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While repetitive transcranial magnetic stimulation (rTMS) is a promising 
neuromodulatory intervention for cognitive impairment, its effects on the glymphatic 
system remain unexplored in clinical populations. Deficient glymphatic clearance 
has emerged as a central feature of neurodegenerative disease, which can now 
be assessed with specialized diffusion magnetic resonance imaging techniques. 
This study examines changes in the diffusion tensor imaging analysis along the 
perivascular space (DTI-ALPS) index following theta-burst stimulation (TBS) in older 
adults with mild cognitive impairment (MCI). DTI-ALPS is an MRI-based measure 
that reflects the efficiency of the brain’s glymphatic waste removal system, as it 
quantifies how easily water molecules move along the perivascular spaces where 
waste is cleared. Participants underwent ten consecutive days of continuous TBS, 
intermittent TBS, and sham TBS, with DTI-ALPS measurements acquired before and 
after each intervention. Our sham-controlled findings reveal the capacity for TBS 
interventions to modulate glymphatic function and highlight a significant APOE ε4 
effect. Specifically, ε4 carriers exhibited a lower baseline DTI-ALPS index (p < 0.05, 
Cohen’s d = 0.610), suggesting reduced glymphatic function, which was selectively 
responsive to TBS interventions (p < 0.005, Cohen’s d = 1.71). Further, within this 
subgroup, TBS-induced increases in glymphatic function correlated with memory 
improvements (r = 0.42–0.46, p < 0.05). These results provide novel evidence that 
TBS can modulate glymphatic function in humans and raise interesting questions 
about the relevance of APOE status. Further research is needed to elucidate the 
mechanisms underlying these effects and their therapeutic implications.
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Introduction

All biological processes rely on energy production, and the metabolic activity required to 
produce this energy inevitably produces waste products. In peripheral tissues, the well-
characterized lymphatic system efficiently clears the associated byproducts to maintain fluid 
homeostasis and mitigate potential harm (Oliver et al., 2020). The central nervous system 
(CNS), however, has long been considered devoid of histologically distinct lymphatic 
structures, presenting a challenge in understanding how the brain, one of the most 
metabolically active organs, manages the clearance of potentially harmful waste products 
(Mehta and Mehta, 2024). This biological contradiction persisted until 2012, when experiments 
began to characterize the glymphatic system, a glia-dependent pathway for waste clearance in 
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the brain, offering critical insight into CNS homeostasis (Iliff et al., 
2012; Iliff et al., 2013).

While this novel system is not yet fully understood, the glymphatic 
system broadly depends on the exchange of cerebrospinal fluid (CSF) 
and interstitial fluid (ISF), driven by the convective inflow of CSF into 
perivascular spaces. From the perivascular space, subsequent fluid 
transport through the brain parenchyma is facilitated by astrocytic 
endfeet, which enwrap the cerebral vascular tree and are enriched with 
a highly polarized distribution of aquaporin-4 (AQP4) water channels 
(Mestre et al., 2018; Salman et al., 2021). The waste-laden solute then 
drains through meningeal lymphatic vessels (mLVs) before reaching 
the peripheral lymphatic system near the base of the skull (Jessen 
et al., 2015; Li et al., 2022). As individuals age, the glymphatic system 
becomes increasingly susceptible to functional decline (Zhou et al., 
2020). For example, age-or disease-related changes in astrocytic 
morphology can profoundly disrupt the clearance of potentially 
harmful metabolic byproducts like β-amyloid (Aβ) (Das et al., 2024; 
Palmer and Ousman, 2018).

Indeed, deficient glymphatic clearance has been implicated in the 
pathogenesis of numerous aging processes and disease states, 
including Alzheimer’s disease (AD). Aβ accumulation, a hallmark of 
AD, underscores the critical link between brain energy demand, 
metabolic clearance, and disease. In healthy systems, Aβ, a byproduct 
of normal neuronal activity, is cleared from the brain via astrocytic-
dependent glymphatic processes (Carlstrom et al., 2022; Chen et al., 
2017). The clearance of Aβ and other byproducts typically follows a 
diurnal pattern, peaking at night during slow-wave sleep (SWS), when 
heightened neural synchrony enhances fluid exchange in perivascular 
spaces (Reddy and van der Werf, 2020; Xie et al., 2013; Shokri-Kojori 
et al., 2018). With deficient glymphatic clearance from the CNS, this 
toxic protein can accumulate in neuronal tissue, exacerbating 
neurodegenerative processes and accelerating disease progression. In 
Alzheimer’s Disease and Related Dementia (ADRD), aberrant 
accumulation of Aβ occurs 15 years before the onset of clinically 
evident cognitive impairment (Dubois et al., 2016).

Mounting evidence implicates glymphatic failure as a common 
pathway in the multifaceted pathophysiological cascade of 
ADRD. Although this novel system is not yet fully understood, 
numerous aspects of glymphatic functionality are intertwined with the 
disease’s pathophysiology (Nedergaard and Goldman, 2020). These 
include astrocytic dysfunction, disrupted sleep architecture, impaired 
arterial pulsatility, reduced synchronous neural activity, and shrinkage 
of meningeal lymphatic vessels (mLVs) (Zhang et al., 2019; Rajna 
et  al., 2021; Rodriguez-Arellano et  al., 2016; Mentis et  al., 2021). 
Collectively, these factors disrupt CSF-ISF fluid exchange and 
subsequent transport, diminishing the glymphatic clearance of 
metabolic byproducts such as Aβ (Rasmussen et al., 2018).

Notably, the physiological pathways that support glymphatic 
clearance and facilitate the removal of pathogenic proteins are closely 
intertwined with the function of Apolipoprotein E (APOE), the 
strongest known genetic risk factor for sporadic AD. Though carried 
by only ~15% of individuals, the ε4 allele is implicated in up to 50% 
of AD cases and is associated with both accelerated Aβ accumulation 
and earlier disease onset (Mann et al., 1997; Ashford, 2004; Corder 
et al., 1993). A key contributor to APOE’s multifaceted impact on AD 
risk is the impaired clearance of Aβ and tau conferred by the ε4 allele 
(Eisenbaum et al., 2024; Hudry et al., 2013; Castellano et al., 2011; 
Simonovitch et al., 2016; Liu et al., 2017; Deane et al., 2008). Relatedly, 

glial cells—the namesake of the glymphatic system—have emerged as 
central mediators of ε4-related pathology. Astrocytes, which facilitate 
glymphatic function via AQP4 water channels, may be particularly 
susceptible to ε4-induced disruption (Fernandez et al., 2019). This was 
elegantly demonstrated by a recent experiment in which sleep 
deprivation selectively amplified AD pathology in mice expressing 
human APOE4 (Wang et al., 2023a). This ε4-specific vulnerability was 
linked to glial changes, including reduced AQP4 expression and a loss 
of its polarized localization on astrocytic endfeet. These findings 
highlight the potential relevance of APOE for glymphatic dysfunction 
and AD risk, particularly in response to common physiologic stressors 
such as sleep disruption.

