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Introduction: Older age is associated with alterations in executive functioning

(EF). Age-related alterations in the integrity of structural brain networks may

contribute to EF decline, with potential consequences for independent living.

Graph theory provides powerful metrics to examine the brain’s structural

connectome, but few studies have investigated the relationship of EF and

structural brain networks, as described by graph-theoretical measures, in older

adults. We aimed to investigate the mediatory role of network characteristics for

the relationship between age and EF in older adults.

Methods: Eighty-four older adults completed a battery of EF tasks to

allow for the extraction of a latent Common-EF factor. White-matter

tractograms were generated from di�usion neuroimaging using anatomically-

constrained tractography (ACT) and spherical-deconvolution informed filtering

of tractograms (SIFT2).

Results: From the resulting networks, global e�ciency (reflecting integration) as

well as local e�ciency (reflecting segregation) were calculated. Older age was

associated with worse EF and decreased global and local e�ciency. Both global

and local e�ciency were positively correlated with EF. Local e�ciency mediated

the negative correlation of age and EF, whereas no such relationship was found

for global e�ciency. Further regional e�ciency analyses identified the nodes that

contributed to the mediation e�ect of local e�ciency.

Discussion: These results shed light on the shared variability among the integrity

of structural brain networks and EF at older age. A causal role of a reduced

segregation in structural brain networks to support EF in older adults remains to

be determined butwould bear promising potential for preserving EF during aging.
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1 Introduction

Executive functions (EFs) are higher-level mental processes

that are believed to control lower-level operations, allowing

for successful goal-directed behavior (Diamond, 2013; Friedman

and Miyake, 2017). Age-related declines in EF (Ferguson et al.,

2021; Fisk and Sharp, 2004; Rhodes, 2004) may have adverse

consequences for wellbeing and functional independence. Several

factors may contribute to age-related EF decline, including

alterations in the brain white matter (Madden et al., 2009, 2012;

Westlye et al., 2010). Specifically, interindividual differences in EF

have been linked to decreases in white matter connectivity as seen

in healthy aging (Coxon et al., 2012; Fjell et al., 2017; Gustavson

et al., 2023; Hoagey et al., 2021; Li et al., 2020; Serbruyns et al., 2016;

Tang et al., 2023; Ystad et al., 2011). White matter tracts across the

brain have been linked to EF performance (Ribeiro et al., 2023).

Accordingly, white matter microstructural alterations in regions

supporting EF (i.e., a structural EF network) have been proposed as

a mechanism underlying EF decline in aging (Bennett andMadden,

2014; Coxon et al., 2016; Fjell et al., 2017; Hoagey et al., 2021; Shen

et al., 2020; Webb et al., 2020; Zahr et al., 2009).

Structural brain connectivity can be investigated using graph

theoretical analysis (Bullmore and Sporns, 2009). Graph theoretical

analysis describes brain networks as nodes and edges (i.e.,

pathways between nodes), and derives specific metrics that reflect

different facets of the brain’s network topology (Rubinov and

Sporns, 2010; Sporns, 2013; Yeh et al., 2021). Within graph

theoretical analysis, “efficiency parameters” describe the efficiency

of information exchange within and between networks (Latora and

Marchiori, 2001). Global efficiency (Eglob) indicates the efficiency

of parallel information transfer between all pairs of nodes in

a network, and thus its integration (Cohen and D’Esposito,

2016). Regional efficiency (Ereg) indicates, for every node in a

network, how efficiently information can be transferred among

its neighboring nodes when that node is removed. It thus reflects

how much information transfer in a small area surrounding

the node (i.e., a local subnetwork) is dependent on it (i.e.,

the efficiency of information transfer within this sub-network).

Finally, local efficiency (Eloc) denotes the average of Ereg across

all nodes (Latora and Marchiori, 2001). Hence, Eglob is a measure

of network integration, whereas Ereg and Eloc are measures of

network segregation.

Graph theoretical analysis has revealed age-associated

alterations in structural brain networks (Damoiseaux, 2017).

Specifically, cross-sectional evidence links age to decreased global

efficiency (Bi et al., 2021; Hinault et al., 2021; Li et al., 2020; Wen

et al., 2011; Zhao et al., 2015; but see Gong et al., 2009) as well

as regional and local efficiency (Bi et al., 2021; Gong et al., 2009;

Li et al., 2020; Wen et al., 2011; Zhao et al., 2015). Overall, the

literature suggests that structural brain networks deteriorate with

increasing age, rendering them less efficient. This is consistent

with an age-related “disconnection” of structural brain networks

that may underlie age-associated cognitive decline (Bennett and

Madden, 2014; Fjell et al., 2017; Madden et al., 2012; O’Sullivan

et al., 2001).

Cognitive performance has been shown to correlate with the

integrity of structural brain networks in older adults. For instance,

Wen et al. (2011) found global network efficiency to be associated

with processing speed, visuospatial abilities, and EF in older adults.

In addition, Li et al. (2020) reported correlations with global

and local network efficiency for both attention and EF in a

similar population.

Taken together, the literature suggests age-related alterations in

white matter networks, with potential consequences for EF. The

present study was designed to investigate age-associated differences

in global, local and regional structural networks efficiency and their

contribution to age-associated performance differences in EF in

healthy older adults, as indexed by a latent Common EF measure.

The advantage of a latent EF metric is that it integrates several

domains of EF and is not limited to one particular aspect of EF.

In addition, it is more reliable and generalizable as compared to

measures based on averaged z-scores obtained from single tasks per

domain, as it reduces variability that is not specific to EF (Miyake

et al., 2000; Miyake and Friedman, 2012). We hypothesized that

(1) graph theoretical measures reflecting global and local efficiency

of structural networks (see Methods) would be negatively related

to age and positively to EF in older adults, and (2) the efficiency

of information processing in the structural connectome (indexed

by these graph theoretical measures) would account for age-

associated differences in EF in older adults, as studied via mediation

analyses. In addition, we aimed to identify the specific nodes

from which connectivity show the strongest mediating association

with the relationship among age, structural network efficiency and

executive functioning.

