate how specific genetic changes impact
AD pathology by introducing or correcting mutations in these
genes through cell cultures and animal models (Xu and Li,
2020). These models allow researchers to observe the effects
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TABLE 2 Characterization of potential genetic markers identified via genomics research associated with AD and dementia risk.

Gene Mode of action Description References

Genomics

ABCA7 Transports fats and cholesterol out of cells and
helps clear amyloid-beta.

Supports brain health, mutations increase
Alzheimer’s risk.

Li et al., 2021

ADAM10 Cuts APP in a way that prevents harmful
amyloid-beta production.

Protects against Alzheimer’s by promoting
healthy protein processing.

Kamboh, 2022

ADAM17 Cuts proteins involved in inflammation and cell
signaling.

Regulates inflammation and cell
communication, linked to Alzheimer’s and
cancer.

Kamboh, 2022

APOE Carries fats and cholesterol in the brain and
helps clear away amyloid-beta.

Supports brain health, but a specific version
(APOE4) increases Alzheimer’s risk.

Neuner et al., 2020

APP Gets cut by enzymes (like PSEN1 and BACE1)
to produce amyloid-beta, a sticky protein
fragment.

Normally helps with brain function, but when
cut incorrectly, it forms plaques that cause
Alzheimer’s.

Orobets and Karamyshev,
2023

BACE1 (Beta-Secretase 1) Cuts APP to produce amyloid-beta, the sticky
protein that forms plaques.

Plays a key role in Alzheimer’s pathology, a
major drug target.

Kamboh, 2022

BIN1 (Bridging Integrator 1) Helps shape cell membranes and supports
waste removal in neurons.

Protects brain cells, linked to Alzheimer’s risk. Andrade-Guerrero et al.,
2023

Cas-9/Cas-12/Cas-13
(CRISPR-associated proteins)

Acts like molecular scissors that cut DNA or
RNA at specific locations.

Used in gene editing to fix or modify genes. Xu and Li, 2020

CD2AP(CD2-Associated
Protein)

Helps organize the cell’s internal structure and
supports waste clean up.

Maintains cell health, mutations increase
Alzheimer’s risk.

Andrade-Guerrero et al.,
2023

CD33 Slows down activity of brain’s immune cells Regulates inflammation, certain variants
increase Alzheimer’s risk.

Andrade-Guerrero et al.,
2023

CLU Absorbs up harmful proteins like amyloid-beta. Protects brain cells, linked to Alzheimer’s risk. Andrade-Guerrero et al.,
2023

CR1 (Complement Receptor 1) Helps immune cells clear away debris,
including amyloid-beta.

Supports brain clean up, variants increase
Alzheimer’s risk.

Andrade-Guerrero et al.,
2023

KLOTHO Works like a shield, protecting cells from aging
and damage.

Promotes longevity and brain health, low levels
are linked to Alzheimer’s

Serrano-Pozo et al., 2021

PICALM Helps transport materials in and out of cells. Maintains cell function Andrade-Guerrero et al.,
2023

PSEN1 Acts like a pair of scissors that cuts proteins,
including the amyloid precursor protein (APP)
to produce smaller fragments.

Helps process proteins in the brain, but when it
malfunctions, it can lead to Alzheimer’s disease

Yang et al., 2023

PSEN2 Similar to PSEN1, it cuts proteins like APP into
smaller pieces.

Involved in protein processing, mutations can
cause early-onset Alzheimer’s.

Gan et al., 2023

SORL1 Guides the amyloid precursor protein (APP) to
the right place in the cell to prevent harmful
amyloid-beta production.

Protects against Alzheimer’s by reducing
amyloid build up.

Li et al., 2021

TREM2 Acts like an antenna on immune cells in the
brain, detecting damage and triggering clean
up.

Helps microglia clear debris and protect
neurons

Li et al., 2021

TREM2 Detects damage and triggers clean up in brain’s
immune cells

Helps microglia clear debris and protect
neurons

Li et al., 2021

XRCC6 Binds to broken DNA ends and helps glue them
back together by recruiting other repair
proteins.

Repairs DNA damage and protects cells from
harmful mutations

Chen et al., 2024

of genetic modifications within a whole organism, which is
essential for confirming physiological outcomes and understanding
how genetic variations influence AD development in vivo
(Blanchard et al., 2022).