The emergence of glymphatic function as a central feature of 
ADRD has spurred research efforts to non-invasively evaluate the 
system’s integrity (Taoka and Naganawa, 2020). The current gold 
standard entails an invasive approach through which glymphatic 
drainage is assessed with contrasted magnetic resonance imaging 
(MRI) following intrathecal administration of a gadolinium-based 
contrast agent (Eide and Ringstad, 2015). This invasive approach, 
however, requires a lumbar puncture and multiple MRI scans across 
fixed intervals, limiting its clinical feasibility. Alternative non-invasive 
and contrast-free MRI techniques have recently emerged, 
demonstrating high validity when directly compared to this gold 
standard (Zhang et al., 2021). One such approach is a diffusion MRI 
technique termed diffusion tensor image analysis along the 
perivascular space (DTI-ALPS) (Taoka et  al., 2017). This method 
yields an ALPS-index that may offer some insight into glymphatic 
drainage (i.e., a higher ALPS-index could suggest more glymphatic 
flow), and is bolstered by evidence of high reproducibility (Han et al., 
2023; Taoka et  al., 2022). Although DTI-ALPS should not 
be  misconstrued as a direct measure of whole-brain glymphatic 
function, the ALPS index provides a useful proxy for localized 
perivascular fluid dynamics and offers meaningful insights into this 
physiological system, despite its methodological limitations.

Since its introduction, the DTI-ALPS approach has been widely 
adopted as a method for assessing glymphatic function across the 
continuum of AD (Wang et al., 2023b; Park et al., 2023; Hsu et al., 
2023; Chang et al., 2023; Okazawa et al., 2024; Kim et al., 2024; Huang 
et al., 2024; Hong et al., 2024; Zhang et al., 2024; Steward et al., 2021; 
Kamagata et al., 2022; Li et al., 2024). From this work, multimodal 
neuroimaging studies employing positron emission tomography 
(PET) and diffusion MRI report a negative association between 
whole-brain Aβ burden and the ALPS index (Hong et al., 2024; Hsu 
et al., 2023). Additionally, consistent reports show that the ALPS index 
correlates significantly with worse cognitive performance across 
multiple domains (Hong et al., 2024; Zhang et al., 2024; Kamagata 
et  al., 2022; Hsu et  al., 2023). A recent longitudinal study offers 
compelling evidence that DTI-ALPS metrics can predict the 
progression of AD, suggesting that glymphatic dysfunction may 
precede and accelerate the development of hallmark Aβ pathology 
(Huang et al., 2024). Specifically, the study found that a lower ALPS 
index was significantly associated with (1) increased PET-detected Aβ 
burden, (2) accelerated atrophy in AD-signature brain regions, (3) a 
higher risk of transitioning to Aβ-positive status, (4) faster clinical 
progression, and (5) more rapid cognitive decline (Huang et al., 2024).

These findings present a compelling rationale for novel therapeutic 
strategies targeting the glymphatic system (Gao et al., 2023). The well-
documented link between sleep architecture and glymphatic function 
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underscores the plasticity of this system, as both human and animal data 
demonstrate enhanced glymphatic activity during non-REM slow-wave 
sleep (SWS) (Hablitz et al., 2019; Fultz et al., 2019). More recently, elegant 
research isolated large-scale, synchronized neural activity as a key driver 
of enhanced glymphatic flux during SWS (Jiang-Xie et  al., 2024; 
Murdock et  al., 2024). In one experiment, multisensory gamma 
stimulation enhanced glymphatic clearance in an AD mouse model by 
increasing arterial pulsatility, promoting AQP4 polarization in astrocytic 
endfeet, and dilating meningeal lymphatic vessels (mLVs) (Murdock 
et al., 2024). Parallel research demonstrated that synchronized neuronal 
firing at multiple frequencies enhances glymphatic flux, providing novel 
insights into the role of large ion gradients in this process (Jiang-Xie 
et al., 2024). Summarizing their findings, the authors remarked, “In 
essence, neurons that fire together ‘shower’ together” (Jiang-Xie et al., 2024).

While therapeutic interventions that mitigate sleep disturbances 
offer a relatively simple approach to enhance glymphatic function 
(Saito et  al., 2023), more novel interventions—pharmacological or 
otherwise—warrant exploration. For example, early evidence from 
animal models highlights repetitive transcranial magnetic stimulation 
(rTMS), a non-invasive brain stimulation technique, as a promising 
candidate for therapeutically targeting the glymphatic system (Wu 
et al., 2022; Lin et al., 2021; Liu Y. et al., 2023; Li et al., 2020). In AD 
mouse models, rTMS has been shown to enhance glymphatic fluid 
transport, thereby reducing Aβ burden. Mechanistically, these effects 
are reportedly mediated by (1) reduced astrocytic reactivity (Lin et al., 
2021), (2) improved AQP4 polarization on astrocytic endfeet (Wu 
et al., 2022), and (3) mLV dilation mediated by vascular endothelial 
growth factor C (VEGF-C) (Li et  al., 2020). Though the cellular 
mechanisms that underpin rTMS therapies are not fully understood, 
extensive evidence supports its capacity to modulate glial function, 
promote angiogenesis, and support neurovascular remodeling (Ferreira 
et al., 2024; Hong et al., 2020; Qian et al., 2024; Cirillo et al., 2017; Zong 
et al., 2020; Ljubisavljevic et al., 2015; Zong et al., 2022). For example, 
findings across different animal models include TBS-induced 
restoration of AQP4 expression and its polarized localization on 
astrocytic endfeet, further reinforcing its therapeutic potential for 
enhancing glymphatic function (Lin et al., 2024; Wu et al., 2022).