2 Materials and methods

2.1 Participants and procedure

As part of a larger multimodal project investigating neural

correlates of executive function (Seer et al., 2021, 2022), 111

older adults (aged 60 years and above) were recruited from the

Leuven area (Belgium). All participants had normal or corrected-

to-normal vision and reported no current intake of psychoactive

medication, a current diagnosis of psychiatric/neurological

disorder, and/or MRI contraindications. The present analyses

included 84 participants (52 female, 32 male; 70 right-handed, 4

left-handed, 10 ambidextrous), between 60 and 85 years of age

(M = 68.06, SD = 4.74), who had both high quality dMRI and

EF data. Eligibility based on the performance on EF tasks has

been described in detail elsewhere (Seer et al., 2021). In brief,

participants showing signs of insufficient adherence to the task

instructions (i.e., performance levels that did not differ from

chance level on at least one EF task, n = 12 participants) were

excluded. None of the participants in the final sample (n = 84;

Figure 1) showed signs of mild cognitive impairment, as based on

the Montreal Cognitive Assessment (MoCA; M = 27.71, SD =

1.82, range: 24-30 (cutoff= 23/30, Carson et al., 2018); (Nasreddine

et al., 2005). Subjective cognitive complaints were not assessed.

The average number of education years was 18.06 (SD = 2.66;

range: 11-24) and the average level of crystallized intelligence on

the Peabody Picture Vocabulary Test (PPVT) was 109.50 (SD =

8.76, range: 82-125; Horn and Cattell, 1967; Schlichting, 2005).
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FIGURE 1

Flowchart depicting reasons for exclusion from analysis.

The study was reviewed and approved by the Ethics Committee

Research UZ/KU Leuven (study number 61,577). All participants

provided written informed consent to participate and were offered

a compensation ofe 100. The dataset is openly available on https://

osf.io/hxr38/files/osfstorage.

The study protocol is described in detail elsewhere (Seer

et al., 2021). Participants completed three sessions: (1) a first

behavioral session, where they completed background assessments

and questionnaires as well as three computerized EF tasks, (2) a

second behavioral session, where the remaining six computerized

EF tasks were completed, and (3) a neuroimaging session.

Participants completed the whole experiment on average within

∼2 weeks.

2.2 Executive functioning tasks

Participants completed a comprehensive computerized battery

in OpenSesame version 3.2.6 (Mathôt et al., 2012) of nine

neuropsychological tasks across two test days, following a protocol

similar to Friedman et al. (2016). This test battery was designed

to cover three key domains of EF, i.e., inhibition (suppressing

unwanted actions), shifting (switching betweenmental operations),

and updating (managing working memory content). Every domain

was tapped by three tasks. The inhibition domain was tapped

by antisaccade, number-Stroop, and stop-signal tasks. In the

antisaccade task, participants are presented with salient visual

cues and need to avoid automatic saccades toward that stimulus.

In the number-Stroop task, participants need to avoid reading

out a number from a string of numbers and instead report

how many numbers the string contained. In the stop-signal task,

participants should withhold a prepotent motor response to a

simple categorization task when cued to do so. The shifting domain

was tapped by category switch, color-shape, and number-letter

tasks. In all of these, participants are asked to switch back and

forth between two tasks according to a visual task cue. In the

category switch task, participants are cued to categorize words

as either denoting an animate vs. an inanimate object (animacy

task) or as describing an object that is larger vs. smaller than a

football (size task). In the color-shape task, participants are asked

to categorize stimuli either according to their shape (triangle vs.

circle; shape task) or according to their color (red vs. green; color

task). In the number-letter task, participants are presented with

pairs of letters and numbers and are cued to categorize these pairs

either regarding the letter being a vowel vs. a consonant (letter

task) or regarding the number being odd vs. even (number task).

The updating domain was tapped by digit span, keep track, and

spatial 2-back tasks. In the digit-span task, participants are asked

to repeat strings of numbers either in forward or in backward

order, with the length of the strings increasing until the participant

fails to respond correctly. In the keep track task, participants are

asked to attend to a stream of words from different categories (e.g.,

countries, colors) and recall the last word of each category, with

varying numbers of categories to keep track of. In the spatial 2-back

task, participants are asked to watch a sequence of dots flashing

on different locations scattered across the computer screen and

to indicate, for every dot, whether the dot in that same location

has been highlighted two trials before the current one. The task

order was fixed to minimize between-subject variability (e.g., due

to learning or fatigue effects) and hence facilitate latent variable

extraction (day 1: stop-signal, category switch, digit span; day

2: color-shape, keep track, anti-saccade, spatial 2-back, number-

Stroop, number-letter; Friedman et al., 2016). The rationale for this

particular task order, individual task parameters, and calculation of

performance scores were described in detail elsewhere (Seer et al.,

2021).

A single measure of EF was derived from the common

and specific EF variance, using the unity/diversity framework

(Friedman and Miyake, 2017; Miyake et al., 2000; Miyake and

Friedman, 2012). The nine performance scores for the tasks

described above were entered into a confirmatory factor analysis

in lavaan 0.6–7 (Rosseel, 2012), where a “Common EF” factor

represented the shared variance by all tasks while “shifting-specific”

and “updating-specific” factors represented the residual variability

from shifting and updating tasks (Miyake and Friedman, 2012; Seer

et al., 2021). Note that after accounting for Common EF variability,

there is usually no residual variability left to be captured by an

“inhibition-specific” factor; this was also the case in the current

dataset (see also Friedman and Miyake, 2017; Seer et al., 2021).

In the context of the present study, the “Common EF” factor

score was used as the main variable of interest when assessing the

interrelations between EF, Age, and brain/graph metrics in this

cohort of older adults. Factor loadings and model fit indices are

provided in the supplement (Supplementary Table S1). Note that

this procedure also yielded shifting-specific and updating-specific

EF factors. Although these factors were not of interest for the

present study, we executed exploratory analyses for completeness.

2.3 MRI acquisition

MRI data were acquired on a Philips Achieva 3.0T MRI system

equipped with a 32-channel head coil. A high-resolution three-

dimensional T1-weighted (T1W) structural image was collected,

using a magnetization-prepared rapid gradient echo (MPRAGE)
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sequence with the following parameters: TR/TE = 5.6/2.5ms; flip

angle = 8◦; voxel size = 0.9 × 0.9 × 0.9 mm3; field of view =

256 × 240 × 187.2 mm3; 208 sagittal slices; sensitivity encoding

(SENSE) = 2; total scan time = ∼ 6min. Diffusion MRI data were

acquired using a single-shot echo planar imaging sequence with the

following parameters: dMRI volumes with b-values = 700 s/mm2

(16 gradient directions), 1,200 s/mm2 (30 gradient directions),

and 2,800 s/mm2 (50 gradient directions); 6 interspersed volumes

without diffusion weighting (b= 0 s/mm2); flip angle= 90◦; phase-

encoding direction= posterior to anterior (PA); field of view= 240

× 240 × 140 mm3; voxel size = 2.5 × 2.5 × 2.5 mm3, TE/TR =

74/5,000ms; multiband factor= 2; SENSE= 2; matrix size= 96×

96; 56 transverse slices; total scan time=∼ 9min.We also acquired

five b= 0 s/mm2 images with reversed phase encoding (AP) for the

purpose of susceptibility-induced distortion correction.