The Cas system consists of two classes with six subtypes that
utilize different Cas proteins depending on the genetic material

and system configuration. Cas9 is a single-protein DNA cutter
used in gene editing, while Cas12 targets DNA and Cas13 modifies
RNA. Cas12 can detect small mutations, including those that affect
DNA methylation, whereas Cas13 focuses on RNA modifications
in tau proteins, characteristic of AD pathology. Researchers have
applied CRISPR-Cas9 to edit genes such as APP, PSEN1, and
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FIGURE 2

Systems network of AD-associated genes, with key genes highlighted in larger circles. Physical interactions and co-expression patterns are analyzed
using a network prediction database. Red lines indicate physical interactions, purple lines represent co-expression, green lines denote genetic
interactions, and blue lines signify pathway associations or colocalization within the same organelle. This network visualization offers insights into
the complex molecular interplay underlying the pathology of Alzheimer’s disease.

APOE, contributing to understanding pathways related to AD.
The modification of APOE alleles in vitro, particularly in neurons
and glial cells derived from human stem cells, marks a significant
advancement in AD research (Rahimi et al., 2024). Researchers have
successfully altered the genetic sequence of the ApoE gene within
cultured human neurons and glial cells using CRISPR-Cas9. This
development enables the creation of more accurate cellular models
of AD that mirror genetic variations found in humans, such as the
ApoE4 allele, which is a significant risk factor for developing the
disease. However, despite the progress made in human cell culture,
the gene-editing technique has not yet been tested in ApoE knock-
in mice, which is a crucial next step for advancing research (De
Plano et al., 2022).

5.2 Transcriptomics

The potential for modifying AD-related gene expression
presents exciting therapeutic opportunities. Transcriptomic

techniques reveal alterations in gene expression that contribute
to AD risk factors, including the upregulation of stress and
inflammatory response genes, non-coding RNAs, alternative
splicing events, and copy number variants, opening exciting
therapeutic opportunities (Bagyinszky et al., 2020). Several
differentially expressed genes (DEGs) across various cell types
have been identified using the single cell RNA seq, enhancing
our understanding of the molecular mechanisms underlying
AD (Spurgat and Tang, 2022). Comparative analyses of brain
cells from AD patients and age-matched controls emphasize
the connection between mitochondrial dysfunction and AD.
Notable genes like ZFP36L1, RERE, PURA, OGT, SPCS1, SOD1,
and NDUFS5 show consistent expression alterations across
22 brain datasets (Marmolejo-Garza et al., 2022; Table 2).
Transcriptomic changes reflect more widespread stress responses
at later stages of AD that correlate with increasing levels of
brain damage. Single-cell and single-nucleus RNA sequencing
(sc/snRNA-seq) techniques have determined differentially
expressed mitochondrial genes, highlighting their significant
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post-transcriptional roles in energy demand regulation. Expression
levels of mitochondrial RNA can vary by tissue, reflecting
the diverse functions of mitochondria in different cellular
environments (Mei et al., 2023). Astrocytes, vital for maintaining
brain homeostasis, exhibit significant transcriptomic shifts
in AD. There is an upregulation of inflammatory and stress
response genes, including CRYAB and GFAP, while glutamate
metabolism and synaptic remodeling genes, such as SLC1A2
and SLC1A3, experience downregulation (Saura et al., 2023).
Aβ proteins compromise synaptic plasticity and disrupt BDNF-
TrkB retrograde signaling pathways. Treatments with Aβ1-42
have led to increased levels of axonal mRNA for AD-related
genes like APP, ApoE, and CLU, suggesting their involvement in
disease progression (Gao L. et al., 2022; Gao X. et al., 2022).
Single-nucleus RNA sequencing has revealed cell-specific
changes in gene expression during the early stages of AD,
impacting processes like myelination, inflammation, and neuronal
survival.

