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Introduction: The shift toward earlier detection in the Alzheimer’s disease
(AD) continuum underscores the need for more sensitive cognitive outcome
assessments (COAs). Traditional COAs may lack precision in capturing cognitive
dysfunction during preclinical stages. The Face-Name Associative Memory Exam
(FNAME), a cross-modal task that integrates verbal and non-verbal memory,
o�ers enhanced sensitivity and has shown associations with amyloid-β burden
across the AD continuum, even in asymptomatic older adults.

Methods: This manuscript reports on two experiments, broadening insights into
this promising COA. Experiment 1 (descriptive observational, repeated-measures
design) (N = 85) evaluates the alternate form reliability of a modified FNAME
(mFNAME) by serially administering eight distinct versions of the task, revealing
good reliability for mFNAME metrics and the absence of significant practice
e�ects. Experiment 2 (cross-sectional observational design) (N = 32) examines
structural and functional network topology to investigate neural correlates of
mFNAME performance in non-demented older adults.

Results: Experiment 1 demonstrated good alternate form reliability with
no significant practice e�ect. Experiment 2 revealed significant associations
between mFNAME performance and network properties like global e�ciency,
local e�ciency, and system segregation in the default mode network (DMN)
and medial temporal network (MTN). Subsequent analyses into more granular
elements of the MTN and DMN revealed latent variables accounting for up to
44% of the covariance in mFNAME performance.

Discussions: These findings deepen the understanding of the FNAME’s
psychometric properties and the neural correlates underlying task performance,
providing insights into its utility as a sensitive COA early in the continuum of AD
and related dementias.
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1 Introduction

Amid the surge of secondary prevention trials targeting nascent

stages of the Alzheimer’s disease (AD) continuum, there is an

imperative for neuropsychological assessments with enhanced

sensitivity to quantify subtle cognitive changes in asymptomatic

individuals. Traditional cognitive outcome assessments (COAs),

designed to identify behavioral deficits associated with Mild

Cognitive Impairment (MCI) or AD dementia, may not be

sensitive enough to detect early changes that occur before clinical

impairment becomes noticeable (Mortamais et al., 2017; Ritchie

et al., 2017). Indeed, among cognitively normal (CN) older

adults, studies utilizing conventional COAs commonly report a

weak relationship between cognition and amyloid-β (Aβ) burden

(Aizenstein et al., 2008; Jack et al., 2008; Storandt et al., 2009; Wirth

et al., 2013). Furthermore, clinical trials for disease-modifying

pharmacotherapies in the early stages of AD that use these

conventional yet insensitive COAs as their primary or secondary

outcome measures may experience ceiling effects, potentially

underestimating treatment efficacy (Jutten et al., 2023). Thus, there

is a need for COAs that are sensitive to cognitive deviations that

may accompany clinically “silent” pathology affecting the medial

temporal lobe (MTL) in the incipient stages of AD (Mortamais

et al., 2017; Ritchie et al., 2017). One domain particularly well-

suited for capturing these early deviations is associative memory.

Associative memory, the ability to link disparate pieces of

information, is an essential cognitive process with heightened

vulnerability to early AD pathology, particularly when binding

cross-modal attributes (e.g., verbal and visual) (Chalfonte and

Johnson, 1996; Goldstein et al., 2019; Naveh-Benjamin et al., 2004;

Sperling et al., 2003; Stark and Squire, 2001; Werheid and Clare,

2007). Central to this cognitive domain, one COA with significant

utility for discerning subtle deviations in cognitive aging is the Face-

Name Associative Memory Exam (FNAME) (Rentz et al., 2011;

Rubiño and Andrés, 2018). This cross-modal paired associative

learning task evaluates an individual’s ability to learn numerous

unique face–name pairs. Since face–name binding is a ubiquitous

demand of daily life, the FNAME has the advantage of tapping into

ecologically relevant cognitive faculties, which can be lacking in

conventional COAs (e.g., word list learning) (Loewenstein et al.,

2018). Though often achieved automatically, this cognitive ability

becomes increasingly taxing and salient as we age.

Among older adults, difficulty with names is commonly

reported as a chief concern when discussing age-related changes

in cognition—both learning the names of new acquaintances

and recalling the names of wellknown individuals (James et al.,

2008; Weaver Cargin et al., 2008). Interestingly, FNAME findings

consistently reveal that face–name binding poses a unique

challenge for the aging brain, significantly more so than face–

occupation pairings (Rentz et al., 2017; Sanabria et al., 2018).

The distinction in difficulty for face–name pairs is exemplified

by findings that the term “Baker” is more readily associated

with a face when presented as an occupation rather than as a

name (McWeeny et al., 1987; Rubiño and Andrés, 2018; Young

et al., 1986). This phenomenon underscores a unique feature of

FNAME tasks; beyond cross-modal associative memory binding,

it further taxes cognitive ability by requiring connections across

abstract and unique dimensions that bypass semantic knowledge

(Alviarez-Schulze et al., 2022). In addition to its inherent ecological

validity, the FNAME has other favorable psychometric properties,

such as the relative absence of ceiling effects (Rubiño and Andrés,

2018). This is a desirable feature for any COA intended to capture

deviations among individuals with intact cognition and reduces the

risk of Type 1 Error inflation that commonly confounds other AD

COAs (Austin and Brunner, 2003; Carlson et al., 2022; Kueper et al.,

2018). Another beneficial psychometric property of FNAME tasks

is its cross-cultural validity, which is reflected in the emergence

of versions for Spanish-, Czech-, Dutch-, and Greek-speaking

populations (Alegret et al., 2020; Enriquez-Geppert et al., 2021;

Kormas et al., 2020; Mazancova et al., 2017; Rubino et al., 2025;

Vila-Castelar et al., 2020). In both Spain and Mexico, for example,

the Spanish-FNAME has been demonstrated to be sensitive to

age-related memory deficits (Flores Vazquez et al., 2021).

In AD research, findings consistently reveal a significant

correlation between FNAME performance and Aβ burden,

providing a valuable gradation of impairment across the disease

continuum (Alegret et al., 2020; Rentz et al., 2010). Moreover,

unlike conventional COAs, FNAME scores correspond with

AD biomarker burden in asymptomatic CN cohorts in most

(Fernandez-Alvarez et al., 2023; Rentz et al., 2011, 2010; Sanabria

et al., 2018; Sperling et al., 2009; Vannini et al., 2012; Vila-Castelar

et al., 2020; Young et al., 2023) but not all studies (Rentz et al.,

2023). Functional neuroimaging during the FNAME task further

reveals aberrant task-related neural activation patterns in Aβ-

positive CN older adults (Sperling et al., 2009; Vannini et al., 2012).