2.4 MRI processing

The MRtrix3 (Tournier et al., 2019) standard structural

connectome construction pipeline (Smith and Connelly, 2019)

available at https://github.com/BIDS-Apps/MRtrix3_connectome

and described in detail elsewhere (Civier et al., 2019; Smith et al.,

2015b; Yeh et al., 2016, 2019), was applied to dMRI and T1W

data (see Figure 2A for a general overview of the pipeline). Where

necessary, this pipeline also incorporates commands from FSL

(Jenkinson et al., 2012) and Freesurfer (Fischl, 2012) software

packages. Brain parcellation was performed according to the

Desikan atlas (Desikan et al., 2006), which is the default atlas used

by Freesurfer.

In brief, dMRI data were denoised (Veraart et al., 2016),

Gibbs unringed (Kellner et al., 2016), and corrected for eddy

current distortions, motion, and susceptibility induced distortions

(Andersson et al., 2003, 2016, 2017; Andersson and Sotiropoulos,

2016). Three-tissue response functions representing single-fiber

white matter, gray matter and cerebrospinal fluid were obtained

from the corrected dMRI data using an unsupervised approach

(Dhollander et al., 2016). Three-tissue constrained spherical

deconvolution (CSD) was performed for each participant, using the

averaged (across all participants) response functions for each tissue

type with the multi-shell multi-tissue CSD algorithm (Jeurissen

et al., 2014), resulting in the white matter fiber orientation

distribution (FOD) for each voxel. Joint bias field correction

and global intensity normalization of the 3-tissue parameters was

performed in the log-domain (Dhollander et al., 2021). Subject’s

T1W image was also registered to the mean b = 0 s/mm2

(corrected) image via rigid-body transformation (Bhushan et al.,

2015).

Following the initial processing, tractograms were generated.

Thus, for each participant, the 2nd-order integration over FODs

algorithm (iFOD2; Tournier et al., 2010) and the anatomically-

constrained tractography (ACT; Smith et al., 2012) with dynamic

seeding (Smith et al., 2015a), FOD amplitude threshold 0.06,

step size of 1.25mm, length of 5–250mm, and backtracking

(Smith et al., 2012) were used to generate 10 million probabilistic

streamlines. Furthermore, each streamline was assigned a weight,

computed using the spherical-deconvolution informed filtering

of tractograms (SIFT2; see Smith et al., 2015a). Based on each

participant’s tractogram, an individual connectome was computed

using 84 regions-of-interest parcellated in native space [cortex and

cerebellum: Dale et al. (1999); Desikan et al. (2006); subcortical

regions: Patenaude et al. (2011); see Smith et al. (2015a)], with

connection strengths calculated by summing the weights of the

relevant streamlines scaled by the proportionality coefficient (Smith

et al., 2015a). These 84 nodes were used for further analyses. To

allow for a better understanding of the distribution of regional

differences, the nodes were grouped into seven larger areas

(frontal, parietal, temporal, occipital, insula-cingulate, subcortical

(including hippocampus), and cerebellum for the analysis of

regional efficiency (see below). This categorization followed the

grouping of cortical regions suggested by Klein and Tourville

(2012), which is based on the Desikan atlas (Desikan et al., 2006).

Intra-regional connection strengths were set to zero (Rubinov and

Sporns, 2010).

2.5 Global and local e�ciency as putative
measures of integration and segregation

The Brain Connectivity Toolbox (Rubinov and Sporns, 2010),

implemented inMATLAB (TheMathWorks Inc., Natick, MA), was

used to compute weighted, undirected network metrics including,

global efficiency (Eglob: E = 1
n

∑

i∈N Ei = 1
n

∑

i∈N

∑

j∈N,j 6=i d
−1
ij

n−1 ,

where Ei is the efficiency of node i; Rubinov and Sporns,

2010), regional efficiency (Ereg), and local efficiency (Eloc: Eloc =

1
n

∑

i∈N Eloc,i =
1
n

∑

i∈N

∑

j,h∈N,j 6=i aijaih
[

djh(Ni)
]−1

ki(ki−1)
, where Eloc,i is the

local efficiency of node i, and djh(Ni) is the length of the shortest

path between j and h, that contains only neighbors of i; Rubinov and

Sporns, 2010). Please note that Eloc is the average of Ereg across all

nodes. In this study, the recommended version described in Wang

et al. (2017) was used to calculate Ereg as it is a true generalization

of the binary variant.

Eglob measures how efficient the parallel information transfer

(flow) in the network is and thus is an index of network

integration. Ereg and Eloc (i.e., the average of Ereg across all

nodes) measure the efficiency of the communication amongst

the first neighbors of a node when that node is removed.

These metrics indicate how well a network tolerates faults

and thus are indices of network segregation (Latora and

Marchiori, 2001). In other words, the intercommunicability of

any two nodes in the network is reflected in the network

integration, or global efficiency. In contrast, the efficiency of

specific clusters is reflected in the network segregation, or

regional and local efficiency (see also Cohen and D’Esposito,

2016).

We decided to focus on efficiency metrics because

these are reflective of the integration and segregation of

the network’s connectivity and because these metrics have

been associated with age and/or to executive functioning

in older adults (Li et al., 2020; Madden et al., 2020; Wen

et al., 2011; Zhao et al., 2015). Furthermore, regional

efficiency supports the identification of relevant nodes

in the association among efficiency, age and executive
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FIGURE 2

General overview of applying graph theoretical analysis to study brain networks (A) and overview of the mediation model (B). (A) The anatomical

constrained tractography (ACT) framework was applied to the preprocessed dMRI data and T1W image of an exemplary participant to reconstruct

the whole brain tractogram (overlaid on T1W image). The streamlines’ weights obtained via SIFT2 (spherical-deconvolution informed filtering of

tractograms) were then used in conjunction with the brain nodes image, obtained by parcellating the T1W image, to construct an 84 × 84 weighted

and symmetrical connectivity matrix. The color bar shows connection strength in logarithmic scale and missing/removed connections are in black.