5.3 Epigenomics

Advanced technologies, including proteins like CLOuD9
and light-activated dynamic looping (LADL), are used to
engineer chromatin for precise gene regulation, highlighting
the importance of 3D chromatin organization. CRISPR-GO
and live-cell imaging enabled us to study chromatin changes
in real-time (Rahman and Roussos, 2024), while epigenetic
editing using CRISPR-Cas9 and pharmacological interventions
shows promise as a therapeutic approach for AD (Fisher and
Torrente, 2024). DNA methylation affects gene expression and
chromatin accessibility, ultimately influencing the production
of Aβ, calcium homeostasis, and neuronal survival, implicated
in oxidative stress and synaptic plasticity (Villa and Combi,
2024). This process links environmental factors, such as
homocysteine levels, to the progression of AD (Martinez-
Feduchi et al., 2024). Oxidants released by immune cells,
particularly from microglia, can alter DNA methylation, further
exacerbating neuroinflammation and oxidative stress (Seddon
et al., 2024). MicroRNAs, specifically miR-451a and miR-
455-3p, play a regulatory role in neurotrophic factors like
brain-derived neurotrophic factor (BDNF), neuroinflammation,
and neurotransmitter balance, thereby connecting mild behavioral
impairments to amyloid/tau pathology (Angelopoulou et al.,
2024). Emerging research has identified novel post-translational
modifications (PTMs) such as phosphorylation, acetylation,
and ubiquitination as potential therapeutic targets (Qin
et al., 2024; Table 2). Moreover, the epigenetic regulation
of non-coding RNAs affects shared genes such as APOE,
BDNF, ACE, FTO, and FNDC5, which are important for
muscle mass, mobility, and cognition (Raleigh and Orchard,
2024). BRD4, a critical chromatin remodeling factor, plays a
complex role in aging and disease (Sun et al., 2024). Histone
acetylation, which is primarily affected in AD, is regulated
by histone deacetylases. Inhibitors of these deacetylases can
reverse hypoacetylation, improving cognition, memory, and
neuroplasticity in preclinical models by promoting neuronal
gene transcription and reducing tau and amyloid dysregulation
(Pereira et al., 2024).

5.4 Proteomics

Recent advancements in mass spectrometry, dimethyl
labeling, isobaric tandem mass tags (iTRAQ), and laser capture
microdissection have enabled comparisons between symptomatic
and asymptomatic Alzheimer’s patients’ brains against those of
healthy controls. These innovative methods allow researchers
to integrate all cellular proteins, leading to a comprehensive
understanding of a system’s biology combined with minimally
invasive diagnostic methods. Three commonly used techniques
include: 1. cerebrospinal fluid (CSF) collection to assess central
nervous system health and neuronal damage; 2. Plasma collection
is cost-effective and contains proteins from all body tissues
but is complicated by high albumin content that affects
protein extraction; 3. Urine collection may contain plasma
proteins and potential biomarkers like SPP1, GSN, and IGFBP7
(Jain and Sathe, 2021).

Utilizing proteins as biomarkers and studying their alterations
aims to enhance early diagnosis. This breadth of analysis
encompasses thousands of proteins involved in energy metabolism,
glycolysis, oxidative stress, apoptosis, signal transduction, and
synaptic function. However, specific issues arise, such as using
polystyrene tubes, which can lead to the loss of “sticky” proteins
like Aβ and introduce blood contamination that may degrade
proteins, complicating biomarker analysis (Awasthi et al., 2022).
Identifying specific biomarkers for Alzheimer’s is made challenging
by the presence of overlapping pathologies in many patients.
In neural networks, protective proteins include cytoskeleton
cross-linking proteins like moesin, ezrin, and radixin, while
inflammatory proteins include CAV1, COL6A1, and COL6A3
(Rayaprolu et al., 2021). Other noteworthy proteins in this context
are TNF-α and miR-224, which is down-regulated in AD patients,
as well as Cystatin C, angiotensin-converting enzyme (ACE),
SUMO1, and Chitinase 3-like 1; Table 3). Although proteins such
as β2-microglobulin and y-globulinsare associated with AD, they
have not yet been validated as potential biomarkers (Mayo et al.,
2021). Paraoxonase 1 (PON1) shows promise as a risk factor
for AD, mainly due to its anti-inflammatory and anti-apoptotic
properties, as low PON1 activity levels correlate with advanced
disease.

In contrast, areas like the sensory cortex, motor cortex, and
cerebellum show less impact (Marsillach et al., 2020). Challenges
arise from small sample sizes that complicate the detection of
protein differences across multiple comparisons. In contrast, larger
sample sizes may yield too many variations, making it difficult to
establish consistency.