Critically, this amyloid-dependent network dysfunction observed

during FNAME tasks in preclinical AD mirrors findings from

patients with MCI and AD (Celone et al., 2006; Pihlajamaki

et al., 2008). Further highlighting its suitability for secondary

prevention trials, a comprehensive meta-analysis of longitudinal

studies identified the FNAME as one of the most robust

predictive tools for assessing AD progression risk (Belleville

et al., 2017). Among 61 evaluated COAs, the FNAME emerged

as the top performer, boasting 100% sensitivity and ranking as

one of only five COAs with a sensitivity above 90% (Belleville

et al., 2017). There are, however, several gaps in the FNAME

literature that we will address in this manuscript with two

distinct experiments.

Experiment 1 examines the reliability of a modified FNAME

(mFNAME, described in Section 2.2) as a serially administered

COA in longitudinal studies. While it is essential to document

cognitive decline longitudinally in AD research, practice effects

frequently complicate the interpretation of repeated COAs and

obscure the actual progression of cognition over time. Practice

effects can be categorized as either generalized task familiarity

(i.e., strategy development and reduced test anxiety) or the

specific recollection of test items from previous encounters, termed

“learning over repeated exposures” (LORE). Utilizing alternate

versions is known to mitigate LORE, but lingering generalized

practice effects may remain (Beglinger et al., 2005; Benedict and

Zgaljardic, 1998). This manuscript evaluates the alternate form

reliability of mFNAME performance and practice effects by serially

administering eight distinct versions of the task.

Experiment 2 examines functional and structural connectivity

profiles to elucidate the neural correlates of mFNAME task

performance in older adults. Previous functional neuroimaging
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studies illustrate that successfully forming and recalling face–

name pairs necessitates synchronized activity across a distributed

memory network (Miller et al., 2008; Sperling et al., 2003; Vannini

et al., 2011; Zeineh et al., 2003). This network includes the

hippocampus and neighboring medial temporal structures but

also encompasses a broad array of cortical areas, such as the

precuneus and posterior cingulate, highlighting the complexity

and distributed nature of associative memory processing (Miller

et al., 2008; Vannini et al., 2011). While these distributed task

activation patterns are well elucidated, less is understood about

how task performance corresponds with structural and functional

network topology. Structural and functional connectomes are

highly variable with age and are known to influence cognitive

processes (Andrews-Hanna et al., 2007; Chen et al., 2009), but,

to our knowledge, no cognitive aging studies have reported

the relationship between network topology and face–name

associative learning.

Thus, the objective of Experiment 2 is to elucidate the

relationships between various brain network properties and

mFNAME performance in cognitively impaired older adults

without dementia. To fulfill this objective, we utilized graph

theoretical analyses to derive properties of the brain’s connectome,

such as global efficiency, local efficiency, and system segregation,

which may be more sensitive to age-related changes in network

organization (Chan et al., 2014; Ewers et al., 2021; Sala-Llonch

et al., 2014). Similar network analyses have also demonstrated

efficacy in revealing atypical network reorganization along the

AD continuum, with consistent reports of reduced network

efficiency (Berlot et al., 2016; Reijmer et al., 2013; Shu et al.,

2012; Wright et al., 2021). These findings underscore the utility

of graph-based analyses in identifying critical network disruptions

underlying age and AD-related cognitive decline. In this study,

we extend these approaches to both resting-state functional and

structural connectivity to delineate how alterations in cortical

network topology—particularly changes in hub efficiency and

system integration—are associated with performance on the

mFNAME task.

The overarching goal of this study is to evaluate both the

psychometric properties and the neurobiological relevance of the

modified Face-Name Associative Memory Exam (mFNAME) as

a candidate cognitive outcome assessment for early-stage AD

research. We hypothesize that (1) mFNAME performance will

demonstrate strong alternate form reliability with minimal practice

effects (Experiment 1), and (2) task performance will be associated

with connectivity metrics in brain networks implicated in memory

and aging among individuals with MCI. By combining behavioral

reliability analysis with graph theoretical metrics of brain structure

and function, this study aims to provide foundational support for

the use of mFNAME as a reliable, sensitive, and neurobiologically

informed tool for cognitive aging research.

2 Methods

2.1 Experimental design

Experiments 1 and 2 comprised distinct cohorts with no

overlap in participation.

Experiment 1 (Alternate Form Reliability and Practice Effects)

initially enrolled 152 young adults from the University of Arizona.

Of those, 85 young adults completed all eight versions of the

mFNAME (mean age = 21.9 years; 57 females). This study

followed a descriptive observational repeated-measures design, in

which young adult participants completed all eight versions of the

mFNAME to assess reliability and practice effects. Participants were

recruited using non-probability sampling through the university

subject pool. The primary outcome measures were overall task

accuracy and the sensitivity index (D1), both of which reflect core

aspects of associativememory performance. Hit rate and false alarm

rate were examined as secondary outcome measures to further

characterize response patterns. Additional details are provided in

Section 2.2. Experiment 1 was conducted with young adults who

were encouraged to participate in research studies for educational

purposes, leveraging the enhanced feasibility that this population

offers in a university setting.

Experiment 2 (Network Topology) enrolled 32 older adults

with MCI from the Tucson area community (mean age =
65.8 ± 7.43 years; 27 females; mean education = 16.36 ±
2.19 years). This study employed a cross-sectional observational

design to examine associations between structural and functional

network topology and mFNAME performance in individuals

with MCI. Participants were recruited using non-probability

sampling through community outreach and local advertisements.

Primary outcome measures included mFNAME performance

scores and graph theory metrics (e.g., global efficiency, local

efficiency, and system segregation) derived from structural and

functional connectivity data. Additional details are provided in

Section 2.6. MCI diagnosis was established using the revised

Mayo Clinic criteria, which included self- or informant-reported

cognitive complaints, objective cognitive impairment, preserved

independence in daily functioning, and the absence of dementia.

The MCI diagnosis was supported by the National Alzheimer’s

Coordinating Center Uniform Data Set Neuropsychological

Battery, Version 3 (UDSNB-3) (Weintraub et al., 2018). For each

participant, Z-scores were calculated and adjusted for age, sex,

and educational level. These normalized scores were then used to

classify participants as MCI, following the ‘comprehensive criteria’

outlined by Bondi et al. (2014).