Graph theoretical analysis was used to calculate the weighted version of network topology metrics of interest (here: global e�ciency, local e�ciency,

regional e�ciency). (B) The Mediation model was used to determine whether the age-related di�erences in EF in older adults are mediated by

alterations in network metrics. Path c (solid line) = total e�ect of age (IV = independent variable) on executive function (DV = dependent variable).

This total e�ect was, per metric of interest, separated into two distinct pathways: (1) path ab (dashed arrows) = indirect (mediation) e�ect, with path a

reflecting the e�ect of age on the network metric (M = mediator variable) and path b reflecting the e�ect of network metric on executive function;

(2) path c
′

(dotted arrow) = direct e�ect, i.e., the e�ect of age on executive function independent of its e�ect through the network metric.

functioning, rendering higher specificity. Nonetheless, we

admit that other network properties may also be relevant.

Accordingly, we included analogous supplementary analyses

of other network metrics (density, clustering, modularity

and strength).

2.6 Statistical analysis

Kolmogorov-Smirnov tests did not show significant deviations

from normality, which was confirmed by visual inspection for

the variables of interest. Partial (Pearson) correlation analyses

controlling for sex and education were used to investigate the

bivariate associations between age, EF, and network metrics. To

examine whether age-associated variations in network metrics

contribute to age-associated differences in EF in a cohort of

older adults, mediation analyses were performed (MacKinnon

et al., 2007). To this end, the commonly-used simple 3-

path mediation model (Baron and Kenny, 1986), implemented

in the PROCESS V4.0 plugin (Hayes and Rockwood, 2017)

developed for IBM SPSS (V28.0 for Windows), was used

(Figure 2B). Multiple comparisons were controlled using a False

Discovery Rate (FDR) correction (Benjamini and Hochberg,

1995).

In this model, the total effect (path c) of independent variable

(IV) on dependent variable (DV) was separated into two distinct

pathways (see Figure 2): (1) indirect (mediation) effect (path

ab) with path a reflecting the effect of IV on the mediator

variable (M) and path b reflecting the effect of mediator variable
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FIGURE 3

Age was negatively associated with both (A) Common EF and (B) Left Precuneus (as an exemplary region) e�ciency in older adults. (C) Higher Left

Precuneus e�ciency was related to better Common EF performance. (D) The 3D representation of brain regions for which the e�ciency significantly

mediated the age-associated decline in Common EF in older adults (listed in Table 3) is shown on the glass brain. (E) The standardized path

coe�cients of the mediation model used for the same region as in (B, C) (i.e., Left Precuneus) are shown. In all plots sex and education are

controlled. lSFG, left Superior Frontal Gyrus; lMOFG, left Medial Orbitofrontal Gyrus; Prec, bilateral Precuneus; lLingual g, left Lingual gyrus; Hipp,

bilateral Hippocampus; lThal, left Thalamus; rPO, right Pars Orbitalis. ***p < 0.001; **p < 0.005; *p < 0.050; CI: 95% bias-corrected bootstrapped

confidence interval.

on DV while controlling for IV; (2) direct effect of IV on

DV (path c’), i.e., the effect of IV on DV independent of its

effect through the mediator variable. Of particular interest was

the indirect effect (path ab), since a significant indirect effect

would indicate significant mediation by the mediator variable

used in the model. This was accomplished using 5,000 bootstrap

samples to determine bias-corrected confidence intervals for the

indirect effects. Accordingly, indirect effects with 95% confidence

intervals excluding zero were regarded as significantly mediating

the relation between IV and DV. In this study, age, graph metrics,

and common EF were, respectively, assigned as IV, M and DV.

Sex and education were included as nuisance variables in all

mediation models.

We conducted supplementary analyses for global metrics other

than efficiency (density, clustering, modularity, and strength) to

investigate whether these variables were related to age and common

EF and to examine whether they mediated the age-common EF

relationship. These analyses are presented in the Supplementary

material (Supplementary Tables S3–S9).

3 Results

3.1 Age-associated di�erences in executive
functioning in older adults

Within this cohort of older adults, age was significantly

correlated with Common EF (r = −0.52, p < 0.001; note that

this correlation remained significant when sex and education were

omitted as controlling variables, r = −0.50, p < 0.001). The

negative correlation coefficient indicates older age to be associated

with lower Common EF scores (i.e., poorer EF; Figure 3A).

3.2 Age-associated di�erences in brain
e�ciency in older adults

Investigations into brain efficiency in this cohort of older adults

showed significant negative correlations for global (Eglob: 0.026 ±
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0.004; r = −0.43, p < 0.001) and local (Eloc: 0.003 ± 0.0005; r

= −0.43, p < 0.001) efficiency parameters with age. Omitting sex

and education as controlling variables did not qualitatively change

these results (Eglob: r = −0.42, p < 0.001; Eloc: r = −0.41, p <

0.001). The negative correlation coefficients indicated a decrease

in global (i.e., efficiency of information transfer for the entire

brain) and local (i.e., average efficiency of information transfer

in local subnetworks) efficiency of the brain with increasing age.

Furthermore, Ereg of 51% (43 out of 84) of the brain regions

showed a significant (FDR corrected) negative correlation with age,

indicating a decrease in regional efficiency as age increases (Table 1,

Figure 3B for an example). To obtain a better understanding of how

these regions are distributed, the individual nodes were assigned

to one of seven areas including frontal (22 nodes), parietal (10

nodes), temporal (18 nodes), occipital (8 nodes), insula-cingulate

(10 nodes), subcortical (including hippocampus; 14 nodes), and

cerebellum (2 nodes), according to a predefined categorization

(Klein and Tourville, 2012). This assignment revealed that 18 of

the negatively correlated regions were located in frontal areas,

9 in parietal areas, 9 in temporal areas, 3 in occipital areas,

and 4 in below-/sub-cortical areas. No significant region was

found in insula-cingulate and cerebellum. No significant positive

correlation with age was found for Ereg of any brain region.

Finally, supplementary analyses showed that density, clustering

and strength (but not modularity) were negatively related to age

(Supplementary Table S4).

