AUTHOR=Cardillo Madison , Katam Keyura , Suravajhala Prashanth TITLE=Advancements in multi-omics research to address challenges in Alzheimer’s disease: a systems biology approach utilizing molecular biomarkers and innovative strategies JOURNAL=Frontiers in Aging Neuroscience VOLUME=Volume 17 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2025.1591796 DOI=10.3389/fnagi.2025.1591796 ISSN=1663-4365 ABSTRACT=Alzheimer’s disease (AD) is a growing global challenge, representing the most common neurodegenerative disorder and affecting millions of lives. As life expectancy continues to rise and populations expand, the number of individuals coping with the cognitive declines caused by AD is projected to double in the coming years. By 2050, we may see over 115 million people diagnosed with this devastating condition. Unfortunately, while we currently lack effective cures, there are preventative measures that can slow disease progression in symptomatic patients. Thus, research has shifted toward early detection and intervention for AD in recent years. With technological advances, we are now harnessing large datasets and more efficient, minimally invasive methods for diagnosis and treatment. This review highlights critical demographic insights, health conditions that increase the risk of developing AD, and lifestyle factors in midlife that can potentially trigger its onset. Additionally, we delve into the promising role of plant-based metabolites and their sources, which may help delay the disease’s progression. The innovative multi-omics research is transforming our understanding of AD. This approach enables comprehensive data analysis from diverse cell types and biological processes, offering possible biomarkers of this disease’s mechanisms. We present the latest advancements in genomics, transcriptomics, Epigenomics, proteomics, and metabolomics, including significant progress in gene editing technologies. When combined with machine learning and artificial intelligence, multi-omics analysis becomes a powerful tool for uncovering the complexities of AD pathogenesis. We also explore current trends in the application of radiomics and machine learning, emphasizing how integrating multi-omics data can transform our approach to AD research and treatment. Together, these pioneering advancements promise to develop more effective preventive and therapeutic strategies soon.