Building on this mounting preclinical evidence, we  sought to 
investigate whether rTMS similarly influences the DTI-ALPS index 
which may represent glymphatic function in humans. In this study, 
we assessed changes in DTI-ALPS following rTMS therapy in older 
adults with mild cognitive impairment (MCI). For all participants, 
we compared DTI-ALPS metrics at baseline and again following ten 
consecutive days of three distinct rTMS interventions: continuous theta-
burst stimulation (cTBS), intermittent theta-burst stimulation (iTBS), 
and sham-TBS. TBS has emerged as a neuromodulatory approach with 
comparable, if not superior, efficacy to conventional rTMS and offers 
key advantages in efficiency, reduced treatment time, and potential cost 
savings (Tao et al., 2024; Chung et al., 2015). To our knowledge, this is 
the first report of DTI-ALPS following rTMS in human participants.

Methods

Experimental design

Thirty-six right-handed individuals with mild cognitive 
impairment (MCI) participated in this study (age: 66.1 ± 7.45 yrs.; 

females: 28, mean years of education: 16.38 ± 2.21 yrs.). Only right-
handed participants were included to reduce variability related to 
hemispheric lateralization, particularly given the left-hemispheric 
targeting used in this study. The dataset consisted of 36 right-handed 
individuals determined to have mild cognitive impairment (MCI; age: 
66.1 ± 7.45 years old; females: 28, education: 16.375 ± 2.21 years). 
MCI was classified according to the revised Mayo Clinic Criteria and 
supported by the Jak/Bondi neuropsychological actuarial approach. 
The Mayo criteria include self-or informant-reported cognitive 
concerns, objective cognitive impairment, preserved functional 
independence, and the absence of dementia. Objective cognitive 
impairment and MCI subtypes were determined using the Jak/Bondi 
criteria (Bondi et al., 2014), according to age-, sex-and education-
adjusted scores from the National Alzheimer’s Coordinating Center 
Uniform Data Set Neuropsychological Battery, Version 3 (UDSNB-3).

As shown in Figure  1, each participant underwent three TBS 
conditions in a randomized order: intermittent theta burst stimulation 
(iTBS), continuous theta burst stimulation (cTBS), and sham 
TBS. TBS is a patterned form of TMS (Huang et al., 2005), which 
involves delivering rapid bursts of TMS pulses at the theta-band 
frequency (Larson et  al., 1986). Participants completed ten TBS 
sessions on consecutive weekdays for each condition, with a 
one-month washout interval between each condition to prevent 
potential carry-over effects. The full study protocol spanned 
approximately 6 months per participant, including stimulation 
sessions and washout intervals. TBS was delivered to a personalized 
stimulation site within the left parietal cortex, determined using a 
DTI-guided voxel-based strategy previously described (Liu et  al., 
2024). The TMS coil orientation was optimized with the SimNIBS 
toolbox, which models the induced electric fields based on each 
individual’s structural MRI data (Gomez et al., 2021).

FIGURE 1

Experimental design. Participants (n = 36) were screened for 
eligibility and randomized into three groups: intermittent theta-burst 
stimulation (iTBS), continuous theta-burst stimulation (cTBS), and 
Sham stimulation (10 sessions each). Baseline diffusion MRI was 
performed to guide individual stimulation site planning. Outcome 
measurements include the face-name association memory 
performance and DTI-ALPS index. Outcome measurements were 
taken before and after each TBS block.
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Repeated outcome measures were collected at six time points: 
once the day before the first TBS session and again immediately after 
the final TBS session for each TBS condition. At each evaluation, data 
was collected to assess the DTI-ALPS and associative memory 
performance with the face-name associative memory exam (FNAME). 
The FNAME task included six distinct and parallel versions, which 
were randomized and administered pre-and post-TBS for each 
protocol condition in a counterbalanced fashion. These versions were 
previously evaluated in-house and demonstrated high test–retest 
reliability (ICC > 0.9) with no evidence of practice effects across 
repeated administrations. The FNAME provided measures of accuracy 
and sensitivity (d1), with additional details included in the statistical 
analysis section. Distinct versions of the FNAME task were utilized at 
each time point to minimize practice effects. Further details of the 
FNAME are provided in Supplementary Item S5.

Theta burst stimulation (TBS)

Two active TBS protocols were implemented: iTBS and cTBS. iTBS 
was composed of 600 biphasic pulses, patterned in 3-pulse bursts at 
50 Hz, repeated at 5 Hz, and delivered as intermittent trains of 2 s 
each, with an 8-s intertrain interval (Huang et  al., 2005). cTBS 
consisted of 600 continuous stimuli without intertrain intervals. For 
the sham TBS condition, we used a sham coil specifically designed for 
blinded clinical trials. The order of all three stimulation blocks was 
randomized for each participant.

DTI-ALPS index calculation

Prior to DTI-ALPS analysis, diffusion-weighted images 
underwent a series of preprocessing steps to improve data quality and 
reduce artifacts. The pipeline began with MP-PCA-based denoising to 
suppress random noise while preserving anatomical detail, followed 
by Gibbs ringing correction using the method of sub-voxel shifts. 
These steps were performed using MRtrix3. The preprocessed data 
then underwent susceptibility distortion correction using reversed 
phase-encoding b0 images, followed by eddy current and motion 
correction to account for participant movement and gradient-induced 
distortions. Motion outliers were identified using FSL’s eddy QC tools, 
and datasets with excessive motion (e.g., >3 mm absolute displacement 
or >20% outlier slices) were excluded from further analysis. We then 
employed a previously established DTI-ALPS processing pipeline 
implemented using the FMRIB Software Library (FSL). The FSL 
pipeline consisted of artifact corrections, including MP-PCA 
denoising and Gibbs unringing, applied via MRtrix3 commands. 
Additional corrections for susceptibility-induced distortions, eddy 
currents, and movements were performed with standard 
FSL commands.

Template co-registration was performed using the 
JHU-ICBM-FA-1 mm template. Regions of Interest (ROIs) were 
automatically defined as 5 mm spheres and placed bilaterally in the 
superior corona radiata (SCR), a projection fiber, and the superior 
longitudinal fasciculus (SLF), an association fiber, using the 
JHU-ICBM-FA template (Hua et al., 2008). The DTI-ALPS index, 
defined as the mean of the bilateral DTI-ALPS indexes, is a ratio of 
mean diffusivity in different directions. Specifically, it is calculated as 

the ratio of mean x-axis diffusivity in the projection (Dxxproj) and 
association (Dxxassoc) fiber areas to the mean y-axis diffusivity in 
projection fiber areas (Dyyproj) and z-axis diffusivity association fiber 
areas (Dzzassoc). We computed DTI-ALPS indexes for the left, right, and 
bilateral hemispheres before and after each TBS protocol.