3.3 Relationship between brain e�ciency
and executive functioning in older adults

The Eglob (r = 0.33, p = 0.001) and Eloc (r = 0.37, p

= 0.001) were significantly correlated with Common EF in

older adults. Omitting sex and education as control variables

did not qualitatively change these results (Eglob: r = 0.35, p

= 0.001, Eloc: r = 0.39, p < 0.001). The positive correlation

coefficients indicated that superior Common EF was associated

with higher global (i.e., efficiency of information transfer

for the entire brain) and local (i.e., average efficiency of

information transfer in local subnetworks) efficiency of the

brain. Moreover, Ereg of 55% (46 out of 84) of the brain

regions showed a significant (FDR corrected) positive correlation

with Common EF factor (Table 2, Figure 3C for an example).

Thus, higher regional efficiency corresponded to better Common

EF. Assigning brain regions to the different areas (Klein and

Tourville, 2012) revealed that 16 of the positively correlated

regions were located in frontal areas, 10 in parietal areas, 7

in temporal areas, 4 in occipital areas, and 9 in below-/sub-

cortical areas. No significant region was found in insula-cingulate

and cerebellum.

Supplementary analyses showed that neither the shifting-

specific nor the updating-specific factor were correlated with the

efficiency metrics (Supplementary Table S10). In addition, density,

clustering and strength (but not modularity) were positively related

to Common EF (Supplementary Table S4).

TABLE 1 Regions with significant age-Ereg association (controlled for sex

and years of education) are listed according to hemisphere, lobe, and

ascending order of p-value (FDR critical p = 0.026).

Region Lobe/Area r p

Left hemisphere

Pars orbitalis Frontal −0.44 < 0.001

Pars opercularis Frontal −0.43 < 0.001

Rostral middle frontal gyrus Frontal −0.42 < 0.001

Pars triangularis Frontal −0.39 < 0.001

Superior frontal gyrus Frontal −0.33 0.002

Lateral orbitofrontal gyrus Frontal −0.33 0.002

Precentral gyrus Frontal −0.31 0.004

Caudal middle frontal Frontal −0.27 0.014

Medial orbitofrontal gyrus Frontal −0.26 0.017

Superior parietal gyrus Parietal −0.47 < 0.001

Precuneus Parietal −0.41 < 0.001

Supramarginal gyrus Parietal −0.38 < 0.001

Inferior parietal gyrus Parietal −0.37 0.001

Postcentral gyrus Parietal −0.33 0.002

Middle temporal gyrus Temporal −0.34 0.002

Superior temporal gyrus Temporal −0.31 0.006

Transverse temporal gyrus Temporal −0.27 0.014

Inferior temporal gyrus Temporal −0.25 0.025

Lateral occipital gyrus Occipital −0.31 0.004

Hippocampus Subcortical −0.38 < 0.001

Thalamus Subcortical −0.34 0.002

Right hemisphere

Rostral middle frontal gyrus Frontal −0.54 < 0.001

Pars triangularis Frontal −0.44 < 0.001

Pars orbitalis Frontal −0.43 < 0.001

Superior frontal gyrus Frontal −0.42 < 0.001

Precentral gyrus Frontal −0.34 0.002

Caudal middle frontal gyrus Frontal −0.32 0.004

Pars opercularis Frontal −0.32 0.004

Lateral orbitofrontal gyrus Frontal −0.26 0.021

Paracentral gyrus Frontal −0.25 0.021

Superior parietal gyrus Parietal −0.47 < 0.001

Precuneus Parietal −0.46 < 0.001

Postcentral gyrus Parietal −0.43 < 0.001

Inferior parietal gyrus Parietal −0.38 < 0.001

Entorhinal cortex Temporal −0.37 < 0.001

Superior temporal gyrus Temporal −0.37 <0.001

Inferior temporal gyrus Temporal −0.35 0.001

Fusiform gyrus Temporal −0.26 0.016

(Continued)
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TABLE 1 (Continued)

Region Lobe/Area r p

Banks of the superior temporal

sulcus

Temporal −0.25 0.025

Lateral occipital gyrus Occipital −0.37 <0.001

Cuneus Occipital −0.27 0.013

Hippocampus Subcortical −0.47 < 0.001

Accumbens Subcortical −0.41 < 0.001

r-values are rounded to two decimals. Assignment of lobes/areas according to Desikan et al.

(2006).

3.4 Mediation of age-associated di�erences
in brain e�ciency on age-associated
di�erences in executive functioning in
older adults

Using Eglob as a mediator, no significant mediation effect on

age-associated decrease in Common EF (βc = −0.53, p < 0.001)

was found (βab = −0.06, CI: [-0.17, 0.02]; βa = −0.44, p < 0.001;

βb = 0.13, p = 0.21, βc′ = −0.47, p < 0.001; sex standardized

coefficient = −0.19, p = 0.05; education standardized coefficient

= 0.09, p= 0.37).

Eloc significantly mediated the age-associated differences in

Common EF in this cohort of older adults (βc = −0.53, p < 0.001;

βab = −0.07, CI: [−0.16,−0.002]; βa = −0.44, p < 0.001; βb =

0.18, p = 0.09; βc′ = −0.45, p < 0.001; sex standardized coefficient

= −0.19, p = 0.05; education standardized coefficient = 0.09,

p= 0.37).

To identify for which brain regions Ereg mediated the age-

associated differences in EF, we restricted the mediation analysis

to those 38 regions showing significant associations with both age

and Common EF in previous analyses (i.e., common regions in

Tables 1, 2). The result of this analysis indicated that the age-

associated differences in regional efficiency of bilateral precuneus

(parietal), bilateral hippocampus (below/sub-cortical), left superior

frontal gyrus (frontal), left medial orbitofrontal gyrus (frontal),

left thalamus (below/sub-cortical), left lingual gyrus (occipital),

and right pars orbitalis (frontal) significantly contributed to the

differences in Common EF in older adults (Table 3, Figures 3D, E

for an example).

Supplementary analyses showed that from the global

metrics commonly related to age and Common EF (density,

clustering and strength), only clustering was a significant

mediator of the relationship between age and Common EF

(Supplementary Table S5).

4 Discussion

This study addressed age-associated differences in global,

local and regional efficiency of structural connectivity and their

contribution to age-associated differences in EF in healthy older

adults. We performed latent variable modeling for the assessment

of EF along with the most recent state-of-the-art techniques

for structural connectome construction. We found negative

TABLE 2 Regions with significant Common EF-Ereg association

(controlled for sex and years of education) are listed according to

hemisphere, lobe, and ascending order of p-value (FDR critical p = 0.027).

