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There is growing interest in the relationship between Alzheimer’s disease (AD)

and diabetes mellitus (DM), and the glucagon-like peptide-1 receptor (GLP-1R)

may be an important link between these two diseases. The role of GLP-1R in

DM is principally to regulate glycemic control by stimulating insulin secretion,

inhibiting glucagon secretion, and improving insulin signaling, thereby reducing

blood glucose levels. In AD, GLP-1R attenuates the pathological features of

AD through mechanisms such as anti-inflammatory effects, the reduction in

amyloid-beta (Aβ) deposition, the promotion of Aβ clearance, and improvements

in insulin signaling. Notably, AD and DM share numerous pathophysiological

mechanisms, most notably the disruption of insulin signaling pathways in the

brain. These findings further underscore the notion that GLP-1R plays pivotal

roles in both diseases. Taken together, these findings lead us to conclude that

GLP-1R not only plays an important role in the treatment of DM and AD but also

may serve as a bridge between these two diseases. Future research should focus

on elucidating the detailed molecular mechanisms underlying the actions of

GLP-1R in both diseases and exploring the development of GLP-1R agonists with

dual therapeutic benefits for AD and DM. This could pave the way for innovative

integrated treatment strategies to improve outcomes for patients affected by

these intertwined conditions.

KEYWORDS

glucagon-like peptide-1 receptor, Alzheimer’s disease, diabetes mellitus, insulin
resistance, neuroinflammation

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by
memory loss and cognitive dysfunction (Scheltens et al., 2021). According to statistics, there
are currently approximately 50 million people living with AD worldwide, and this number
is expected to increase to 152 million by 2050 as the population ages, making it a major
challenge for global public health (Dissanayaka et al., 2024). Despite extensive research and
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clinical trials conducted on the underlying mechanisms, the
etiology and pathogenesis of AD remain incompletely understood.

The glucagon-like peptide-1 receptor (GLP-1R) is a key target
for diabetes mellitus (DM) treatment, and GLP-1R agonists are
pharmaceutical compounds employed in the treatment of DM.
However, recent studies have revealed the potential for these
compounds to also impact the pathological process of AD. These
impacts include anti-inflammatory effects, reduced amyloid-beta
(Aβ) deposition, reduced tau protein hyperphosphorylation, and
improved insulin signaling (Calsolaro and Edison, 2016; Kang et al.,
2023). Therefore, the utilization of GLP-1R medications in the
treatment of AD may represent a promising approach. Notably,
AD and DM share multiple pathophysiological mechanisms, and
in particular, both AD and type 2 DM (T2DM) disrupt insulin
signaling pathways in the brain (Barone et al., 2021). In addition,
60–70% of patients with T2DM suffer from cognitive impairment
(Biessels and Despa, 2018). Thus, GLP-1R may be a potential link
between DM and AD, and we look forward to discovering more
about the mechanism of the link between these two diseases, as well
as new applications of GLP-1R agonists in the treatment of AD.

2 GLP-1R in AD

GLP-1R plays a key role in AD. The role of GLP-1R in AD
is reflected mainly in the following aspects: it can decrease Aβ

deposition and inhibit tau protein hyperphosphorylation, reduce
neuroinflammation and oxidative stress (OS) (Du et al., 2022).

2.1 GLP-1R and Aβ deposition

Aβ is a protein fragment produced by the cleavage of amyloid
precursor protein (APP) by a series of enzymes and is one of the
key factors in AD research (Hardy and Selkoe, 2002; Sambamurti
et al., 2002; Figure 1). Two main forms of the Aβ protein
have been identified: Aβ40 and Aβ42, which contain 40 and 42
amino acid residues respectively (Sambamurti et al., 2002). In
AD, the Aβ protein exists as insoluble aggregates that can form
larger plaques called amyloid plaques or senile plaques, which are
deposited in the brain and interfere with the function of nerve
cells (Roher et al., 1996). Abnormal accumulation of Aβ proteins
is thought to be associated with neurodegenerative processes
that may lead to disruption of communication between neurons,
causing an inflammatory response and ultimately neuronal damage
and death (Hardy and Allsop, 1991). Therefore, an imbalance in
the production and clearance of the Aβ protein is a key part
of AD pathology.