The University Institutional Review Board reviewed and

approved all protocol procedures. Exclusion criteria for both

cohorts included (1) self-reported clinical history of brain injury,

cardiovascular disease, or other neurological conditions such as

dementia or Parkinson’s disease, and (2) untreated psychiatric

symptoms that meet DSM-IV criteria, including depression,

anxiety, and substance use disorders. Specific to our cohort of

older adults in Experiment 2, we assessed any contraindications

for Magnetic Resonance Imaging (MRI) that might present

safety concerns.

2.2 Modified face-name associative
memory exam (mFNAME)

Psychopy software was employed to display stimuli and gather

responses for the mFNAME, which consists of two phases:
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TABLE 1 Comparison of the original FNAME and modified FNAME

(mFNAME).

Feature mFNAME
(modified version)

Original FNAME
(Rentz et al., 2011)

Face/Occupation

Pairs

No Yes (face–occupation pairs

included)

Number of

Pairs

24 face–name pairs

(encoding); 36 total pairs in

retrieval

32 total (16 face–name, 16

face–occupation)

Encoding Task Rate face–name fit on a

scale (1-4)

Study phase with

examiner-led name

association

Encoding

Duration per

Item

5.5 s per pair 2 s per face in study phase

Retrieval Task Correct (original pair),

Incorrect (mismatched

pair), New (never seen

before)

Face presented, participant

recalls name

Retrieval

Stimuli Count

12 Correct, 12 Incorrect, 12

New

16 face–name pairs, 16

face–occupation pairs

Response

Options

Correct, Incorrect, New Free recall and cued recall

Break Between

Phases

5min Not specified

Face Source Chicago face database Not specified

Number of

Versions

8 parallel versions Not specified

encoding and retrieval. During the encoding phase, participants

were instructed to memorize the face–name pairs and make a

subjective decision on how well the name fit the corresponding

face on a scale from 1 (poor match) to 4 (good match), a task

component designed to augment associative encoding (Carr et al.,

2017). For the encoding phase, participants were presented with

24 face–name pairs. Following a 5-min break, during the retrieval

phase, participants were instructed to decide whether the presented

face–name pairs were “Correct” (i.e., the face–name pairs matched

those presented during the encoding phase), “Incorrect” (i.e., the

faces and names were presented during the encoding phase but in

the wrong combination), or “New” (i.e., neither the names nor the

faces were presented during the encoding phase). In total, there

were 36 pairs consisting of 12 “Correct,” 12 “Incorrect,” and 12

“New” pairs during the retrieval phase, with each displayed pair

presented for a duration of 5.5 s. Faces were adopted from the

Chicago Face Database and were randomly and evenly distributed

according to race, gender, and age into eight parallel versions.

Table 1 is provided to highlight the comparability of the mFNAME

task and the original FNAME introduced by Rentz et al. (2011).

In Experiment 1, participants serially completed all eight

versions of the mFNAME task, which were administered in a

randomized sequence to mitigate potential learning-order effects.

The tasks were unsupervised and completed on their personal

computers. Participants could complete only one mFNAME task

per day, and the average time to complete all eight versions of the

mFNAME was 17± 9 days.

In Experiment 2, a different cohort of participants completed

a single mFNAME task selected randomly from the eight versions.

Research staff supervised the completion of this task following the

acquisition of multimodal MRI scans.

2.3 MRI acquisition (Experiment 2)

Before administering the mFNAME, MRI data were acquired

using a MAGNETOM R© Skyra 3 Tesla MRI scanner (Siemens

Medical Systems, Erlangen, Germany) with a 32-channel receiver

head coil. Foam pads were applied to prevent head motion. The

structural MRI protocol included T1-MPRAGE (a 3D gradient

echo pulse sequence, T1-weighted) with TR = 2,530ms, TE =
3.3ms, TI = 1,100ms, FA = 7◦, FoV = 256 × 256 mm2, parallel

imaging (GRAPPA 2), resolution: 1 × 1 × 1 mm3, and T2-FLAIR

(a fluid-attenuated inversion recoveryMRI sequence, T2-weighted)

with TR= 6,700ms, TE= 101ms, TI= 2,500ms, FA= 120◦, FoV

= 256 × 256 mm2, parallel imaging (GRAPPA 2), resolution: 1 ×
1 × 2.5 mm3; scan time = 8min. Diffusion-weighted MRI (single-

shot parallel and multi-band dual-spin-echo EPI pulse sequence)

parameters included FoV= 256 × 256 mm2; in-plane matrix size

= 128× 128; in-plane acceleration factor= 2; multi-band factor=
2; TE = 119 msec; TR = 3,700 msec; slice thickness = 2mm; voxel

size = 2 mm3; b = 0, 1,000, 2,000, and 3,000 s/mm2 as three shell

acquisitions for further high angular resolution diffusion imaging

(Dykes et al., 2009); number of diffusion-encoding directions= 60;

scan time = 9min. Finally, a resting-state fMRI (rs-fMRI) (T2∗-

weighted gradient-echo EPI pulse sequence, FoV = 240 × 240

mm2; TR = 3,000 msec; TE = 36 msec; flip angle = 90◦; in-plane

acquisition matrix size = 160 × 160; voxel size = 1.5 mm3; and

multi-band factor = 2; scan time = 8min) was acquired. During

the scans, participants were asked to stay awake and hold still, keep

their eyes focused on a displayed crosshair, and allow their thoughts

to come and go freely.

2.4 MRI preprocessing (Experiment 2)

All MRI data were converted to the Brain Imaging Data

Structure (BIDS) format using custom scripts. After BIDS

conversion, preprocessing was performed on the T1-weighted

and rs-fMRI data using fMRIPrep v1.0.3 (Esteban et al., 2019).

This included slice time correction, motion alignment, and

field distortion correction using a field map. Subsequently, co-

registration to the corresponding T1-weighted space was executed

using boundary-based registration. Each T1-weighted volume was

further corrected for intensity, non-uniformity, and skull stripping.