5.5 Metabolomics and lipid-omics

Over the past decade, metabolomics and lipidomics have made
significant advances in identifying critical changes in metabolites
that affect mitochondrial function, neuroinflammation, and
cognitive decline. Lipidomics focuses explicitly on the role of lipid
metabolism in neuronal health and amyloid pathology. Genetic
predisposition to diseases and traits can be quantified through
polygenic scores derived from metabolomic data and multi-omics
approaches (Joshi et al., 2023). Various metabolomic platforms
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TABLE 3 Characterization of potential genetic markers identified via proteomics research associated with AD pathology.

Protein Mode of action Description Reference

Albumin Involved in maintaining fluid balance and
transportation

Inhibits the formation of Aβ fibrils, disrupts the
blood brain barrier

(Kim et al., 2020)

Alpha-1 antitrypsin Prevents breakdown of lung tissue, regulates the release
of white bloodcells

Overexpressed in AD, correlates to disease severity,
influences Aβ deposition

(Emwas et al., 2021)

Apo-A1 Plays key roles in lipid metabolism and cardiovascular
heatlh

Correlates to disease severity, influences Aβ

deposition, inflammation, and oxidative stress
Tong et al., 2022

Beta-2 microglobulin Helpful in immune system, stabilizes cells on the cell
surface

Promotes amyloid plaques, neurotoxicity, brain
damage and cognitive decline

(Zhao Y. et al., 2023)

Cathepsin D Breaks down lysosomal proteins and involved in cell
death and response

Breaks down Aβ and tau proteins, a possible sign
of response to AD progression

(Suire et al., 2020)

Caveolin 1 Structural functions,involved in endocytosis, signal
transductions, and cholesterol homeostasis

Connected to preserving neuronal and synaptic
morphology, may prevent neurodegeneration

(Wang et al., 2021)

Chitinase Inhibits fungal growth, degrades chitin Breaks down proteins that are toxic to the brain
and lead to AD, inflammatory biomarkers

(Connolly et al.,
2023)

Chromogranin A Releases hormones and neurotransmitters from
neuroendocrine cells

Indicator of potential synaptic loss, neuronal
damage, disease progression

(Quinn et al., 2021)

COL6A1/COL6A3 Maintains structure and function of extracellular
matrices

Protects neurons from damage and oxidative
stress, impairs autophagy

(Muraoka et al.,
2021)

Complement Factor 1 (CF1) Breaks down activated complement proteins and
protects healthy cells

Contributes to acitvation of microglia and
astrocytes, progression of Aβ plaques and anlges,
protective effects

(Veteleanu et al.,
2023)

Cystatin C Monitors kidney function, produced by all nucleated
cells

Associated with cognitive impairment, inhibits Aβ

formation, colocalizes with Aβ

(Wang et al., 2023)

Ficolin-2 Triggers immune response, activates complement
cascade, regonizes pathogens

Linked to brain atrophy and cognitive decline,
clears apoptotic cell debris

(Shi et al., 2021)

Haptoglobin Defensive role against oxidative stress and inflamation,
gets rid of hemoglobin outside red blood cells

Anti-inflammatory properties, binds to Apo-A1,
oxidative stress, disease biomarker, structural
effects

(Bai et al., 2023)

Nerve growth factor inducible
(VGF)

Balances energy, regulates circadian rythmn and is
involved in neurite growth and neuroprotection

Correlates to disease severity, inflammation, and
oxidative stress

(Quinn et al., 2021)

Neuronal pentraxin-2 Regulates synapse activity and neuroplasticity,
simulated excitatory synaptogenesis

Indicator of cognitive impairment, memory
decline, and specific excitatory synapses

(Belbin et al., 2020)

Paraoxonase 1 Protects against organophophate poisoning and
vascular disease, metabolizes oxidized phospholipids

Associated with cognitive impairment, oxidative
stress, and biomarkers for AD

(Perła-Kaján et al.,
2021)

Secernin-1 Regulator of exocyosis in mast cells, involved in
synaptic vesicle recycling

Colocalization of neurofibrillary tangles, increased
phosphorylated tau binding, accumulation of Aβ

plaques

(Weiner et al., 2023)

Secretogranin-2 Packages hormones and neuropeptides into secretory
granules

Indicator of potential synaptic loss, neuronal
damage, disease progression

(Quinn et al., 2021)

SUMO1 (small ubiquitin-like
modifier 1)