Several studies have confirmed that GLP-1R reduces Aβ

production and deposition. GLP-1R agonists (e.g., exendin-4
and liraglutide) reduce APP expression and processing in the
brains of AD model mice through the activation of GLP-1R,
decrease Aβ protein production and plaque aggregation, and thus
improve their spatial memory capacity (McClean et al., 2015;
Wang et al., 2016). Studies have shown that liraglutide reduces
the numbers of Aβ and dense core plaques in the cortex by
40–50% (McClean et al., 2011). In addition, defects in the insulin
pathway lead to Aβ accumulation (Kellar and Craft, 2020).

Jantrapirom et al. reported that liraglutide effectively reversed
the deleterious effects of insulin overstimulation and attenuated
neuronal insulin resistance in the human neuroblastoma cell line
SH-SY5Y, which resulted in reductions in β-amyloid formation
and tau hyperphosphorylation (Jantrapirom et al., 2020). GLP-1R
activation also enhances the clearance of Aβ. GLP-1R is expressed
predominantly at perivascular sites in astrocytes of the normal
mouse cerebral cortex. Increased GLP-1R signaling promotes the
phosphorylation and translocation of aquaporin 4, which may
facilitate Aβ efflux clearance from the brain parenchyma by
increasing intracerebral water flux (Sasaki et al., 2024). In summary,
GLP-1R can influence the pathological process of Aβ in diverse
ways, including Aβ production, deposition and degradation.

2.2 GLP-1R and tau protein
hyperphosphorylation

Hyperphosphorylated tau is a major component of
intracellular neurofibrillary tangles (NFTs), which, together
with amyloid plaques, are a distinguishing marker of AD
(Tracy et al., 2022; Figure 1). Normally, tau proteins exist in
a microtubule-bound form, but in AD, tau proteins become
hyperphosphorylated, forming NFTs (Samudra et al., 2023). These
NFTs accumulate inside neurons and interfere with intracellular
transport, leading to impaired cell function and neuronal death
(Macdonald et al., 2019).

In recent years, studies on the use of GLP-1R and GLP-
1R agonists to reduce tau protein hyperphosphorylation have
progressed. Liraglutide and dulaglutide, as GLP-1R agonists,
can improve AD-related cognitive dysfunction by inhibiting
tau protein hyperphosphorylation and NFTs formation through
activation of the protein kinase B/glycogen synthase kinase 3
beta (Akt/GSK-3β) signaling pathway (Shu et al., 2019; Zhou
et al., 2019). This effect can be specifically blocked by the GLP-
1R antagonist exendin (9–39) amide. Furthermore, exendin-4
can stimulate the cyclic adenosine monophosphate/protein kinase
A (cAMP-PKA) pathway by activating GLP-1R, which then
increases the level of non-phosphorylated β-catenin to stimulate
the Wnt/β-catenin/NeuroD1 pathway and inhibits the activity
of GSK-3β, ultimately decreasing the hyperphosphorylation of
AD-associated tau proteins regulated by GSK-3β (Kang et al.,
2023). In summary, GLP-1 agonists do not affect tau phosphatase
activity but rather inhibit tau hyperphosphorylation by the
activation of Akt-driven GSK-3β inhibition by GLP-1R during AD
(Reich and Hölscher, 2022).

Although studies in animal models have shown that GLP-1R
agonists reduce Aβaccumulation and tau hyperphosphorylation,
few human studies have evaluated these effects. Clinical trials are
still needed to validate their safety and efficacy in human patients
before they can be widely used in AD therapy. And Clinical
trials have been conducted to investigate the potential cognitive
benefits of GLP-1R agonists in patients with AD. For example,
the REWIND trial revealed that dulaglutide may reduce the risk
of cognitive decline in patients with T2DM (Cukierman-Yaffe
et al., 2020; Table 1). Novo Nordisk conducted a randomized,
double-blind, placebo-controlled phase 2b clinical trial called
ELAD to evaluate the neuroprotective effects of liraglutide in
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FIGURE 1

Simplified schematic of the four major pathological changes present in the brains of patients with AD and the role of GLP-1R. Multiple pathological
changes, including Aβ deposition, tau protein hyperphosphorylation, neuroinflammation, and mitochondrial dysfunction, occur in the brains of
patients with AD. GLP-1R activation plays significant modulatory roles in all these pathological mechanisms.

patients with mild AD (Femminella et al., 2019). Unfortunately,
its primary endpoint was not met due to study limitations. In
addition, two large-scale, double-blind, placebo-controlled phase
3 clinical studies called Evoke and Evoke + are underway
to investigate the disease-mitigating potential of semaglutide
in patients with AD with early symptoms and to explore its
effects on AD biomarkers and neuroinflammation (Cummings
et al., 2025). GLP-1R agonists show great potential in AD, but
key challenges, such as blood brain barrier (BBB) penetration,
clinical trial inconsistency, long-term safety and precision therapy,
need to be addressed. In the future, multitargeted drugs,
novel delivery technologies, and individualized treatments may
propel them to become breakthrough therapies for a wider
range of diseases.