APOE genotypes

For the analysis of APOE ε4 allele, DNA samples were obtained 
via an oral swab kit and dispatched to the Genetics Core for 
genotyping analysis of selected genes. The APOE genotyping, focusing 
on SNP rs429358 and SNP rs7412, was performed using TaqMan® 
Assays (Applied Biosystems, Foster City, CA, USA) and TaqMan™ 
Fast Advanced Master Mix (Thermo Fisher Scientific, Waltham, MA, 
USA) on an Applied Biosystems 7,300 Real-Time PCR System 
according to the manufacturer’s protocol. Genotype determination 
was conducted utilizing SDS v1.4 software from Applied Biosystems.

Statistical analysis

We first evaluated the baseline differences in Sham-controlled 
DTI-ALPS index between APOE ε4 carriers and non-carriers at the 
pre-intervention timepoint with an independent two-sample Welch’s 
t-test. This approach was chosen due to the unequal sample sizes 
between the APOE ε4 carrier (n = 13) and non-carrier (n = 23) 
groups, as it does not assume homogeneity of variance. To isolate the 
effect of active stimulation from non-specific changes such as test–
retest variability or scanner drift, we  computed Sham-controlled 
DTI-ALPS indices by subtracting the corresponding Sham condition 
values from each active condition. This subtraction controls for 
non-stimulation-related influences and allows for a more accurate 
assessment of the net effect of active TBS. The derived indices were 
calculated as follows:

Sham-controlled iTBS pre = Pre-iTBS DTI-ALPS index—
Pre-Sham DTI-ALPS index.

Sham-controlled cTBS pre = Pre-cTBS DTI-ALPS index—
Pre-Sham DTI-ALPS index.

Sham-controlled iTBS post = Post-iTBS DTI-ALPS index—Post-
Sham DTI-ALPS index.

Sham-controlled cTBS post = Post-cTBS DTI-ALPS index—Post-
Sham DTI-ALPS index.

We further used linear mixed-effects (LME) models with repeated 
measures to analyze the relationship between DTI-ALPS values (left, 
right, and bilateral) and the effects of TIME (pre-TBS vs. post-TBS), 
APOE ε4 group (carrier vs. non-carrier), and Protocol (Sham-
controlled iTBS vs. Sham-controlled cTBS). In the LME model, 
TIME-pre served as the reference for comparisons with TIME-post, 
APOE ε4 non-carriers were the reference group for APOE ε4 carriers. 
Sex was included as a covariate to account for potential sex-related 
variance. To account for this baseline group difference, the LME 
analysis incorporated subject-specific variability and controls for 
potential pre-existing disparities in the DTI-ALPS values.

We included interaction terms to explore the combined effects of 
Time × APOE ε4, Time × Protocol, and APOE ε4 × Protocol, as well as 
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the three-way interaction of Time × APOE ε4 × Protocol. A random 
intercept was added for each participant to account for within-subject 
correlations. For any significant interaction effects observed in the model, 
post hoc analyses were performed using pairwise comparisons with 
Bonferroni corrections. TBS protocol (iTBS vs. cTBS) and its interactions 
with Time and APOE ε4 status were modeled in the linear mixed-effects 
analysis. The absence of significant interaction effects indicated no 
protocol-specific influence on the DTI-ALPS index, supporting the 
decision to combine the active protocols for subsequent analysis.

As a secondary analysis, we examined how changes in FNAME 
task performance were related to changes in the DTI-ALPS index, 
with results stratified by APOE ε4 status. FNAME outcome measures 
include accuracy (total correct responses over all trials) and a 
sensitivity measure, d1, calculated as d1 = Z(Hit rate) – Z(False alarm 
rate) (Carr et  al., 2017). Changes in FNAME performance were 
computed as the difference between post-and pre-TBS scores for each 
active TBS condition, relative to the corresponding difference in the 
sham condition. For example, the change in FNAME performance 
following iTBS was calculated as:

 i∆ TBS-accuracy = (Post-iTBS accuracy−Pre-iTBS 
accuracy) − (Post-Sham accuracy−Pre-Sham accuracy).

All statistical analyses were conducted using R version 3.5.1. 
Statistical significance was determined at a threshold of p < 0.05. 
Where applicable, multiple comparisons were corrected using the 
Bonferroni method.

Results

Of the 36 participants with MCI included in the study, 13 
individuals were identified as APOE ε4 carriers (Age: 64.30 yrs., 
Female: 10, Education: 15.96 yrs) and 23 as non-carriers (Age: 
67.13 yrs., Female: 18, Education: 16.61 yrs) (see Table 1).

At baseline, the independent Welch’s t-test revealed a statistically 
significant difference between the APOE ε4 carriers and non-carriers 
with Sham-controlled bilateral DTI-ALPS index, t(25.54) = 2.4948, 
p = 0.0158, with a medium effect size (Cohen’s d = 0.61). Specifically, 
APOE ε4 carriers (M = −0.0199, SD = 0.0436) exhibited significantly 
lower baseline bilateral DTI-ALPS index compared to non-carriers 
(M = 0.0070, SD = 0.0447). A significant difference was also observed 
in the right DTI-ALPS index, with APOE ε4 carriers (M = −0.0224, 
SD = 0.0386) showing significantly lower values than non-carriers 
(M = 0.0119, SD = 0.0481), t(29.83) = 3.31, p = 0.0016. This effect was 
associated with a large effect size (Cohen’s d = 0.79). No significant 
difference was found in the left DTI-ALPS index between APOE ε4 
carriers (M = −0.0199, SD = 0.0436) and non-carriers (M = 0.0070, 
SD = 0.0447), t(24.82) = 1.3246, p = 0.1911. This suggests that APOE 
ε4 carriers may have reduced glymphatic function at baseline, as 
indicated by the DTI-ALP index, before any TBS intervention.