Involved in nuclear transport, DNA replication and
protein stability

Promotes tau aggregation, impacts
phosphorylation, colocalizes with interneuronal
tau

(Takamura et al.,
2022)

Superoxide dismutase Plays important role in antioxidant defense and
maintains cellular health

Protects against oxidative damage and free
radicals, can buildup neurotoxic proteins in AD

(Balendra and Singh,
2021)

are available, each with advantages and challenges, especially
concerning sensitivity to external variables, reproducibility, and
costs (Chen et al., 2022). Targeted metabolomics focuses on
specific metabolites based on hypotheses, while untargeted
methods enable broad profiling of numerous metabolites within
a sample (Trifonova et al., 2023). The early applications of
metabolomics in AD began in 2009 with gas chromatography-mass
spectrometry and linear ion trap (LTQ) orbit trap technologies.
However, challenges such as variability and small sample sizes

prevented the discovery of statistically significant biomarkers
(Reveglia et al., 2021).

Later research utilizing ultra-performance liquid
chromatography (UPLC) with a hybrid quadrupole time-of-
flight (Q-TOF mass spectrometer) and gas chromatography
time-of-flight mass spectrometry (GC-TOF-MS) platforms
analyzed participants with AD, mild cognitive impairment,
and healthy controls, identifying distinct metabolites like
arachidonic acid, N, N-dimethylglycine, and thymine that
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TABLE 4 Exploring genetic markers associated with Alzheimer’s disease and dementia risk through metabolomics and lipidomics research.

Metabolite Mode of action Description References

Acetate Inhibts nuclear factor-kB to reduce levels of COX-2 and
IL-1β through GPR41

Regulates microglia maturation, fuction, and disease
progression

(Erny et al., 2021)

Adensoine A depressant in the central nervous system and
regulated the immune system, produced by ATP
dephosphorylation

Over activation of adenosine A2A recptors are linked to
cognitive impairment

(Ji et al., 2023)

Alanine Converted to pyruvate which Is an important energy
substrate for brain production of neurons

A deficit in alanine metabolism leads to oxidative stress and
mitochondiral dysfunction

(Polis and Samson,
2019)

2-aminoadipic acid A metabolite in the lysine breakdown pathway A marker for protein oxidative stress and is increased in the
blood brain barrier in AD

(Mao et al., 2023)

Arachidonic acid Converted by cyclooxygenases-1/2 and prostaglandin
sythases into PGE2 and PGD2

Contributes to occurrence and progression of
neuroinflammation

(Xia et al., 2024)

Aspartate An excitatory neurotransmitter in the brain with
importance in neural communication

Decreased in AD patients and contributes to the disruption
in metabolism

(Chang et al., 2024)

Betaine Oxidized by choline in the mitochondria and cytosol to
helo regulate stress and fluids

May reduce Aβ plaques, tau phosphorylation and oxidative
stress

(Alipourfard et al.,
2023)

Creatine Is converted to phosphocreative and is an energy supply
to neurons

Creatine deposits in AD patients indicate abnormal
metabolism and cellular damage

(Smith et al., 2023)

Citicoline A component of citicoline which makes acetylcholine
and cell membranes +B10

Helps with memory and increases brain uptake of choline (Piamonte et al.,
2020)

N,
N-dimethylglycine
(DMG)

Is produced when the body metabolized choline in to
glycine

A blood-based biomarker and improves memory and
cognitive impairment

(Varesi et al., 2022)

Glutamine Is released from astrocytes and activates extrasynaptic
NMDARs triggering pro-apoptic signaling and synaptic
damage

Damages nerons and causes memory loss (Yu et al., 2023)

Histidine An important metabolite and precursor to carosine, an
anti-inflammatory, anti-oxidant and neurotransmitter

An equillibrium between tautomers that are likely to form β

sheets and contribute to AD
(Salimi et al., 2022)

Lysine Lysine degradation forms by saccharopine pathways in
the mitochondria

A factor in neurotoxcity through ubiquitination that occurs
on tau proteins leading to tau tangles

(Persico et al., 2022)

Mannose Decrease in high-mannose disrupts the glycoslation
process

Supports the accumulation of Aβ plaques in the brain (Tang et al., 2023)

Myoinositol A precursor of the phosphatidylinositol second
messenger system

Associated with changes in mood state (Voevodskaya et al.,
2019)