2.3 Others

In addition to Aβ deposition and tau protein hyper-
phosphorylation, pathological changes such as neuroinflammation
and mitochondrial dysfunction are closely related to AD

pathogenesis. Research indicates that the activation of GLP-
1R can alter the polarization of microglia, shifting them from
a proinflammatory (M1) phenotype to an anti-inflammatory
(M2) phenotype (Qian et al., 2022). This shift is crucial because
the proinflammatory cytokines released by M1 microglia can
exacerbate neuronal damage, whereas M2 microglia exert
protective effects by promoting anti-inflammatory responses
and repair processes (Jassam et al., 2017). Therefore, GLP-1R
is expressed in glial cells and has anti-inflammatory properties
(Calsolaro and Edison, 2016). The activation of GLP-1R using
agonists such as exendin-4 has been reported to reduce microglial
activation and the production of proinflammatory cytokines
(Qian et al., 2022). This effect contributes to the protection of
neuronal tissue and the improvement of functional recovery after
injury. OS is another key factor in AD, which leads to synaptic
damage, and GLP-1R is able to reduce OS and protect synaptic
structure and function (Kong et al., 2023; Liang et al., 2024).
GLP-1R deletion impairs mitochondrial integrity in astrocytes,
and a lack of GLP-1R signaling impairs mitochondrial function
and induces a cellular stress response (Timper et al., 2020).
Recently, GLP-1 was shown to act on GLP-1R and exert its
neuroprotective effects by promoting PTEN-induced kinase
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TABLE 1 Summary of the mechanisms of action and effects of GLP-1R agonists in AD.

GLP-1R agonist Model type Mechanisms/methods of action Primary effects Ref.

Exenatide/Exendin-4 db/db mice, high-fat-
diet/streptozotocin—induced diabetic
mice, and high-glucose-damaged
HT-22 hippocampal cells

Activates the Wnt/β-catenin signaling pathway and upregulates the
expression of NeuroD1. Activates the insulin signaling pathway and inhibits
GSK-3β activity.

Attenuates tau hyperphosphorylation and cognitive dysfunction,
ameliorates learning and memory deficits, and exerts its protective
effects by increasing brain-derived insulin levels.

Kang et al., 2023

Clinical research Reduces levels of pro-inflammatory cytokines, decreases expression of
vascular cell adhesion molecules, and modulates immune system functions.

Significant inflammatory protein levels correlate, perhaps aiding in the
progression of AD symptoms by modulating chronic inflammation.

Koychev et al., 2024

Liraglutide Human neuroblastoma cell line
SH-SY5Y

Improvement of neuronal insulin signaling, reversal of the phosphorylation
state of the insulin receptor and its downstream signaling molecules (e.g.,
IRS-1, AKT, GSK-3β), and inhibition of β secretase 1 or β-site APP-cleaving
enzyme 1 activity.

Reduces tau hyperphosphorylation and Aβ deposition and restores
insulin sensitivity in neurons damaged under hyperinsulinemic
conditions.

Jantrapirom et al., 2020

Transgenic hTauP301L mice Activation of GLP-1R inhibits upstream signaling pathways associated with
tau phosphorylation (e.g., GSK-3β activity).

Significantly reduces phosphorylated tau load in midbrain and
hindbrain-associated neurons and improves neurological function in
hTauP301L transgenic mice.

Hansen et al., 2016

Clinical research Changes the brain glucose metabolic rate. Significant differences in cognitive function were not reached (probably
due to insufficient sample size).

Femminella et al., 2019

Dulaglutide In vitro cell modeling Activates microglia and promotes their polarization toward an
anti-inflammatory phenotype (type M2).

Ameliorates Aβ-induced inflammation and neuronal injury and
mediates microglia activation and polarization.

Wang and Han, 2025

C57/BL6 male mice Modulation of the PI3K/AKT/GSK3β signaling pathway reduces
hyperphosphorylation of tau protein and neurofilaments.

Significantly improves learning and memory deficits in STZ-induced
AD-like mice.

Zhou et al., 2019

Clinical research An exploratory analytical approach through an international multicenter,
randomized, double-blind, placebo-controlled trial (REWIND trial).