Table 2 presents the sham-controlled changes in DTI-ALPS index 
following a TBS intervention across different APOE groups. A significant 
TIME x APOE ε4 status interaction was observed for bilateral DTI-ALPS 
(p = 0.002), left DTI-ALPS (p = 0.007) and right DTI-ALPS (p = 0.015), 
indicating that the increase in DTI-ALPS scores after active TBS was 
moderated by APOE ε4 status. This Time x APOE4 interaction 
corresponded to large standardized effect sizes for bilateral (Cohen’s 

d = 1.71), left (Cohen’s d = 1.50), and right (Cohen’s d = 1.30) DTI-ALPS, 
reflecting a stronger pre–post increase in ε4 carriers compared to 
non-carriers. Post hoc sensitivity analysis revealed a minimum detectable 
effect size of f = 0.48 with 80% power at α = 0.05. Given the approximate 
relationship between Cohen’s d and f (i.e., f ≈ d/2 when comparing two 
groups), the observed interactions (with d values ranging from 1.30 to 
1.71) correspond to f values of approximately 0.65 to 0.86—well above the 
detectable threshold. The results demonstrate large effect sizes and suggest 
that the study was sufficiently powered to detect the key APOE-related 
differences in DTI-ALPS. Additionally, no significant three-way 
interaction between TIME, APOE ε4 status, and TBS protocol was found, 
suggesting that the above-mentioned TIME x APOE ε4 status interaction 
was independent of whether the participants received iTBS or 
cTBS. Therefore, iTBS and cTBS were combined in the subsequent 
analysis. In the post hoc analysis, a significant increase in the left 
DTI-ALPS was observed among APOE ε4 carriers following active TBS 
(t = 3.740, p-adj = 0.0018; Figure  2A). Similarly, bilateral DTI-ALPS 
scores also increased significantly in this group (t = 3.591, p-adj = 0.0031; 
Figure 2B). Multiple comparisons were corrected using the Bonferroni 
method for all post hoc tests. While the effect in the right DTI-ALPS 
showed an uncorrected positive trend (t = 2.087, p = 0.0411), it did not 
reach statistical significance after correction (p-adj = 0.1649).

Subsequent exploratory analyses assessed the relationship 
between changes in DTI-ALPS and associative memory as measured 
by the FNAME associative memory test following the TBS 
interventions. A greater increase in the DTI-ALPS was associated with 
larger improvements in FNAME scores, with this relationship being 
significant only in the APOE ε4 + group (r = 0.42–0.46, p < 0.05; 
Figure 3). The correlation analysis suggests that the observed changes 
in DTI-ALPS following active TBS may reflect glymphatic system 
plasticity, which is associated with cognitive improvements in APOE 
ε4 carriers.

Discussion

This study is the first to evaluate changes in the DTI-ALPS index 
following theta-burst stimulation (TBS) in older adults with mild 
cognitive impairment (MCI), providing novel evidence of glymphatic 
plasticity. Notably, APOE ε4 carriers exhibited a significantly lower 
ALPS index at baseline, suggesting a potential glymphatic deficit that 
was selectively responsive to TBS. The observed increase in DTI-ALPS 
was observed regardless of whether iTBS or cTBS was applied, 
underscoring the capacity of the glymphatic system to be modulated 
by TMS interventions. Further, within this subgroup of APOE ε4 
carriers, the increase in DTI-ALPS index correlated with memory 

TABLE 1 Demographic and clinical characteristics.

Characteristic Total 
(N = 36)

APOE ε4 
Carriers 
(n = 13)

Non-
Carriers 
(n = 23)

Age, years (SD) 66.11 (7.4) 67.13 (8.9) 65.50 (5.5)

Female sex, n (%) 28 (77%) 10 (77%) 18 (78%)

Education, years (SD) 16.37 (2.2) 16.61 (2.2) 15.96 (2.1)

MoCA, mean (SD) 24.69 (2.2) 24.65 (1.8) 24.76 (2.1)

Amnestic MCI, n (%) 19 (53%) 9 (69%) 10 (43%)
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FIGURE 2

Changes in DTI-ALPS index by APOE ε4 status. Changes in DTI-ALPS index stratified by APOE ε4 status (non-carriers: APOE ε4-; carriers: APOE ε4+) across 
timepoints (pre-and post-TBS). (A) Left DTI-ALPS index: A significant increase in index was observed for APOE ε4 carriers following active TBS, with no 
significant change in non-carriers. (B) Bilateral DTI-ALPS index: A significant increase in index was also observed for APOE ε4 carriers, while no significant 
change was noted in non-carriers. The p-values displayed in the figure are corrected for multiple comparisons following post hoc analysis.

FIGURE 3

Association between Δ ALPS and FNAME performance by APOE ε4 status. Correlations between changes in DTI-ALPS index (Δ ALPS) and Face-Name 
Associative Memory Exam (FNAME) performance are shown, stratified by APOE ε4 status. (A,C) Correlations between Δ ALPS and Δ D1; (B,D) 
Correlations between Δ ALPS and Δ Accuracy. APOE ε4 carriers are represented by darker points, non-carriers by lighter points. Significant positive 
correlations were observed in APOE ε4 carriers only, with r and p values indicated in the plots.
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improvements, supporting the functional relevance of glymphatic 
modulation in cognitive outcomes.

These novel findings in a human sample align with a series of 
recent studies of AD mouse models demonstrating that rTMS has 
potential to (1) enhance glymphatic function, (2) facilitate the 
clearance of AD pathology, and (3) improve cognitive function (Wu 
et al., 2022; Lin et al., 2021; Li et al., 2020). While the pronounced 
effect of APOE ε4 was unanticipated, it is consistent with its 
established contributions to the pathogenesis of AD. The APOE ε4 
allele is the strongest genetic risk factor for sporadic AD, conferring a 
three-fold increase in risk for heterozygotes and a 15-fold increase for 

homozygotes (Farrer et  al., 1997). Astrocytes, the brain’s primary 
source of APOE, are increasingly recognized as key mediators of 
APOE ε4-related dysfunction (Gee and Keller, 2005; Fernandez et al., 
2019). APOE ε4 disruptions to glial function implicate glymphatic 
clearance, a glia-dependent process named to reflect the fundamental 
role of astrocytes in waste removal. Below, we explore the potential 
mechanisms by which TBS could enhance glymphatic function and 
highlight how these pathways may be influenced by the ε4 allele.

Importantly, our understanding of the glymphatic system remains 
in its early stages, and interpreting our results requires a degree of 
speculation in the absence of additional data. To ground our 

TABLE 2 Linear mixed effect model analysis: protocol, APOE ε4 status, time on sham-controlled DTI-ALPS index.