Phosphocholine Affects the brain’s cell membranes and cholinergic
neurons

Decreased in the brain and plasma of AD patients showing
signs of cell damage

(Shanks et al., 2022)

Thiamin A key factor in glucose metabolism Deficient in AD patients and linked to cognitive decline (Fessel, 2021)

Threonine Threonine metabolites impact cellular energy
production and neurodegeneration

Leads to abnormal tau phosphorylation and neurofibrillary
tangles, increases oxidative stress

(Zhao H. et al., 2023)

differentiate AD patients (Yin et al., 2023). Furthermore, decreased
levels of oleamide, histidine, monoglycerides, and increased
phenylacetylglutamine were noted in AD patients, suggesting
potential inflammatory responses (Table 4). Further analyses
indicated elevated levels of cortisol and cysteine and reduced
uridine in patients. Thymidine and uracil are crucial in nucleic
acid metabolism, influencing mitochondrial function. Taurine, a
key amino acid in the central nervous system, has been proposed
to enhance cognitive function and protect against memory loss
without impairing motor skills (Ramírez-Guerrero et al., 2022).
Several substances with neuroprotective properties, such as
kurarinone, tauroursodeoxycholic acid (TUDCA), and curcumin,
have shown promise in enhancing motor behavior and reducing
neuroinflammation. However, these treatments have yet to
yield specific biomarkers for assessing human neuroprotection

(Franco et al., 2024). Metabolomic changes linked to AD include
fluctuations in phospholipids, amino acids, and other metabolites
and altered kynurenine pathways. Metabolic profiling has revealed
elevated levels of alanine, glutamate, and glycerophosphocholine,
while decreased lactate and N-acetyl aspartate have been reported
in AD patients, indicating a potential signature for the disease
(Vignoli and Tenori, 2023). Research regarding insulin resistance
has identified glucose and fructose as key metabolic biomarkers,
while heightened ceramide levels have been associated with
mitochondrial dysfunction and inflammation in AD patients
(Amin et al., 2023). Notably, differences have been observed
between genders, such as a lower D-serine ratio in women with AD
compared to men (Yin et al., 2023). D-serine binds to receptors,
activating the N-methyl-D-aspartate receptor (NMDAR) and
mediating excitotoxicity. Studies indicate that D-serine contributes
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FIGURE 3

The integration of multi-omics data, facilitated by artificial intelligence (AI), provides a more comprehensive understanding of AD pathology. By
analyzing this data, models can identify dysregulated pathways and various biomarkers, improving patients’ lives through early diagnosis, risk
assessments, and targeted therapeutic interventions.

to excitatory neuronal damage in the hippocampus, influences
neuroinflammation, and affects amino acid balance. Reducing
D-serine levels in mouse models has decreased hippocampal
neuronal death and neuroinflammation, presenting a viable
NMDAR-based treatment strategy for AD (Ni et al., 2023).
Nevertheless, a significant challenge in metabolomics is the
inconsistency of results due to variability in metabolite biomarkers
based on sample sources. Despite identifying numerous potential
biomarkers, the statistical robustness is often limited due to
challenges in controlling external influences (Batra et al., 2024).

Altered lipid metabolism plays a significant role in aging,
increasing plasma triglyceride and lipoprotein levels while
decreasing triglyceride clearance and lipoprotein lipase activity.
Peroxisomal disorders, which result in inherited ether lipid
deficiencies, have been linked to AD (Hussain et al., 2019). These
metabolic changes affect lipid transport and biochemical pathways
across various organs (Chung, 2021). Mitochondria are crucial
for lipid metabolism, yet their functionality declines with age,
emphasizing the importance of metabolomics and lipidomics in
AD research (Yin et al., 2023). The lipid metabolites and pathways
strategy, or Lipid MAPS, categorizes lipids into eight groups: fatty
acids, glycolipids, glycerophospholipids, sphingolipids, sterols,
phenols, saccharolipids, and polyketides, each identified uniquely
(Meikle et al., 2021). The brain, abundant in glycerophospholipids
and sphingolipids, relies on these lipids for structural integrity
and functionality. Moreover, decreased levels of plasmalogens
have been observed with aging and AD; however, the results
of replenishment treatments are inconsistent. Lipids are essential
for numerous cellular processes, including signaling, maintaining
membrane structure, and biological messaging. Although findings
remain inconclusive, an upregulation of brain cholesterol synthesis
in AD has been observed, and cholesterol accumulation in senile
plaques suggests its potential role in the disease’s pathophysiology
(Yin et al., 2023).