Dulaglutide may reduce cognitive impairment in people aged 50 years or
older with T2DM.

Cukierman-Yaffe et al.,
2020

Semaglutide Human neuroblastoma cell line
SH-SY5Y

Preventing 6-OHDA cytotoxicity in SH-SY5Y cells by improving autophagic
flux, reducing oxidative stress and attenuating mitochondrial dysfunction.

Shows neuroprotective effects. Liu et al., 2022

APP/PS1/Tau transgenic mice Enhancement of glucose uptake and utilization in the brain through SIRT1
activation of GLUT4 expression and transport.

Significantly improves cognitive function, reduces the burden of Aβ and
tau pathology, and enhances glucose metabolism in the brain.

Wang Z. J. et al., 2023

Clinical research Ongoing AD trials. The EVOKE trial: assessing the impact on cognitive function in patients
with early AD.

Cummings et al., 2025

Tirzepatide Human neuroblastoma cell line
SH-SY5Y

Activates the pAkt/CREB/BDNF signaling pathway and its downstream
cascade reactions to affect DNA methylation and miRNA expression.

Ameliorates high glucose-induced neurodegeneration and overcomes
neuronal insulin resistance.

Fontanella et al., 2024

APP/PS1 mouse model Activates GLP-1R, regulates brain glucose metabolism, enhances the
expression of glucose transport and metabolism-related genes, and
ameliorates mitochondrial dysfunction.

Significantly reduces the number of Aβ plaques, decreases neuronal
apoptosis, and ameliorates mitochondrial dysfunction in astrocytes in
the brains of APP/PS1 mice but does not significantly affect anxiety or
cognitive function in the mice.

Yang et al., 2024

Lixisenatide APP/PS1/Tau AD transgenic mice Activates the PKA–CREB signaling pathway and inhibits the p38–MAPK
signaling pathway to exert its neuroprotective effects.

Significantly reduces Aβ plaques, NFTs, and neuroinflammation in the
hippocampal region of mice.

Cai et al., 2018
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1/Parkin-mediated mitochondrial autophagy and attenuating
OS (Wang Y. et al., 2023). These findings further confirm the
pleiotropic role of GLP-1R in neuroprotection.

3 GLP-1R as a link between DM and
AD

Our previous chapter discussed the role of GLP-1R in AD.
Why is it that GLP-1R could be a potential link between DM
and AD? The mechanisms of action of GLP-1R in DM and AD
overlap, which suggests that GLP-1R may be a bridge between these
two diseases. For example, GLP-1R agonists were able to improve
glucose metabolism function through the GLP-1R/SIRT1/GLUT4
pathway in an AD model (Wang Z. J. et al., 2023), suggesting that
GLP-1R may influence AD progression by modulating metabolic
pathways associated with DM. In addition, GLP-1 activation in
astrocytes by GLP-1R altered cellular glucose metabolism, revealing
a novel mechanism by which GLP-1R improves cognitive function
in patients with AD (Zheng et al., 2021). Taken together, these
findings highlight the common mechanism of action of GLP-1R
in DM and AD and its potential to regulate metabolism and
neuroprotection (Figure 2), suggesting that GLP-1R may be a key
factor linking these two diseases.

3.1 Brain insulin resistance

Insulin resistance in the brain perpetuates neuroinflammation,
tau hyperphosphorylation, and amyloid pathology in AD and is
therefore a driver of neurodegenerative disease (Hölscher, 2019).
This has led some researchers to refer to AD as “type 3 diabetes”
because of the similarities between the impaired brain insulin
signaling observed in AD and the insulin resistance observed
in T2DM (see below) (de la Monte, 2014; Steen et al., 2005).
However, this nomenclature has been controversial, with some
scholars arguing that categorizing AD as “type 3 diabetes” may
be conceptually misleading (Talbot and Wang, 2014; Li et al.,
2024). The traditional classification of DM is mainly based on
abnormalities in insulin secretion and action, such as type 1 DM
due to an absolute lack of insulin secretion and T2DM due to
insulin resistance and relative insulin deficiency. However, the
inclusion of abnormal insulin metabolism in the brain as part
of “type 3 diabetes” is a break from conventional wisdom and
therefore has not yet been agreed upon in the academic community.
Firstly, some people believe that cerebral insulin resistance in
patients with AD may not be insulin resistance in the true sense of
the word but may instead arise from dysfunctional insulin transport
across the BBB and that this transport defect may be caused by
abnormal BBB function indirectly resulting from peripheral insulin
resistance (Arnold et al., 2018). Second, existing animal models
have significant limitations. Although rodent models provide
important tools for AD research, it is difficult for these models
to fully simulate the complex pathophysiological processes of
human AD because of the significant differences in brain structure,
metabolic characteristics, and immune responses between humans
and experimental animals (Qian et al., 2024). However, abnormal
desensitization of insulin signaling has been observed in the

brain tissue of patients with AD even in the absence of DM
(Frölich et al., 1998).