Outcomes Fixed effects Estimate Std. Error t value 95% confidence interval P value

Lower Upper

Bilateral DTI-ALPS

Time −0.025 0.011 −2.256 −0.046 −0.003 0.026 *

Protocol −0.017 0.011 −1.540 −0.038 0.005 0.127

Sex 0.014 0.011 1.246 −0.008 0.035 0.222

APOE ε4 status −0.034 0.015 −2.329 −0.063 −0.005 0.022 *

Time * Protocol 0.021 0.015 1.337 −0.010 0.051 0.184

Timepoint * 

APOE ε4 status
0.057 0.018 3.156 0.022 0.093 0.002 **

Protocol * APOE 

ε4 status
0.014 0.018 0.784 −0.021 0.050 0.435

Time * Protocol * 

APOE ε4 status
−0.012 0.026 −0.479 −0.062 0.038 0.633

Left DTI-ALPS

Time −0.020 0.014 −1.395 −0.048 0.008 0.166

Protocol −0.006 0.014 −0.453 −0.034 0.021 0.652

Sex 0.022 0.015 1.405 −0.009 0.052 0.169

APOE ε4 status −0.022 0.020 −1.095 −0.060 0.017 0.276

Time * Protocol 0.019 0.020 0.965 −0.020 0.059 0.337

Timepoint * 

APOE ε4 status
0.065 0.024 2.735 0.018 0.111 0.007 **

Protocol * APOE 

ε4 status
0.004 0.024 0.176 −0.042 0.050 0.861

Time * Protocol * 

APOE ε4 status
−0.009 0.033 −0.274 −0.075 0.056 0.785

Right DTI-ALPS

Time −0.029 0.012 −2.432 −0.053 −0.006 0.017 *

Protocol −0.027 0.012 −2.247 −0.051 −0.003 0.027 *

Sex 0.006 0.010 0.552 −0.014 0.025 0.585

APOE ε4 status −0.046 0.015 −3.094 −0.076 −0.017 0.002 **

Time * Protocol 0.022 0.017 1.278 −0.012 0.055 0.204

Timepoint * 

APOE ε4 status
0.050 0.020 2.482 0.010 0.089 0.015 *

Protocol * APOE 

ε4 status
0.024 0.020 1.208 −0.015 0.064 0.230

Time * Protocol * 

APOE ε4 status
−0.015 0.028 −0.542 −0.071 0.040 0.589

P < 0.05 is denoted by a single asterisk (*) and P < 0.01 is denoted by a double asterisk (**). Results of the linear mixed-effects (LME) model examining the effects of Time, Protocol (iTBS, 
cTBS), and APOE ε4 Status (ε4 carriers and non-carriers), and their interactions on sham-controlled DTI-ALPS scores. Bold formatting highlights the interaction between APOE carrier status 
and ‘Timepoint’ (i.e., pre-/post-TBS).
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discussion, it is helpful to briefly outline the mechanisms underlying 
the most commonly described strategy for augmenting glymphatic 
function: sleep enhancement (van Hattem et al., 2024; Ma et al., 2024; 
Gottesman et  al., 2024). Supporting the critical role of sleep in 
glymphatic clearance, studies consistently demonstrate that sleep 
deprivation impairs the removal of CSF tracers and Aβ proteins from 
the human brain (Vinje et al., 2023; Liu H. et al., 2023; Ooms et al., 
2014; Eide et al., 2021; Shokri-Kojori et al., 2018). Beyond total sleep 
deprivation, mounting evidence highlights SWS as a key facilitator of 
this fluid exchange and clearance (Olsson et al., 2019; Ju et al., 2017; 
Varga et al., 2016). Several mechanisms explain the influence of SWS 
on glymphatic clearance. One is vasomotion, the rhythmic contraction 
and relaxation of blood vessels, which propels CSF through 
perivascular spaces to facilitate ISF exchange and waste clearance (van 
Veluw et  al., 2020). Notably, imaging studies demonstrate a 
colocalization of neural oscillations and hemodynamic vasomotion 
during SWS (Fultz et  al., 2019; Helakari et  al., 2022). Relatedly, 
synchronized neuronal activity during sleep generates large amplitude 
ionic waves in the ISF, which may further promote CSF-ISF exchange 
and glymphatic clearance (Jiang-Xie et al., 2024).

Accordingly, sleep modulation may represent one plausible 
mechanism through which rTMS may exert influence on glymphatic 
function, with TMS-EEG studies providing insight into the immediate 
and delayed effects of TMS on neural dynamics during sleep. Huber 
and colleagues were among the first to demonstrate high-frequency 
(HF) rTMS applied to the motor cortex of healthy adults during 
wakefulness increased slow-wave activity during subsequent sleep 
periods (Huber et  al., 2007). More recently, similar results were 
reported in a population of older adults with cognitive complaints, 
where HF-rTMS was associated with robust and widespread increases 
in slow-wave activity during subsequent sleep (Wilckens et al., 2024). 
This phenomenon aligns with use-dependent adaptations, where 
experimentally modulating synaptic strength during wakefulness 
bidirectionally affects slow-wave activity in subsequent sleep 
(Massimini et al., 2009). Authors of a review on the topic concluded 
that rTMS “can be  used as a non-pharmacological means to 
controllably induce slow waves in the human cerebral cortex” 
(Massimini et al., 2009). In the context of APOE, a recent report from 
the Framingham Heart Study revealed that the typical SWS loss 
observed during aging is significantly accelerated in carriers of the ε4 
allele (Himali et al., 2023). Additional evidence from a mouse model 
suggests that glymphatic function in ε4 carriers is particularly 
susceptible to the consequences of deficient sleep. Specifically, the 
study reported a feed-forward cycle of sleep disturbance, aberrant 
AQP4 polarization, and reduced glymphatic clearance of AD 
pathology that was only observed in the presence of the ε4 allele 
(Sadleir and Vassar, 2023). Considering these findings, it is plausible 
that the observed increase in DTI-ALPS may be attributable to rTMS-
induced augmentation of SWS, which is a particularly vulnerable 
pathway in ε4 carriers (Himali et al., 2023; Sadleir and Vassar, 2023). 
However, in the absence of sleep data, this remains an untested 
hypothesis, and future studies incorporating sleep assessments will 
be essential to empirically evaluate this mechanism.