To process the structural diffusion-weighted imaging (DWI)

data, we used a custom shell script. For DTI preprocessing and

whole-brain tractography, the following steps were implemented

using MRtrix3 and FSL: (1) combining raw DWI, diffusion b-

values, and vectors into one matrix; (2) denoising with dwidenoise

(MRtrix3); (3) correcting Gibbs artifact and eddy currents

using eddy (FSL); and (4) bias field correction (ANTs). Brain

extraction on the B0 images was also conducted using dwi2mask

(MRtrix3). The response function was estimated by dwi2response.
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Subsequently, fiber orientation distributions were evaluated using

dwi2fod and the msmt_csd algorithm. The individual T1 brain

image was segmented using FreeSurfer v7.1.1 (https://surfer-nmr-

mgh-harvard-edu.ezproxy4.library.arizona.edu/) incorporating

the Human Connectome Project’s Multimodal Parcellation

(HCP-MMP v1.0) atlas, which consists of 180 cortical (Glasser

et al., 2016) and nine subcortical regions. Furthermore, FreeSurfer

was applied to both T1 and T2 MRIs to obtain a more reliable

segmentation of the hippocampal subfields with enhanced tissue

contrast and landmarks of the internal hippocampal structure. This

enabled the construction of a 379 × 379 whole-brain structural

connectome matrix, including the brainstem for whole-brain

tractography, which was used for graph-theoretical (network-

based) analysis.

For the preprocessing of resting-state fMRI data with

fMRIprep, physiological noise and other non-neuronal fluctuations

were nuisance regressors were accounted for by incorporating,

such as signals from cerebrospinal fluid (CSF), white matter

(WM), and the global signal, along with their derivatives, quadratic

terms, squares of derivatives, and head motion estimates, were

incorporated in the first-level general linear regression model. To

refine our analysis, the residuals from the nuisance regression

underwent a bandpass filter between the frequencies of 0.01 and

0.1Hz. Additionally, spatial smoothing of functional data was

performed using a 5-mm full-width half-maximum (FWHM)

Gaussian kernel. For each ROI and each participant, we first

obtained the average time series for all the voxels in the

ROI and then normalized (z-scored) the ROI time series. The

normalized resting-state fMRI time series for each ROI was then

correlated with the corresponding value for each remaining ROI,

yielding a 379 × 379 correlation matrix for each participant. The

Pearson r correlation value in each matrix cell was transformed

to Fisher-z.

2.5 Network construction (Experiment 2)

Graph theory serves as a mathematical instrument for

quantifying the topology of systems that can be modeled as

networks. In this framework, a network comprises various entities,

known as nodes, which are linked by a series of connections,

known as edges. Here, the 379 ROIs were the network nodes,

and the edges represented the structural or functional connections

between them. Many studies have used previously defined sets of

modules based on patterns of resting-state or task-related fMRI

data (Power et al., 2011; Yeo et al., 2011). We adopted the network

parcellation generated by Barnett and colleagues, which contains

eight modules that closely align with the literature (Barnett et al.,

2021). After defining the nodes in each network, brain networks

were constructed with a specified sparsity. The sparsity threshold

ensures that all resultant networks have comparable topological

structures with the same number of edges (Wang et al., 2011). To

generate a weighted undirected network, we applied a range of

sparsity thresholds (0.2, 0.3, 0.4, and 0.5) suggested by the literature

(Geng et al., 2017) and observed no impact of the sparsity threshold

on the results. We utilized a sparsity threshold of 0.4 for the graph

theoretical analysis described below.

2.6 Graph theoretical analysis
(Experiment 2)

We used the Brain Connectivity Toolbox to calculate three

graph theoretical measures: global efficiency, local efficiency,

and system segregation (Rubinov and Sporns, 2010). Detailed

descriptions of these metrics are given below:

Global efficiency is a measure that quantifies the efficiency

of information transfer across an entire network/module. It is

computed as the average inverse of the shortest path length between

all pairs of nodes. The “shortest path length” refers to the minimum

number of edges (or connections) that must be traversed to move

from one node to another. By taking the inverse of these path

lengths and averaging them, we obtain a higher global efficiency

measure when paths are short (and thus efficient). A network

with high global efficiency indicates that, on average, information

can be quickly and efficiently transferred between nodes in the

network. This measure provides insights into the brain’s ability to

integratively process information across distributed brain regions

(Deery et al., 2023).

Local efficiency focuses on information transfer within each

node’s immediate vicinity or neighborhood. It is determined

by calculating the average shortest path length of each node

to the rest of the nodes within its module or network. High

local efficiency indicates that even if a particular node were

removed or malfunctioned, its immediate neighbors could still

communicate efficiently. This measure provides insights into

the network’s resilience and fault tolerance at a localized level

(Deery et al., 2023).

System segregation quantifies the extent of separation among

network modules, determined by comparing the strength of

connections within modules to those between different modules.

For diffusion-weighted imaging (DWI) data, these strengths are

measured by the mean number of streamlines connecting nodes.

In the context of resting-state functional MRI (fMRI) data, they

are defined by the mean normalized correlations. Higher values in

both modularity and system segregation metrics indicate a more

distinctly segregated network. System segregation is computed as

an average at the whole-brain level, incorporating all nodes, while

at the module level, it is determined based on the nodes within each

specific module. This measure reflects the brain’s ability to organize

processing into specialized networks with reduced interference

from unrelated information (Deery et al., 2023).

2.7 Statistical analysis

Four outcome measures were derived from the mFNAME.

First, absolute accuracy was computed by tallying the total number

of accurate responses across all trials. Second, following Carr et al.

(2017), we categorized the recognition results into nine groups (3×
3) based on three types of face–name pairs (i.e., Correct, Incorrect,

andNew pairs) and three types of responses (i.e., Correct, Incorrect,

and New pairs). Additionally, the hit rate represented the rate of

accurately responding “Correct” to “Correct” pairs (CC), while the

false alarm rate was defined as the rate of wrongly responding

“Correct” to “Incorrect” pairs (CI). Finally, a sensitivity index (D1)
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that quantified the ability to distinguish between signal and noise

was defined as Z (hit rate) – Z (false alarm rate).

For Experiment 1, alternate form reliability for mFNAME was

assessed using intraclass correlation coefficients (ICC) based on

a two-way mixed-effects model, focusing on absolute agreement.

The ICC quantifies the proportion of total variance attributed

to between-subject differences, yielding a value between 0 and

1. The coefficients can be used to examine the consistency of

observed values between samples and visits, facilitate comparisons

between different test versions. Interpretation of ICC values follows

established guidelines: poor (<0.5), moderate (0.5 to 0.74), good

(0.75 to 0.9), and excellent (>0.9) (Koo and Li, 2016).