Region Lobe/Area r p

Left hemisphere

Superior frontal gyrus Frontal 0.35 0.001

Medial orbitofrontal gyrus Frontal 0.35 0.001

Rostral middle frontal gyrus Frontal 0.34 0.002

Lateral orbitofrontal gyrus Frontal 0.33 0.003

Pars opercularis Frontal 0.31 0.005

Pars orbitalis Frontal 0.29 0.007

Frontal pole Frontal 0.26 0.017

Precentral gyrus Frontal 0.25 0.022

Precuneus Parietal 0.41 < 0.001

Superior parietal gyrus Parietal 0.33 0.002

Inferior parietal gyrus Parietal 0.31 0.004

Supramarginal gyrus Parietal 0.29 0.007

Postcentral gyrus Parietal 0.27 0.013

Middle temporal gyrus Temporal 0.31 0.004

Transverse temporal gyrus Temporal 0.28 0.011

Banks of the Superior Temporal

Sulcus

Temporal 0.25 0.024

Superior temporal gyrus Temporal 0.25 0.025

Lingual gyrus Occipital 0.38 < 0.001

Cuneus Occipital 0.26 0.018

Hippocampus Subcortical 0.37 < 0.001

Thalamus Subcortical 0.36 <0.001

Putamen Subcortical 0.29 0.007

Accumbens Subcortical 0.28 0.012

Caudate Subcortical 0.26 0.019

Right hemisphere

Pars orbitalis Frontal 0.36 <0.001

Superior frontal gyrus Frontal 0.33 0.003

Pars triangularis Frontal 0.31 0.005

Medial orbitofrontal gyrus Frontal 0.31 0.006

Rostral middle frontal gyrus Frontal 0.29 0.008

Lateral orbitofrontal gyrus Frontal 0.28 0.011

Frontal pole Frontal 0.28 0.012

Precentral gyrus Frontal 0.27 0.012

Precuneus Parietal 0.42 < 0.001

Superior parietal gyrus Parietal 0.29 0.008

Postcentral gyrus Parietal 0.27 0.013

Posterior cingulate Parietal −0.25 0.025

Inferior parietal gyrus Parietal 0.25 0.027

Inferior temporal gyrus Temporal 0.33 0.002

(Continued)
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TABLE 2 (Continued)

Region Lobe/Area r p

Fusiform gyrus Temporal 0.29 0.008

Middle temporal gyrus Temporal 0.28 0.011

Cuneus Occipital 0.29 0.007

Lateral occipital gyrus Occipital 0.27 0.016

Hippocampus Subcortical 0.41 < 0.001

Thalamus Subcortical 0.32 0.003

Accumbens Subcortical 0.31 0.005

Caudate Subcortical 0.25 0.023

r-values are rounded to two decimals. Assignment of lobes/areas according to Desikan et al.

(2006).

associations between age and global (i.e., efficiency of information

transfer for the entire brain), local (i.e., average efficiency of

information transfer in local subnetworks), and—for a range of

brain areas—regional network efficiency metrics of structural brain

networks in older adults. In addition, better EF performance

was associated with higher global, local, and—for a range of

brain areas—regional network efficiency. Importantly, we found

that local efficiency and regional efficiency of particular nodes

mediated age-associated interindividual variations in EF in older

adults. In contrast, global efficiency was not a significant mediator,

which may suggest that the lower performance in EF with age in

older adults is mediated by a decreased segregation rather than a

decreased integration.

4.1 Age-associated di�erences in executive
functioning in older adults

Our results revealed that age was negatively related to EF—

indicated by a latent factor reflecting general executive abilities—

in a group of older adults. In other words, relatively younger

age within the group of older adults studied here (aged between

60 and 85 years) was associated with better EF performance,

which is in line with previous research (Ferguson et al., 2021;

Maldonado et al., 2020). Note that this finding does not

demonstrate a decline in EF that is attributable to the aging

process itself, but it does reflect poorer EF performance in older

in comparison to relatively younger individuals (in the population

of older adults).

4.2 Age-associated di�erences in brain
e�ciency in older adults

Normal brain function implies two co-existing fundamental

aspects of functional organization, namely segregation and

integration of information in brain networks. Segregation

refers to the ability for specialized processing within densely

interconnected groups of the brain and integration refers

to the ability to combine the specialized information

from distributed brain networks (Rubinov and Sporns,

2010).

In this study, we focused on graph theory metrics of

global and local efficiency of structural brain networks as

measures of integrated and segregated information transfer,

respectively. Note that graph theory also offers alternative

metrics to cover network segregation and integration

characteristics, such as clustering and transitivity (segregation)

and characteristic path length (integration; Rubinov and

Sporns, 2010; Farahani et al., 2019). The latter is highly

related to the global efficiency measure (Madole et al.,

2023), as both metrics use the estimation of the shortest path

among nodes.

Age showed significant negative associations with both ‘’global”

(i.e., efficiency of information transfer for the entire brain) and

‘’local” (i.e., average efficiency of information transfer in local

subnetworks) efficiency. In other words, the global and local

efficiency of structural brain networks was lower as a function of

age (note that this does not imply an effect of aging, i.e., change over

time). These findings are in line with earlier studies, demonstrating

lower efficiency of structural brain networks at higher age (Bi et al.,

2021; Gong et al., 2009; Hinault et al., 2021; Li et al., 2020; Wen

et al., 2011; Zhao et al., 2015).

Both global efficiency and local efficiency both are metrics of

information transfer within the brain, but they reflect different

aspects: global efficiency reflects how well a network is integrated,

whereas local efficiency reflects how clearly subnetworks are

segregated (Cohen and D’Esposito, 2016; Latora and Marchiori,

2001; Rubinov and Sporns, 2010). Both global and local efficiency

are decreased in older age. To the extent that network integration

and network segregation are important for optimal functioning,

our results may be suggestive of age-associated differences in

successful information processing. Such a disruption of structural

networks has been interpreted as a network “disconnection,”

possibly underlying age-associated EF differences (see above;

Bennett and Madden, 2014; Fjell et al., 2017; Madden et al., 2012;

O’Sullivan et al., 2001).