Relatedly, a growing body of evidence highlights the critical role 
of GABAergic interneurons in facilitating the heightened neural 
synchrony required for efficient glymphatic clearance during SWS 
(Chen et al., 2012). Knocking down GABAergic inhibition disrupts 
SWS, while optogenetic stimulation of cortical GABAergic neurons 

enhances slow-wave activity during deep sleep, further supporting 
their role in regulating SWS and glymphatic function (Thankachan 
et al., 2022; Chen et al., 2012). Inhibitory interneurons are particularly 
sensitive to TBS protocols, and their modulation is thought to 
be central to the after-effects of TBS (Li et al., 2019; Funke and Benali, 
2011; Benali et al., 2011). Importantly, the GABAergic interneurons 
responsible for facilitating slow-wave activity are particularly 
vulnerable in APOE ε4 carriers, where their dysfunction leads to 
decreased synchronized neural activity (Najm et al., 2019). In aged 
mice, Gillespie et  al. (2016) report that progressive disruption of 
interneuron-mediated slow-wave activity during sleep was specific to 
ε4 knock-in animals. This APOE ε4-dependent vulnerability in 
interneuron function may explain the baseline deficits observed in the 
DTI-ALP index in ε4 carriers, along with their enhanced response to 
our TBS intervention.

Beyond sleep and its associated slow-wave activity, animal model 
research suggests other potential mechanisms through which TBS 
may elicit an APOE4-dependent increase in DTI-ALPS, our proxy 
measure for glymphatic function. Several experiments in mouse 
models report an rTMS-induced increase in glymphatic function that 
is mediated by astrocytic remodeling (Lin et al., 2024; Lin et al., 2021; 
Wu et al., 2022). Specifically, these experiments report a suppression 
of astrocytic reactivity, which enhances the polarized distribution of 
AQP4 expression at the astrocytic endfeet (Lin et al., 2024; Lin et al., 
2021; Wu et  al., 2022). This polarized distribution is crucial for 
effective glymphatic clearance (Silva et  al., 2021). Evidence from 
animal models demonstrates that a loss of AQP4 results in a significant 
reduction (about 70%) in glymphatic efflux, severely impairing the 
clearance of neurotoxic proteins such as Aβ and tau (Xu et al., 2015; 
Iliff et al., 2012; Harrison et al., 2020). Additionally, AQP4 dysfunction 
can occur when AQP4 channels are mislocalized away from astrocytic 
endfeet toward the cell soma, further compromising glymphatic 
function (Simon et  al., 2022; Pedersen et  al., 2023). Post-mortem 
studies demonstrate that AQP4 mislocalization is strongly linked to 
Alzheimer’s disease (AD) pathology (Zeppenfeld et al., 2017).

AQP4 mislocalization is also closely associated with astrocytic 
reactivity, a process that naturally occurs with aging or in response 
to stressors such as injury, neurodegeneration, or infection (Kress 
et  al., 2014; Duncombe et  al., 2017). The functional and 
morphological changes comprising astrocytic reactivity can 
be broadly classified as resembling an A1 or A2 phenotype. The 
neurotoxic A1 phenotype of astrocytes is associated with 
neuroinflammation, tissue damage, and acceleration of disease 
processes, whereas the A2 phenotype is generally considered 
protective, promoting repair and recovery (Fan and Huo, 2021). 
Recent evidence suggests that AQP4 mislocalization is tightly 
coupled to the A1 phenotype, which can be rescued by interventions 
that promote a shift to the A2 phenotype (Feng et al., 2023). Notably, 
APOE4 appears to promote astrocytes to adopt the A1 phenotype, 
while deleting APOE4 reduces harmful astrogliosis and restores 
AQP4 polarization (Wang et al., 2021; Koutsodendris et al., 2023). 
This is supported by human studies indicating that the relationship 
between Aβ and GFAP (a marker of A1 reactivity) is moderated by 
APOE4 (Snellman et al., 2023; Liddelow et al., 2017). Beyond studies 
directly demonstrating that TMS enhances AQP4 polarization to 
improve glymphatic function in AD models (Lin et al., 2024; Lin 
et al., 2021; Wu et al., 2022), additional evidence from murine stroke 
models suggests that TMS can also induce astrocytes to shift from 
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an A1 to an A2 phenotype (Zong et al., 2020; Hong et al., 2020; Zou 
et al., 2024; Wang et al., 2025; Hu et al., 2023). A recent meta-analysis 
of rTMS clinical trials across neuropsychiatric disorders corroborates 
this effect, reporting that rTMS interventions significantly decrease 
inflammatory cytokines like tumor necrosis factor alpha 
(Asadizeidabadi et  al., 2025). Collectively, these findings offer a 
plausible mechanistic explanation for the baseline deficits observed 
in APOE4 carriers and their selective responsiveness to 
TBS. However, this remains speculative in the absence of supporting 
human data, and future studies incorporating astrocytic biomarkers, 
such as plasma or CSF GFAP, will be essential to empirically evaluate 
astrocytic reactivity as a potential mediator of the observed effects.

Another experiment providing direct evidence that TBS 
enhances glymphatic function in an AD mouse model highlights 
a distinct mechanism. Specifically, this study reports that TBS 
upregulates vascular endothelial growth factor-C (VEGF-C), 
resulting in the dilation of meningeal lymphatic vessels (mLVs) 
(Li et al., 2020). mLVs exist downstream of ISF-CSF fluid exchange 
occurring at astrocytic endfeet to drain waste out of the CNS, and 
mLV dysfunction ultimately impairs this clearance (Guo et al., 
2023). Further, despite existing downstream, mLVs appear to exert 
reciprocal influence on glymphatic function, as their ablation has 
been shown to promote A1-like astrocytic reactivity and AQP4 
mislocalization (Wang et al., 2019). Progressive mLV dysfunction, 
characterized by reduced vessel diameter and coverage, is a feature 
of aging that is exacerbated by the APOE ε4 allele (Da Mesquita 
et al., 2018; Mentis et al., 2021).

Consistent with the findings that TBS dilated mLVs via 
VEGF-C signaling, previous studies highlight the plasticity of 
mLVs and their sensitivity to VEGF (Antila et  al., 2017; Da 
Mesquita et  al., 2021). For example, in one AD mouse model, 
VEGF-C therapy rescued mLV dysfunction and associated gliosis, 
leading to enhanced clearance of AD pathology (Da Mesquita 
et al., 2021). Another experiment in an AD mouse model revealed 
similar effects, with heightened relevance for ε4 carriers, reporting 
that a VEGF-dependent pathway mediates apoE4-driven 
pathologies. Specifically, VEGF levels were reduced in APOE4 
mice, and treatment with VEGF reversed ε4-driven cognitive 
deficits and AD pathology (Salomon-Zimri et al., 2016). Post-
mortem analysis of brain tissue provides supporting evidence that 
VEGF gene family expression levels produce APOE ε4 specific 
associations with cognitive aging. Collectively, these findings 
suggest that VEGF-mediated mLV (dys)function is another 
plausible mechanism that may explain our APOE-specific 
findings. Notably, however, this remains largely speculative and 
future research in human samples will be  required to evaluate 
VEGF dynamics and mLV integrity in vivo, using biofluid markers 
and emerging imaging techniques (Ringstad and Eide, 2024).