Alongside the ICC, we also computed each metric’s standard

error of measurement (SEM). The SEM, an absolute reliability

measure, quantifies error in the same units as the original

measurement. It provides insights into the precision of individual

scores, addressing individual variations that contribute to the

ICC. Conceptually, the SEM indicates the expected fluctuations

in an individual’s score due to random errors across repeated

test administrations. The SEM is determined using the formula:

SEM =
√

SD2 ∗(1− ICC). Lastly, we computed the Minimal

Detectable Change (MDC), which denotes the smallest score

change considered significant beyond mere measurement error

(Donoghue et al., 2009). The MDC is instrumental in determining

whether scores reflect a meaningful change over time that cannot

be attributed to random variability. The MDC was estimated at the

95% confidence interval (CI) using the function MDC95 = z-value

× SEM×
√
2.

Furthermore, to assess potential practice effects, we used

a linear mixed-effects model to examine changes in FNAME

performance over time (Laird and Ware, 1982). This approach

allowed us to include all time points for each participant and

minimize bias. The model included the main fixed effect for time

(8 time points) and random intercepts to account for within-

subject correlation.

For Experiment 2, eight structural and eight functional

networks (i.e., default mode, medial temporal, frontal parietal,

salient, visual, language, somatosensory, and auditory networks)

were selected for subsequent analyses. We extracted global

efficiency, local efficiency, and system segregation metrics for

each network. To examine how network topology corresponds

with mFNAME performance, a regression model evaluated these

network properties alongside mFNAME accuracy and sensitivity

(D1). This preliminary analysis enabled us to identify the

network(s) with the strongest association withmFNAMEmeasures.

Following our graph-theory enabled network selection, we

conducted a behavioral partial least squares analysis (PLSC)

to analyze the relationship between FNAME performance and

more granular brain network properties. PLSC is a multivariate

latent variable technique adept at handling collinear data and

exploring relationships between different data modalities, such as

our connectomic and behavioral measures (Abdi and Williams,

2013; Krishnan et al., 2011). It functions by decomposing

highly correlated data matrices into singular vectors via singular

value decomposition (SVD). For this PLSC, we compiled a

data matrix with (X) comprising network properties and (Y)

containing FNAME outcome measures for all participants.

Subsequent matrix decomposition yielded latent variables (LVs),

TABLE 2 Results of the alternate form reliability and the minimal

detectable change of the mFNAME in healthy participants (N = 78).

Metrics ICC (3, k) CI 95% SEM MDC95

Accuracy 0.90 [0.87, 0.93] 0.041 0.114

D1 0.84 [0.77, 0.89] 0.098 0.272

Hit Rate 0.82 [0.74, 0.87] 0.073 0.201

False Alarm 0.80 [0.72, 0.86] 0.078 0.215

CI, confidence interval; ICC, intraclass correlation coefficient;MDC95 , theminimal detectable

change calculated based on 95% confidence interval; SEM, standard error of measurement.

each representing the shared variance between connectomic

properties (X) and behavioral outcome measures (Y). These LVs

capture the underlying patterns linking brain connectivity and

FNAME performance.

A two-step approach was employed to assess the statistical

significance of the LVs and identify brain regions with significant

contributions. First, the statistical significance of each LV was

assessed with non-parametric permutation testing by re-running

the PLSC on each permutation sample, creating a distribution

to calculate p-values for each LV (Krishnan et al., 2011). LVs

with p-values <0.05 after 1,000 permutations were considered

statistically significant (Abdi andWilliams, 2013). Next, a bootstrap

analysis was conducted to assess the contribution of different brain

regions in the selected network(s). ROIs were evaluated based on a

bootstrap ratio with an absolute value greater than or equal to 1.96

(corresponding to 95% CI), determined by 1,000 resampling’s. This

threshold identified ROIs in the LVs that significantly accounted for

the covariance in the data.

The p-values for each LV were corrected using the Benjamini-

Hochberg false discovery rate (FDR) method to account for

multiple comparisons. We set the threshold for statistical

significance at P < 0.05 after the false discovery rate correction.

3 Results

3.1 Experiment 1: alternate form reliability
and practice e�ects of modified face-name
associative memory exam (mFNAME)

Of the 85 young adults who completed all eight versions

of the mFNAME, seven individuals were identified as outliers

due to overall reaction times that exceeded three standard

deviations and were excluded from subsequent analyses. Table 2

summarizes the intraclass correlation coefficient (ICC), 95%

confidence interval (CI), standard error of measurement (SEM),

and minimal detectable change (MDC) values for all mFNAME

metrics. All the ICC values were between 0.8 and 0.9, indicating

good alternate form reliability. In our evaluation of practice effects,

the linear mixed effects model indicated no significant changes

in mFNAME D1, hit rate, false alarm rate, and accuracy scores

across all time points after correction for multiple comparisons

(Figure 1). Notably, although one of the post-hoc analyses revealed

a significant improvement in accuracy at time point 3 compared

to time point 1 (p = 0.0382), this result did not survive correction

for multiple comparisons. Overall, the analysis suggests that, even
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FIGURE 1

Results from the linear mixed e�ects model examining mFNAME primary outcome measures across all time points.
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TABLE 3 Outcomes of regression analyses examining the relationships

between structural network properties (global e�ciency, local e�ciency,

and system segregation) and mFNAME performance metrics, specifically

accuracy and sensitivity index D1.

Structural network Accuracy D1

R-
value

p-
value

R-
value

p-
value

Global

Efficiency

Medial

temporal

network

0.5416 0.0152∗ 0.5663 0.0239∗

Default mode

network

0.6012 0.0075∗∗ 0.5059 0.0376∗

Local

Efficiency

Medial

temporal

network

0.4886 0.0239∗ 0.3421 0.0871

Default mode

network

0.5274 0.0108∗ 0.4756 0.0376∗

System

Segregation

Medial

temporal

network

0.2980 0.1672 0.3631 0.0884

Default mode

network

0.0609 0.7675 −0.0602 0.7699

The results are reported after applying FDR correction for multiple comparisons. Asterisks

indicate levels of statistical significance: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

when administered to healthy young adults in close succession, the

mFNAME is resilient to generalized practice effects.

3.2 Experiment 2: network topology and
mFNAME performance in older adults

3.2.1 Univariate relationship between structural
connectivity and mFNAME performance

The regression model comprising behavioral outcome

measures and graph theory properties across eight structural

networks revealed significant associations between mFNAME

variables and the default mode network (DMN) and the

medial temporal network (MTN). Specifically, mFNAME

performance was positively correlated with global efficiency

and local efficiency for the structural DMN and MTN (Table 3).

Additional analyses of mFNAME performance and its correlation

with the properties of other structural networks are provided in the

Supplementary Table 1.