6 Advances in diagnostics and
personalized medicine

Advancements in radiomics, neuroimaging, and machine
learning are transforming the early diagnosis and management
of AD. By integrating brain imaging techniques with AI-driven
models, researchers can enhance the accuracy of disease prediction,
monitor progression, and personalize medicine. Radiomic analyses
provide insight into the structural and functional changes in the
brain. Meanwhile, machine learning algorithms examine large
datasets to identify biomarkers and predict disease trajectories
(Figure 3).

6.1 Radiomics and neuroimaging

Brain imaging and genomics are key components in
systematically analyzing AD, integrating image preprocessing,
region of interest identification, model building, genomic
data extraction, and downstream analysis. Together, these
methodologies contribute to the precision medicine approach
for AD imaging biomarkers with genomic implications (Li and
Luo, 2022). Radionics-based analysis and nuclear medicine
tools, such as fluorodeoxyglucose (FDG), β-amyloid positron
emission topography (PET), and dopamine transporter single
proton emission computed tomography (SPECT), combined with
advanced computer technology, can enhance classification and
prediction rates for AD. The primary goal is the early diagnosis
of mild to moderate cognitive impairment and monitoring its
progression toward Alzheimer’s as the brain ages. Current studies
utilize regions of interest-based radionics and support vector
machine classifiers on PET imaging to assess decision-making
accuracy in models describing AD’s stage and severity (Seo et al.,
2022). Radiomic network modeling targeting the cerebellum shows
promise for early identification of the preclinical stage of AD.
These integrated models outperform traditional hippocampal
models in patients with mild cognitive impairment, effectively
predicting distinct risks associated with the progression of amyloid
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and tau pathologies (Chen et al., 2025). For example, models
using 18F-FDG-PET images interpret deep-learning radionics to
understand better and predict the pathway from mild impairment
to AD. Techniques like Extreme Gradient Boosting (XGBoost)
illustrate the focus areas within the model, while methods such
as gradient-weighted Class Activation Mapping (Grad-CAM) and
Shapley Additive exPlanations (SHAP) are crucial for identifying
factors that influence predictions (Jiang et al., 2024).

6.2 Machine learning

Integrating AI with radiomics and brain imaging shows
significant potential to enhance personalized medicine and
clinical treatments for AD. Machine learning techniques, such
as logistic regression and convolutional neural networks, are
employed to develop diagnostic models that analyze various
brain images for signs of AD (Bevilacqua et al., 2023). By
utilizing AI to monitor and predict the formation of tangles and
plaques, the approach to treating early-onset AD patients could
be fundamentally transformed. GNNexplainer technology aids
in identifying key variables and genetic pathways that play a
crucial role in understanding treatment outcomes and success
in clinical trials focused on AD (Aghakhanyan et al., 2023).
Current research methodologies leverage mathematical models
and computational techniques to simultaneously examine DNA
and brain alterations. The amyloid-tau-neurodegeneration
(ATN) framework, which encompasses amyloid, tau, and
neurodegeneration, helps delineate the accumulation of these
components and the resulting implications for brain function (Li
et al., 2022). While a significant amount of AI research in dementia
relies on the comprehensive Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, which is praised for its size and
accessibility, it has limitations, such as the underrepresentation
of non-Alzheimer’s dementias and inherent biases, indicating
the need for broader recruitment from memory clinics and the
systematic collection of longitudinal data (Winchester et al.,
2023). Emerging studies indicate that AI-driven evaluations of
blood-based biomarkers and cerebrospinal fluid (CSF) markers,
including plasma p-tau, the Aβ42/40 ratio, and neurofilament
light (NfL), facilitate early detection of Alzheimer’s, presenting
a less invasive alternative to traditional CSF tests and PET scans
(Chatterjee et al., 2022). Advances in AI-powered genomic
analysis, incorporating deep learning models and polygenic risk
scores, enhance the identification of genetic variants linked to
Alzheimer’s, allowing for more accurate risk assessments and
personalized therapeutic strategies (Zhou et al., 2023). Machine
learning enhances the creation of individualized treatment plans by
analyzing diverse patient data, such as genetic profiles, brain scans,
and medical histories, to identify patterns and predict treatment
responses. These systems utilize various learning methods to
analyze data, uncover new subtypes of AD, and interpret intricate
datasets like brain images. By continuously tracking the patient’s
condition and modifying treatment accordingly, AI aims to
deliver more personalized care, increasing treatment effectiveness
while minimizing side effects (Zhang et al., 2023). The rising
interest in these studies among scientists underscores the need
for advancements in AI models, particularly regarding how they