While our study offers valuable insights, there are notable 
limitations that should be considered when interpreting our findings. 
First, DTI-ALPS itself has inherent anatomical and methodological 
constraints that must be recognized. Specifically, it measures water 
diffusivity along perivascular spaces in the deep white matter and 
does not directly assess whole-brain glymphatic clearance (Ringstad, 
2024; Wright et al., 2024; Taoka et al., 2024; Boyd et al., 2024). As 
such, it cannot capture the full complexity of glymphatic fluid 
dynamics, including the clearance of larger molecules such as Aβ or 
waste trafficking through meningeal lymphatics (Ringstad, 2024). 

Additional critiques center on its anatomical constraints, contending 
that ALPS-measured diffusivity changes, which are constrained to 
deep white matter, may only reflect localized ISF dynamics that do 
not generalize to broader whole-brain waste clearance (Haller et al., 
2024). Nevertheless, a growing body of literature supports the utility 
of the ALPS index as a proxy measure with functional relevance for 
glymphatic activity. Notably, it correlates strongly with intrathecal 
contrast MRI, which is considered the current gold standard for 
evaluating glymphatic function (Zhang et al., 2021), and it aligns with 
clinical markers of glymphatic disruption, such as apnea-hypopnea 
indices in individuals with obstructive sleep apnea (Ghaderi et al., 
2025; Lee et  al., 2022). Therefore, while DTI-ALPS should 
be  interpreted with caution and not viewed as a comprehensive 
measure of glymphatic clearance, it provides non-invasive, 
functionally relevant insight into localized fluid dynamics (Taoka 
et al., 2024). As both the imaging method and the broader field of 
glymphatic research continue to evolve, our findings should 
be interpreted with appropriate caution. Future studies that combine 
ALPS-derived diffusivity changes with complementary 
methodologies will be  critical for validating and contextualizing 
its use.

Additionally, this work could have been strengthened by the 
integration of key data that is omitted from this preliminary work and 
the inclusion of a larger sample size. First, the absence of Alzheimer’s 
disease biomarkers limits the ability to directly link our findings with 
disease-specific neuropathology. Future integration of plasma/CSF 
biomarkers could address this limitation and also serve to substantiate 
our proxy measure of glymphatic function by examining whether 
changes in the DTI-ALPS index correspond with changes in Aβ 
levels. Second, the omission of sleep data constrains our ability to 
evaluate a potential mechanism underlying the TBS-induced 
DTI-ALPS changes and prevents us from accounting for sleep as a 
potential confounding factor in our analyses (Ma et al., 2024; Lee 
et al., 2022; Ghaderi et al., 2025). Lastly, although we documented 
neuropsychiatric history and conducted standardized 
neuropsychological assessments, broader clinical characterization 
was not obtained. The absence of information on metabolic or 
cardiovascular comorbidities poses a limitation, as these factors may 
also impact brain health and glymphatic function (Zhang et al., 2025; 
Yu et  al., 2024; Tian et  al., 2024). These comorbidities may also 
interact with APOE status in ways that could help contextualize the 
ε4-specific effects observed in this study (Kyrtsos and Baras, 2015; 
Shaaban et al., 2019; Nation et al., 2016; Kaufman et al., 2021). Lastly, 
the modest sample size—notably with an uneven distribution of ε4 
carriers - constrains the overall interpretability of our findings and 
precludes subgroup analyses of different MCI subtypes, which could 
reveal differential effects across this heterogeneous population.

In addition to addressing the limitations detailed above, future 
research may also benefit from incorporating biofluid measures 
of GFAP, a measure of astrocytic reactivity, and VEGF, which has 
been linked to rTMS efficacy in clinical trials for depression 
(Fukuda et al., 2020; Elemery et al., 2022). These additions could 
further substantiate the DTI-ALPS index as a proxy for glymphatic 
function, elucidate the biological pathways involved, and provide 
deeper insight into how neuromodulatory interventions exert 
their effects. Additionally, although our statistical analyses did not 
reveal significant protocol-specific effects between cTBS and 
iTBS, future work should investigate whether other aspects of the 
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broader TMS parameter space influence outcomes. It remains 
unclear whether variations to stimulation intensity, session 
number, pulse count, and/or cortical target selection might 
modify the effects observed in this sample. Moreover, while the 
FNAME served as a sensitive and targeted measure of associative 
memory (Rentz et al., 2011; Rubiño and Andrés, 2018), its use as 
the sole cognitive outcome limits the ability to draw broader 
conclusions about functional relevance. To better understand the 
cognitive impact of neuromodulation-related brain changes, 
future studies should include full neuropsychological batteries 
that evaluate a wider range of domains, including executive 
functioning, attention, and processing speed. Finally, the 
homogeneity of our sample, which was predominantly right-
handed, highly educated, and female, may limit the generalizability 
of these findings. Replication in more diverse and representative 
populations will be essential to strengthen external validity and 
inform the broader applicability of rTMS interventions.

Conclusion

We utilized DTI-ALPS as a proxy measure for the glymphatic 
system in older adults with MCI, assessing baseline function and 
its plasticity in response to TMS. Our results suggest that APOE 
e4 carriers exhibit a baseline glymphatic deficit that was selectively 
responsive to iTBS and cTBS interventions compared to sham 
stimulation. Supporting the functional relevance of glymphatic 
plasticity, TBS-induced increases in the ALPS index were 
associated with improved memory performance within this 
subgroup of e4 carriers. This work highlights the capacity of TMS 
to modulate glymphatic function, suggesting that this pathway 
may contribute to its therapeutic effects. While we propose several 
plausible mechanisms underlying the APOE-specific effects 
observed, further research is needed to directly investigate these 
potential pathways and their therapeutic implications. 
Importantly, this work remains exploratory, requiring replication 
in larger and more diverse samples, as well as confirmation using 
complementary methodologies. Future studies should integrate 
fluid biomarkers such as plasma Aβ and GFAP to further validate 
the DTI-ALPS index as a proxy for glymphatic function and to 
assess astrocytic reactivity as a potential mechanism underlying 
the APOE-specific effects observed in this preliminary work.
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