3.2.2 Univariate relationship between functional
connectivity and mFNAME performance

For resting-state functional connectivity, the MTN and DMN

remained the most strongly associated with mFNAME task

performance. We observed a significant positive association

between the system segregation in the functional MTN

with mFNAME accuracy and sensitivity index D1 (Table 4).

Additionally, system segregation of the functional DMN is

significantly associated with mFNAME accuracy. However, unlike

the structural network properties reported above, global and local

TABLE 4 Outcomes of regression analyses examining the relationships

between functional network properties (global e�ciency, local e�ciency,

and system segregation) and mFNAME performance metrics, specifically

accuracy and sensitivity index D1.

Functional network Accuracy D1

R-
value

p-
value

R-
value

p-
value

Global

Efficiency

Medial

temporal

network

0.0322 0.8587 −0.1469 0.4145

Default mode

network

0.2124 0.4705 0.0525 0.7713

Local

Efficiency

Medial

temporal

network

0.1910 0.29499 0.0184 0.9200

Default mode

network

0.1517 0.4071 −0.0306 0.8677

System

Segregation

Medial

temporal

network

0.5644 0.0040∗∗ 0.5482 0.0055∗∗

Default mode

network

0.4103 0.0464∗ 0.3434 0.1003

The results are reported after applying FDR correction for multiple comparisons. Asterisks

indicate levels of statistical significance: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

efficiency of the functional DMN and MTN are not significantly

associated with FNAME performance. Additional analyses of

the relationship between mFNAME and the properties of other

functional networks are provided in the Supplementary Table 2.

3.2.3 Topological features of the DNM and MTN
associated with mFNAME performance

To elucidate the contributions of individual MTN and DMN

nodes to mFNAME performance, we applied partial least squares

correlation (PLSC) analysis to examine the topological features.

First, evaluating the resting-state functional connectivity of the

MTN, we identified a significant latent variable accounting for

44% of the covariance. Bootstrapping analysis revealed that

mFNAME performance is positively associated with functional

connectivity between several brain regions within the functional

MTN, including the superior parietal lobe (L_7PL), inferior

parietal lobe (L_PGp), posterior cingulate cortex (L_DVT, L_POS2,

R_POS2, R_POS1, L_TPOJ3), medial temporal lobe (L_PreS,

L_PeEc, R_PeEc, L_Subi, R_Subi, L_TPOJ3, L_PHA3, R_PHA3),

and hippocampal subfields (L_CA3, L_GC-DG, R_CA3, R_CA4,

R_GC-DG) (Figure 2). Similarly, when examining the relationship

between the structural connectivity of the MTN and FNAME

performance, a significant latent variable emerged, explaining

31% of the covariance. Bootstrapping analysis indicated an

association between higher FNAME scores and increased structural

connectivity involving the superior parietal lobe (L_7PL, L_7Pm,

R_7Pm), posterior cingulate cortex (L_POS2, L_PCV, R_PCV),

medial temporal lobe (L_PreS, R_PreS, L_PHA3, L_PeEc, R_Subi),

inferior parietal lobe (L_PGp, R_PGp), and hippocampal subfields

(L_CA3, L_CA4, L_GC-DG, R_GC-DG, R_CA1, R_CA3). These

findings reveal the connectomic features of the structural and
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FIGURE 2

Partial least squares correlation (PLSC) analysis was conducted to examine the association between structural and functional connectivity within
nodes of the medial temporal network (MTN) and mFNAME performance. The figure highlights within-MTN connectivity positively correlated with
mFNAME performance, supported by a threshold bootstrap ratio of 1.96. Thicker lines represent higher bootstrap ratios, indicating a stronger
association with mFNAME performance. The brain is viewed from the medial perspective.

functional MTN associated with performance on mFNAME tasks

in older adults with cognitive impairment (Figure 2).

For the DMN, the analysis of functional network revealed

a significant latent variable accounting for 37% of the variance,

particularly within the medial prefrontal cortex (L_10r, L_9m,

L_25, L_s32, R_s32, L_9m), dorsomedial prefrontal area (L_8BL,

L_9p, R_9a, R_s6-8), posterior cingulate cortex (L_31a, L_31pd,

L_31pv, L_d23ab, L_23d, R_d23ab, R_v23ab, R_23d, L_7m, R_7m),

retrosplenial cortex (R_RSC), and inferior parietal lobe (L_PGs,

R_PGs, R_PGi). Similarly, the structural analysis of the DMN

identified a significant latent variable responsible for 29 % of the

variance, with key ROIs including the medial prefrontal cortex

(L_10r, L_p32, L_s32, R_10r, R_s32), posterior cingulate cortex

(L_23d, L_31pv, R_d23ab, R_v23ab, R_31pv), lateral temporal

cortex, and inferior parietal lobe (L_PFm, R_PFm, L_PGi, R_PGi,

L_IP1, R_IP1). The relationships between each latent variable

and their respective correlations with mFNAME performance are

depicted in Figure 3.

4 Discussion

Alongside the surge in popularity of the FNAME task in

cognitive aging research, our study advances the understanding

of the task’s psychometric properties in young adults and the

neural correlates of task performance in cognitively impaired

older adults. Critically, findings from Experiment 1 demonstrate

high alternate form reliability of eight newly developed parallel

versions of the mFNAME for all outcome measures (ICC = 0.8

to 0.9). Additionally, we report an absence of significant practice

effects from separate analyses conducted to examine changes

in performance with increased task exposure. These findings

underscore the suitability of mFNAME for longitudinal studies

with strong potential to detect disease progression across the early

stages of the AD continuum and monitor treatment effects.

Distinct from this interrogation of alternate form reliability

and practice effects, Experiment 2 yielded novel findings that

advance our understanding of how functional and structural

connectivity profiles correspond with associative memory in

cognitively impaired older adults.

In the first step of this analysis, we employed graph theoretical

analysis to identify which, if any, network(s) were significantly

associated with mFNAME performance. This mathematical

approach provides a useful lens to elucidate elements of the

brain’s structural and functional architecture that sustain complex

cognitive processes. More specifically, this approach examines

the brain’s delicate balance between ensuring resilience against

disruptions (local efficiency), facilitating information integration

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1592678
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2025.1592678

FIGURE 3

Partial least squares correlation (PLSC) analysis was conducted to examine the association between structural and functional connectivity within
nodes of the default mode network (DMN) and FNAME performance. The figure highlights within-DMN connectivity positively correlated with
mFNAME performance, supported by a threshold bootstrap ratio of 1.96. Thicker lines represent higher bootstrap ratios, indicating a stronger
association with mFNAME performance. The brain is viewed from the medial perspective.

across varied regions (global efficiency), and preserving distinct

modules to maximize specificity (system segregation) (Deery

et al., 2023). Of the networks evaluated, this preliminary analysis

revealed that only the network organization of the DMN and

MTN was significantly associated with mFNAME performance.