incorporate biological networks and complex systems, including
multi-omics approaches for enhanced pathway analysis. There
is also a need to improve the generalizability and reproducibility
of results to ensure statistical accuracy. However, despite these
promising developments, these AI models are not yet ready for
clinical application, as imaging alone cannot reliably diagnose
AD and cognitive impairments in aging populations. The
synergistic application of multi-omics and emerging brain
imaging technologies holds immense potential to revolutionize the
treatment landscape for patients with AD.

7 Limitations and current challenges

Current limitations on the pathology and even cure of
Alzheimer’s disease (AD) are mainly due to a lack of consistent
information and ethical testing. Data obtained from postmortem
brains cannot provide the same educational value as insights
from live brains. Although animal models aid scientists in
understanding the disease, they fail to accurately replicate the
symptoms of AD as they present in humans. This underlines
the significance of leveraging advanced technologies to study
and compare healthy aged brains with both early and late-onset
Alzheimer’s patients, emphasizing the need for new research
to transition into clinical trials promptly. With the genome
predominantly transcribed in eukaryotes and non-coding elements
playing substantial regulatory roles, there remains a limited
understanding of how long non-coding RNAs (lncRNAs) influence
neurodegenerative disease modulation. Recent advancements
in next-generation sequencing (NGS) technology have led to
the discovery of numerous lncRNAs, which warrant further
investigation to clarify their regulatory functions and to enhance
non-functional activity. Studies have also revealed differential
methylation of microRNA (miRNA) and lncRNA genes in human
hippocampal tissues affected by epilepsy, illustrating that lncRNAs
participate in regulatory pathways related to inflammation and
neuronal differentiation in the epileptic brain. This suggests that
the differential methylation status of non-coding RNAs is crucial
in the pathogenesis of neurodegenerative diseases. Given that
lncRNAs affect neighboring genes, it would be intriguing to
examine if mutations in these genes are associated with lncRNA
modulation. If such relationships exist, they could lead to further
inquiry into whether lncRNA sequences function as protospacer
adjacent motifs (PAM) within the genome. A wiki-based web
resource or tool may serve as an interface to predict interactions
between protein-coding genes and lncRNAs. However, while the
CRISPR/Cas9 system can delete lncRNA genes associated with AD,
identifying functional regions and potential off-target effects from
such interventions targeting the complex genomic architecture
remains uncertain.

8 Conclusion

Alzheimer’s disease (AD) presents a significant global health
challenge due to its rising prevalence and the absence of effective
treatments. Integrating machine learning, artificial intelligence, and
multi-omics technologies holds immense potential to transform
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AD care, allowing for minimally invasive, efficient, and more
precise interventions. Nonetheless, numerous challenges persist,
including the generation of vast datasets, variability among
samples, divergent interpretations of biological functions, and
the intricate characteristics of clinical phenotypes. Machine
learning and artificial intelligence (AI) offer advanced tools
to decipher complex datasets and uncover hidden patterns.
However, a multidisciplinary approach and diverse cohorts
characterized by detailed phenotyping are essential to improve
precision medicine for dementia. Ongoing research aims to
identify consistent omics signatures distinguishing between
dementia subtypes, enhance biomarker development through high-
dimensional data utilization, and elucidate missing heritability
factors in genetic investigations. Understanding the interplay
between genetics and dementia risk factors alongside associated
biological processes is vital. Efficient techniques for detecting
preclinical and prodromal dementia are critical for effective
secondary prevention strategies. Recent advancements in blood-
based biomarkers have made widespread monitoring feasible,
and preventative initiatives are being tailored using digital
tools for remote cognitive and behavioral tracking. Researchers
could develop precision preventive methods that align risk
reduction with optimal therapeutic allocation by establishing
at-risk cohorts based on cardiovascular and genetic risk
factors interactions.
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