Multiple parallels between impaired brain insulin signaling in
AD and insulin resistance in T2DM have been reported. Insulin
and insulin-like growth factor-1 (IGF-1) play important roles
in cognitive performance, neurological function, and the control
of neurogenesis and synaptogenesis (Choi et al., 2025). Insulin-
degrading enzymes (IDEs) are enzymes used to break down
insulin and IGF-1, removing Aβ40 and Aβ42 monomers but not
affecting Aβ oligomers or fibers (Kemeh and Lazo, 2023). In an
insulin-resistant milieu, insulin may competitively inhibit IDE,
which impedes the degradation of Aβ proteins, increases their
neurotoxicity, and contributes to the onset of AD (Scherer et al.,
2021; Ochiai et al., 2021). In the state of brain insulin resistance,
insulin signaling pathways such as the PI3K/Akt pathway become
abnormal, and abnormalities in insulin signaling pathways lead to
a decrease in Aβ clearance, which promotes Aβ deposition (Zheng
and Wang, 2021). In addition, brain insulin resistance affects
tau metabolism and promotes the hyperphosphorylation of tau
proteins, tau protein aggregation, the formation of paired helical
filaments, and the further formation of NFTs (Mohandas et al.,
2009). GLP-1, as an insulin-promoting hormone, has functional
and growth factor properties similar to those of insulin and IGF-
1 (Bhalla et al., 2022). GLP-1R, as its receptor, can bind to GLP-1
to exert its growth factor effects. In addition, Aβ has a tertiary
structure similar to that of insulin, peripheral Aβ acts as a negative
regulator of insulin secretion, and there can be interactions between
Aβ and insulin signaling (You et al., 2022).

Brain insulin resistance is an important pathogenetic feature
of AD and is mediated primarily by impaired insulin signaling
(Sêdzikowska and Szablewski, 2021). In a study using the GLP-
1R agonist liraglutide, its ability to reverse cognitive deficits in
an AD model and its potential neuroprotective mechanisms were
identified. Liraglutide not only blocks insulin receptor and synaptic
loss in the brain but also reverses memory impairment induced
by AD-associated Aβ oligomers, suggesting that GLP-1R activation
may be used to protect brain insulin receptors and synapses
in AD (Batista et al., 2018). In addition, GLP-1R stimulation
activates insulin signaling pathways and regulates gene expression,
decreasing systemic insulin resistance and brain insulin resistance
in patients with AD (Dahiya et al., 2025). Moreover, because GLP-
1R is expressed throughout the body, stimulation with a GLP-1R
agonist or indirectly with a DPP-IV inhibitor can have a broad
systemic effect on systemic metabolism, which, in turn, ameliorates
peripheral and central insulin resistance in AD and MD (Athauda
and Foltynie, 2016). Therefore, it is reasonable to believe that
GLP-1R is a potential link between these two diseases.

3.2 Neuroinflammation

AD and DM are significantly associated with
neuroinflammatory mechanisms. Chronic low-grade inflammation
is a common pathological feature of both: metabolic disturbances
in patients with DM induce the release of peripheral
inflammatory factors, and these inflammatory factors pass
through the compromised BBB into the central nervous system
(CNS), activating microglia and astrocytes and triggering a

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1601602
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1601602 July 21, 2025 Time: 16:0 # 6

Li et al. 10.3389/fnagi.2025.1601602

FIGURE 2

Schematic representation of signaling pathways common to AD and DM induced by GLP-1R agonism. These include AMPK, PI3K/AKT,
CaMKK2-AMPK, NF-κB, insulin/IGF-1 R and the mitochondrial signaling pathway.

neuroinflammatory cascade response, which in turn promotes
Aβ deposition in AD and tau protein hyperphosphorylation
(Sebastian Monasor et al., 2020; Chen et al., 2024). In
addition, obesity-associated adipose tissue inflammation further
exacerbates CNS inflammation, creating a vicious cycle of
“metabolism–inflammation–neurodegeneration” (Chen et al.,
2024; Wong et al., 2024).