Several studies have suggested an association of older age

and decreased segregation of functional networks (i.e., increased

connectivity between functional networks; Antonenko and Flöel,

2014; Damoiseaux, 2017; Deery et al., 2023; King et al., 2018). Our

current results complement those findings in that they reveal lower

efficiency of information transfer in structural brain networks in

older individuals.

In this cohort of older adults, we found lower efficiency to

be associated with older age in an aggregated measure across

all 84 brain regions under investigation. In addition, more fine-

grained analyses revealed that these effects were found across the

whole brain territory, except for limbic (insula-cingulate) regions

and the cerebellum. The most prominent effects were observed

in frontal, parietal, and subcortical (including hippocampus)

regions. The negative association between age differences and

network efficiency for fronto-parietal and subcortical (including

hippocampus) regions in the present dataset is roughly consistent

with previous findings (Bi et al., 2021; Li et al., 2020). Notably,

some of these brain areas have been identified by functional

neuroimaging studies to be crucially involved in successful EF

(Niendam et al., 2012; Rodríguez-Nieto et al., 2022).
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TABLE 3 Brain regions with Ereg significantly mediating the age-associated di�erences in Common EF in older adults.

Region Lobe/Area βc βc′ βab Boot SE Boot LLCI Boot ULCI βa βb

Left hemisphere

Superior frontal gyrus Frontal −0.53∗∗∗ −0.46∗∗∗ −0.07 0.04 −0.15 −0.01 −0.34∗∗ 0.21∗

Medial orbitofrontal gyrus Frontal −0.53∗∗∗ −0.47∗∗∗ −0.06 0.04 −0.14 −0.01 −0.27∗ 0.23∗

Precuneus Parietal −0.53∗∗∗ −0.44∗∗∗ −0.09 0.04 −0.19 −0.02 −0.45∗∗∗ 0.21∗

Lingual gyrus Occipital −0.53∗∗∗ −0.47∗∗∗ −0.07 0.04 −0.14 −0.002 −0.25∗ 0.26∗∗

Hippocampus Subcortical −0.53∗∗∗ −0.46∗∗∗ −0.07 0.04 −0.16 −0.001 −0.39∗∗∗ 0.18 †

Thalamus Subcortical −0.53∗∗∗ −0.46∗∗∗ −0.07 0.04 −0.16 −0.001 −0.34∗∗∗ 0.21∗∗∗

Right hemisphere

Pars orbitalis Frontal −0.53∗∗∗ −0.46∗∗∗ −0.07 0.04 −0.16 −0.002 −0.45∗∗∗ 0.17†

Precuneus Parietal −0.53∗∗∗ −0.42∗∗∗ −0.11 0.05 −0.22 −0.01 −0.48∗∗∗ 0.23∗

Hippocampus Subcortical −0.53∗∗∗ −0.43∗∗∗ −0.09 0.05 −0.21 −0.003 −0.48∗∗∗ 0.21†

The regions are listed according to hemisphere and lobe. Zero outside the CI indicates significance of the mediation effect (βab). We note that βc (i.e., total effect of age on Common EF) is the

same in all models.

β, standardized regression coefficient; CI, bias-corrected 95% confidence interval; Boot SE, LLCI, and ULCI, mediation effect’s standard error, lower, and upper limit of CI obtained by

bootstrapping (n= 5,000). Assignment of lobes/areas according to Desikan et al. (2006).
∗∗∗ p < 0.001; ∗∗ p < 0.005; ∗ p < 0.050; † p < 0.100.

4.3 Relationship between brain e�ciency
and executive functioning in older adults

Both global (i.e., efficiency of information transfer for the entire

brain) and local (i.e., efficiency of information transfer for the

local subnetworks) efficiency of structural brain networks showed

marked positive correlations with EF in older adults in this study. In

other words, better EF was linked to higher efficiency—thus to both

better network integration (as indicated by global efficiency) and to

better network segregation (as indicated by local efficiency). This

is consistent with the idea that successful EF relies on intact white

matter connections for efficient information transfer (Bennett and

Madden, 2014; Fjell et al., 2017; Madden et al., 2012).

Similar to the link between age differences and white matter

measures, local efficiency was related to EF in an aggregated

measure across all brain regions under investigation. In addition,

more fine-grained analyses showed associations between regional

efficiency and EF to be centered on fronto-parietal and subcortical

(including hippocampus) regions, which is consistent with the

areas implicated in EF in functional neuroimaging work (Niendam

et al., 2012; Rodríguez-Nieto et al., 2022). These areas also

correspond closely to the set of brain regions where better EF was

reported to correlate with higher structural regional connectivity in

previous work (Wen et al., 2011).

Reduced network efficiency might hinder successful executive

performance. Specifically, it can be speculated that the reduced

quality of structural networks (as reflected in reduced global

and local network efficiency) hampers the precise recruitment

of the appropriate subnetworks when performing a cognitively

challenging task, which may render information processing less

efficient and more erroneous. Moreover, (haphazard) excessive

recruitment of additional brain areas might be facilitated, further

reducing the specificity of neural recruitment and increasing

inappropriate interference. In addition, the lower efficiency of

local structural networks found in the present data may align

with the notion that functional connectivity within networks is

often decreased in older age (Deery et al., 2023). Note that

such interpretations are speculative and require functional and

structural network characteristics to be studied simultaneously.

As global, local and regional efficiency of a large set of nodes

were commonly related to age and executive functioning, the next

step was to examine whether networks efficiency mediated the

relationship between age and executive functioning in older adults.

4.4 Mediation of age-associated di�erences
in brain e�ciency on age-associated
di�erences in executive functioning in
older adults

Global efficiency (i.e., efficiency of information transfer for

the entire brain) did not significantly mediate age-associated EF

decrease. However, our analyses revealed a significant contribution

of local efficiency (i.e., efficiency of information transfer in local

subnetworks averaged across all 84 brain areas under investigation)

to the relationship between age and EF in older adults. This

mediation of age-associated EF differences by local efficiency was

driven by the regional efficiency of a number of brain regions.

Specifically, we found significant mediating effects of regional

efficiency for frontal (left superior frontal gyrus and medial

orbitofrontal gyrus; and right pars orbitalis), parietal (bilateral

precuneus), occipital (left lingual gyrus) and subcortical (bilateral

hippocampus; left thalamus) areas. Some of these brain areas

correspond to the fronto-parietal and subcortical areas that are

often associated with EF in functional neuroimaging (Niendam

et al., 2012; Rodríguez-Nieto et al., 2022).