When examining structural connectivity profiles, we observed that

global efficiency and local efficiency metrics for both the DMN

andMTN significantly corresponded with mFNAME performance.

Furthermore, unique to the functional topology of these networks,

we observed that system segregation was significantly associated

with face–name associative memory.

Together, these results reveal that both the structural and

functional topology of the DMN and MTN are closely related

to associative memory performance in MCI. These findings are

congruent with reports from studies leveraging graph theory to

survey the influence of network architecture on cognitive aging

more broadly. Studies employing this methodology consistently

report that age-related cognitive deficits are associated with less

segregated, less modular, and less efficient network organization

(see review by Deery et al., 2023). For example, higher system

segregation of major functional networks reportedly confers

cognitive resilience in both healthy older adults and patients

with AD (Chan et al., 2014; Ewers et al., 2021). Our findings

are consistent with this literature, as measures indicative of

poorer system segregation in the DMN and MTN corresponded

with worse performance on the mFNAME. These subtle changes

in network organization revealed by graph theory may reflect

dedifferentiation (i.e., diffuse, nonspecific recruitment of brain

regions) and/or compensation (i.e., the need for additional neural

resources to complete a task) (Deery et al., 2023). Higher global and

local efficiency (i.e., more connections between nodes) reportedly

confers resilience for information transfer and integration in the

presence of disruptions (Achard and Bullmore, 2007), which also

aligns with our findings. Such disruptions can occur as a natural

consequence of age and multiply in pathological conditions such as

AD. Supporting this notion, a recent investigation of preclinical AD

reported that increased local efficiency in the DMN was associated

with better memory performance in the presence of Aβ (Adams

et al., 2023).

The identification of the DMN and MTN reflects well-

established roles for these networks in the supporting memory

throughout the aging continuum. The MTN fundamentally

enables memory functions, comprising connectivity between

the entorhinal, perirhinal, parahippocampal, and hippocampal

cortices. The MTN dynamically balances the modularity and

segregation necessary to facilitate its specialized functionality
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while remaining integrated with distributed brain systems through

two specific networks converging on hippocampal structures:

the anterior-temporal (AT) and the posterior–medial (PM)

networks (de Flores et al., 2022; Deery et al., 2023). The AT

connects the MTN with the temporopolar, orbitofrontal, and

medial prefrontal cortices, while the PM provides connectivity

to the precuneus, retrosplenial, and posterior cingulate cortices

(Ranganath and Ritchey, 2012). This assimilation with distributed

cortical structures provides a notable overlap between the MTN

and DMN. Studies have reported that the MTN functions as a

subsystem within the DMN, with the parahippocampal cortex

serving as the hub that mediates its convergent connectivity (Ward

et al., 2014). Although the DMN is principally characterized

by its synchronous activation at “rest” that underlies internal

mentation, this distributed network is increasingly recognized

for its supportive role in memory functions (Raichle, 2015).

The DMN’s footprint provides connectivity between the posterior

midline (precuneus/posterior cingulate), medial prefrontal, inferior

parietal, and medial temporal cortices, facilitating the information

integration necessary for encoding and retrieving associative

memories (Smallwood et al., 2021). Furthermore, contextualizing

our findings with the targeted application of the mFNAME

task, both the DMN and MTN are noted for their vulnerability

to the senescence that accompanies typical aging and AD

pathology (Andrews-Hanna et al., 2007; Berron et al., 2020;

Buckner et al., 2008; de Flores et al., 2022; Vlassenko et al.,

2010). In summary, the MTN, crucial for episodic memory,

supports binding discrete pieces of information, such as face–

name pairs, into unified representations, a process central to

tasks such as FNAME (Westerberg et al., 2012). Meanwhile,

the DMN, known for its integration and abstraction capabilities,

facilitates the extraction of commonalities across experiences,

transforming specific associations into generalized knowledge. This

dynamic interplay between the MTN’s binding mechanisms and

the DMN’s integrative functions underscores how these networks

collaboratively support the formation and contextualization of

associative memories (Ward et al., 2015).

After identifying mFNAME-related networks, we employed

partial least squares analysis (PLSC) to empirically characterize

how variations in their functional and structural connectomes

correspond with mFNAME performance. In the MTN, this

yielded latent variables accounting for 44% and 31% of the

covariance between associative memory scores and the functional

and structural connectomes of this network, respectively. This

was followed by a bootstrapping analysis to identify nodes that

may act as critical hubs for associative memory. In the functional

MTN, improved task performance was associated with enhanced

connectivity between hippocampal subfields (CA3, GC_DG, CA4),

the temporo-parietal-occipital junction (TPOJ3), the parietal lobe

(7PL, PGp), and the posterior cingulate cortex (DVT, ProS,

POS1, POS2) (Figure 2). The strength of white matter connectivity

between a similar set of ROIs was associated with associative

memory performance, with slightly denser clustering in subcortical

structures of the MTL. Specifically, beyond connectivity to

distributed cortical regions (i.e., PCV, POS2, ProS, 7PL, 7Pm, PGp),

connections between the parahippocampus (PHA3), hippocampal

subfields (CA3, GC_DG, CA1, CA4), the entorhinal cortex (EC),

and perirhinal cortex (PeEc) in the MTL were also associated with

the performance (Figure 2).

Relatedly, existing literature highlights the inferior longitudinal

fasciculus (ILF) in facial recognition and memory (Burkhardt et al.,

2023). The ILF serves as a major neural conduit linking memory

structures in the MTL with distal brain regions, spanning from

the anterior temporal pole to the posterior parietal and occipital

regions (Sali et al., 2018). Our structural MTN PLSC analysis also

coincides with the structural connectivity distribution of the ILF,

linkage the bilateral PGp (posterior part of the inferior parietal

lobe) to medial temporal subregions (PH3: parahippocampus,

PeEC: perirhinal ectorhinal cortex). Notably, the ILF reportedly

accounts for 40% of the long-range white matter pathways that pass

through the hippocampus (Maller et al., 2019). Corresponding with

this prominent hippocampal integration, disrupted connectivity

along the ILF is commonly associated with memory deficits in

older adults with and without AD (Kantarci et al., 2011; Kitamura

et al., 2013; Luo et al., 2020; Madden et al., 2012; Sasson et al.,

2013). Beyond its densely threaded connections to nodes in the

MTN, the ILF’s long projections bridge disparate brain regions

that are a highly member for face–name binding (Sali et al., 2018).