In the current dataset, local efficiency (reflecting segregation)

was identified as a mediator of the relationship between age

and EF, whereas no such relationship was detected for global
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efficiency (reflecting integration). Given the absence of a significant

mediation for global efficiency (which does not allow for firm

conclusions in either direction), it remains unclear if this pattern

of results reflects that local efficiency is more crucial than global

efficiency in explaining the age-associated EF difference that we

found here. To the extent that (a) the associations between inter-

individual differences found here are reflective of intra-individual

processes (but see Borsboom et al., 2009), and (b) the absence of a

significant mediation of the age-EF relationship by global efficiency

reflects that global efficiency truly has no mediating role in that

relationship, one may speculate that local efficiency is especially

important in the age-related differences in EF functioning.

Supplementary analyses further showed that clustering -another

measure of segregation- was also a significant mediator between

age and EF. These results suggest that segregation is essential in

mediating the association between aging and executive functioning.

It should also be noted that the indirect mediation effects observed

here were rather small, indicating that other factors are relevant

in determining the association between age and EF. Longitudinal

observation studies may show if alterations in structural brain

networks, as they occur during aging, predict EF deterioration (see

also Fjell et al., 2017; Westlye et al., 2010). If so, structural brain

network metrics might serve as early indicators of age-associated

EF decline.

4.5 Strengths and limitations

The strengths of this study are its relatively large sample size,

allowing for the coverage of a broad age range within older adults

and the combination of a solid EF measure (as derived from latent

variables) with one of the most recent state-of-the-art techniques

in the analysis of the diffusion neuroimaging data (i.e., CSD in

combination with ACT and SIFT2). For the assessment of EF, we

utilized a large battery of neuropsychological tasks in order to

extract a latent measure of EF (Friedman et al., 2016), which helps

overcoming the limitations associated with single-task measures

(Miyake et al., 2000; Miyake and Friedman, 2012).

For the assessment of structural brain networks, we obtained

dMRI data that we analyzed using the constrained spherical

deconvolution (CSD) model in combination with anatomically-

constrained tractography (ACT) and spherical-deconvolution

informed filtering of tractograms (SIFT2; Smith et al., 2012,

2015a; Tournier et al., 2010). These advanced analysis techniques

mitigate methodological limitations with regard to crossing fibers

that constitute a limitation for more traditional approaches (e.g.,

fractional anisotropy measures derived from diffusion tensor

imaging) and have been shown to provide more reproducible and

biologically meaningful connectomes (Smith et al., 2015b). Hence,

this study complements the existing literature, in that it combines

a rigorous approach to EF assessment with advanced techniques

for the analysis of structural brain network topology in a graph-

theoretical approach (see also Madden et al., 2012).

When interpreting these results, the following limitations

should be considered. First, these data are correlational in

nature. Hence, they do not allow for mechanistic conclusions

regarding the direct involvement of the brain areas in cognitive

processes, as discussed here, and individual differences in structural

network parameters should not be mistaken to reflect proximate

causes of EF differences (Borsboom et al., 2009). In addition,

given the cross-sectional nature of these findings, it cannot

be concluded based on the current data alone that reduced

network efficiency in older as compared to younger individuals

(as reflected in the correlations of age and network efficiency

metrics) results from the aging process per se. Nevertheless,

longitudinal research has identified age-related decreases of

structural brain networks (Alloza et al., 2018; Fjell et al.,

2017), and our results are compatible with the notion that

structural brain networks are subject to decline during aging.

Hence, interventions targeting the preservation of structural brain

networks, and more specifically local efficiency (e.g., cognitive

training interventions, Caeyenberghs et al., 2016), may be an

interesting route for future research. Simultaneous assessment

of the functional connectome in such studies would also allow

for evaluating how differences in structural and functional

connectomes are temporally related. This may be informative for

generating mechanistic hypotheses regarding the consequences

of age-related decline in structural connectivity. In addition,

functional studies would allow for the assessment of more indirect

functional connectivity and information transfer (e.g., two nodes

being connected via a third node), which is not possible based

on the analysis of direct connections of the structural connectome

reported here.

Second, the current dataset does not allow for a comparison of

the established relationships with a younger control group. Hence,

it remains unclear whether similar mediation exists at young age

(i.e., <60 years of age) or whether this pattern is typical for

the subpopulation of older adults (i.e., ≥60 years of age). Still,

our data provide valuable information regarding the link between

age, structural brain connectivity, and EF for older adults and

thus contribute to the understanding of EF and the role of brain

networks in the aging population.

The current study did not systematically address sex differences

in the relationships between age, brain efficiency parameters, and

EF. In this dataset, neither EF, nor global or local efficiency

differed significantly between the sexes (all p >0.372). Future

work may further explore the nature and magnitude of sex effects,

potentially in combination with neurochemical assessments. When

addressing such sex effects, the role of postmenopausal shifts in

neurotransmission should be considered by including a young

control group and/or employing a longitudinal design. Finally,

it should be noted that our choice to use Desikan’s atlas

for brain parcellation and grouping according to Klein and

Tourville (2012) resulted in this particular architecture of the

structural connectome. The automatization for the use of this

atlas has shown to be anatomically valid and reliable (Desikan

et al., 2006) and has been widely adopted, which allows cross-

study comparability. Nonetheless, alternative parcellations and

groupings, for instance according to functional networks (Yeo

et al., 2011), would also have been conceivable, and may have

resulted in somewhat different conclusions. Analyses focused on

networks or distinct tracts that are more specifically related to EF,

rather than a global approach as employed here, may provide a

more detailed perspective on microstructural alterations in these

regions, and increase the sensitivity to detect differences between

EF subdomains.
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5 Conclusion

This study suggests that the decreased executive functioning

performance with age in older adults is mediated by changes in the

local efficiency of structural connectivity. That a similar mediation

effect is observed from the clustering analysis while the mediation

effect from global efficiency is lacking, suggests that the decrease in

network segregation in older adults is associated with higher-order

cognitive functions, whereas no such relationship is being observed

for network integration. Further evidence suggests that this effect is

mainly driven by a lower connectivity efficiency in particular brain

regions (superior frontal gyrus, orbitofrontal regions, precuneus,

lingual gyrus, hippocampus and thalamus). These nodes may be

critical for executive functioning and may serve as processing

hubs. Future studies could possibly reveal which biological and

environmental factors influence structural segregation.
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