Anteriorly, it projects to the temporal pole, a region integral for

linking faces with personal identity information (Tsukiura et al.,

2010; Von Der Heide et al., 2013a). Posteriorly, the ILF projects

to visual areas in the occipital cortex and adjacent structures

such as TPOJ3, which is preferentially activated in response to

viewing faces (Baker et al., 2018). The integral role of the ILF

in face–name associative memories is supported by findings from

our recent DTI-guided repetitive transcranial magnetic stimulation

(rTMS) study in older adults, which stimulated superficial cortical

tissue in the parietal lobe that demonstrated connectivity to the

hippocampus via the ILF. With subject-specific stimulation sites,

this rTMS protocol reportedly enhanced hippocampal functional

connectivity and improved FNAME performance in participants

with MCI (Chen et al., 2022).

With respect to the DMN, our sequential PLSC and

bootstrapping analyses identified patterns of functional and

structural connectivity that accounted for 37% and 29% of

the covariance with mFNAME performance, respectively.

Bootstrapping ratios with the highest values highlighted nodes in

the prefrontal (p32, s32, 31pv, 47l, 47m, 10r), posterior cingulate

(d23ab, v23ab, 23d), precuneus (7m), and parietal (PFm, PGi,

POS1) cortex. Known for its extensive connectivity, the postero-

ventral division of the cingulate emerges as a compelling nexus for

the regions implicated by our analyses. As elucidated by Rolls et al.,

this neural hub facilitates the integration of memory processes in

disparate cortical regions with those in hippocampal structures to

facilitate the encoding and retrieval of new associations (Rolls et al.,

2023). Notably, some of the highest bootstrapping ratios emerged

for connectivity between structures in the prefrontal cortex and

the posterior cingulate cortex (PCC), which complements the

well-established involvement of the prefrontal cortex in associative

memory (Becker et al., 2015; Guardia et al., 2023; Simons and

Spiers, 2003). Indeed, multiple studies evaluating the regional

contributions of age-related cortical atrophy to behavioral deficits

reported that the gray matter volume in the prefrontal cortex,

more so than the MTL, has the strongest correspondence with
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associative memory (Becker et al., 2015; Guardia et al., 2023).

Additional work has highlighted the left superior frontal gyrus

(L_p32), specifically, as a convergence region for binding verbal

and non-verbal material like that of the FNAME task (Klamer et al.,

2017). Relatedly, the angular gyrus (PGs, PFm, PGi) is also known

to be particularly involved in binding cross-modal episodic features

and representing high-level face information (Lee and Kuhl, 2016;

Tibon et al., 2019). Lastly, our results emphasize orbitofrontal

regions (areas 47 and 10), which are structurally connected to

the temporal cortex via the uncinate fasciculus (UF). This finding

aligns with the purported functionality of the UF for “temporal

lobe-based mnemonic associations (e.g., an individual’s name +
face + voice)” (Von Der Heide et al., 2013b) and previous reports

implicating the structural integrity of the UF in face–naming

abilities (Metoki et al., 2017; Papagno et al., 2011).

By leveraging the graph-based properties of DMN and MTN

organization, these networks emerge as promising targets for

interventions such as repetitive transcranial magnetic stimulation

(rTMS) or transcranial direct current stimulation (tDCS) in this

population. Prior research has demonstrated the efficacy of non-

invasive brain stimulation (NIBS) in modulating network-level

activity to improve memory performance, particularly in aging and

clinical populations with memory impairments (Chen et al., 2022;

Tambini et al., 2018; Wang et al., 2014). Future research could

incorporate graph theory analyses to enhance the application of

NIBS therapies in this population and increase our understanding

of the intervention’s effects. For example, a recent study in patients

with clinical depression reported that network properties identified

through graph theory were predictive of rTMS treatment response

(Klooster et al., 2019). Other studies in various clinical populations

indicate that graph-based properties of network organization can

be “renormalized” following NIBS therapies. For example, in

correlation with improved treatment response, inefficient small-

world properties and aberrant functional segregation observed in

insomnia patients at baseline were restored following rTMS to

resemble the network organization of healthy controls (Qi et al.,

2022). Similar findings exist in the clinical depression literature,

where rTMS treatment response is associated with renormalization

in network topology discerned by graph-based properties (Zhang

et al., 2025). To our knowledge, graph theory analyses have

yet to be integrated into studies applying NIBS in populations

with age-related cognitive impairment. Though previous studies

have reported that individualized rTMS can improve FNAME

performance and modulate functional connectivity in patients with

MCI (Chen et al., 2022), future work is needed to determine

whether these behavioral improvements are associated with shifts

in global efficiency, local efficiency, and/or system segregation

within the networks identified by the present work.

Various caveats should be taken into account when interpreting

our results. First, the alternate form reliability of the eight

newly developed parallel versions of mFNAME (Experiment

1) was only assessed in younger adults due to the enhanced

feasibility afforded by this population. Our cohort of cognitively

impaired older adults in Experiment 2 completed a single

mFNAME assessment, utilizing a randomly selected version of

the task. Second, the absence of disease-specific biomarkers in

Experiment 2 limits the interpretability of our findings. It is

unclear, for example, how the connectomic correlates of mFNAME

performance identified in the present work may be influenced by

disease-specific neuropathology.

5 Conclusion

The high alternate form reliability of the eight parallel

versions of mFNAME reported in Experiment 1 underscores

the task’s potential as a valuable tool for early detection and

monitoring of cognitive decline along the continuum of AD and

related dementias. Experiment 2 provides novel results, yielding

insights into how the connectivity of the MTN and DMN is

associated with mFNAME task performance. Graph theoretical

analysis revealed that global and local efficiency metrics for

each network’s structural connectome were significantly associated

with task performance, while system segregation emerged as

the only significant correlate of mFNAME for each network’s

functional connectome. Subsequent PLSC and bootstrapping

analyses revealed more granular connectomic features within

each network that was associated with task performance. Future

work is needed to (1) evaluate mFNAME reliability in aged

populations, and (2) integrate disease-specific biomarkers to

ascertain potential interactions between neuropathology and the

connectomic correlates of mFNAME identified in Experiment 2.
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