GLP-1R plays a multidimensional role in regulating
neuroinflammation. Firstly, through a systematic review and
network meta-analysis, researchers have assessed the effects
of GLP-1R agonists on neuroinflammation and reported that,
compared with placebo, GLP-1R agonists significantly reduce
the levels of neuroinflammatory markers, such as TNF-α and
interleukin-1β (Urkon et al., 2025; Zhang et al., 2022; Tseng
et al., 2025). Second, GLP-1R activation enhances neurovascular
coupling function, improves cerebral blood flow and repairs BBB
integrity, blocking the penetration of peripheral inflammatory
factors into the center (Wong et al., 2024). Preclinical studies have
also revealed that dual agonists of GLP-1R and glucose-dependent
insulinotropic polypeptide receptor (GIPR) have synergistic
anti-inflammatory and neuroprotective effects, suggesting the
potential advantages of multitargeting strategies (Yuan et al.,
2024). GLP-1R-targeted therapies have now expanded from
metabolic diseases to AD. A team of researchers developed a
nanostructure-based GLP-1R agonist capable of crossing the BBB
that significantly attenuated neuroinflammation and memory loss
in an Aβ peptide-induced mouse model of AD by inhibiting the
inflammatory responses of microglia and astrocytes (Zhao et al.,
2022). These findings not only reveal the potential of GLP-1R as
a common therapeutic target for AD and DM but also provide a
theoretical basis for the development of novel therapies based on
the “metabolic–immune–neurological” axis.

3.3 Mitochondrial dysfunction and
oxidative stress

Chronic hyperglycemia in patients with T2DM leads to
peripheral insulin resistance, whereas impaired insulin signaling
pathways in the brains of patients with AD lead to “brain insulin
resistance,” both of which are closely related to mitochondrial
dysfunction and OS (Du et al., 2022; Zhang et al., 2023).
Mitochondria are the primary site of energy metabolism and
reactive oxygen species (ROS) production. Hyperglycemia
exacerbates mitochondrial electron transport chain (ETC)
dysfunction and increases ROS production through advanced
glycation end products and inflammatory pathways (Zhang et al.,
2023; Caturano et al., 2023). Overproduction of ROS triggers OS
(Luna-Marco et al., 2023). Interestingly, defects in mitochondrial
energy metabolism are also present in the brains of patients with
AD, leading to neuronal apoptosis and Aβ deposition, which
increases ROS production by interfering with mitochondrial
calcium homeostasis and ETC function; the hyperphosphorylation
of tau proteins leads to the disruption of microtubule structure and
affects mitochondrial axonal transport, exacerbating the neuronal
energy crisis (Meng et al., 2024). Activated microglia in patients
with AD release proinflammatory factors, which further promote
ROS production, creating a vicious cycle of neuroinflammation
and mitochondrial dysfunction (Qian et al., 2025).

GLP-1R can restore the mitochondrial membrane potential,
promote ATP production, and reduce ROS production by
activating the cAMP/PKA pathway (Signorile et al., 2022). In
addition, activation of GLP-1R regulates mitochondrial over
fission by the cAMP/PKA pathway while improving mitochondrial
function in Aβ-treated astrocytes and ameliorating pathological
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lesions in AD (Xie et al., 2021). Clinical studies have shown
that GLP-1R reduces ROS levels, the mitochondrial membrane
potential and mitochondrial apoptosis in patients with diabetes
(Durak and Turan, 2023; Wang et al., 2021), as well as alleviating
levels of OS and attenuating low-grade inflammation (Zhang
et al., 2018). GLP-1R reduces oxidative damage accumulation by
modulating autophagy-related proteins and scavenging damaged
mitochondria while increasing superoxide dismutase (SOD) and
glutathione peroxidase activities, reducing the generation of lipid
peroxidation products, inhibiting the NF-κB signaling pathway,
and decreasing proinflammatory factor expression to reduce
neuroinflammation (Ma et al., 2018; Lin et al., 2021). In conclusion,
GLP-1R plays important roles in mitochondrial dysfunction and
OS in AD and DM.

4 Conclusion

The treatment of AD faces serious challenges, and the incidence
of this disease is increasing every year, placing a heavy burden
on global health. Despite the never-ending exploration of AD,
our understanding of the disease remains limited, especially
in terms of etiology and pathogenesis. Recent studies suggest
that GLP-1R may be an important link between DM and
AD. Evidence suggests that GLP-1R agonists, initially developed
for the treatment of DM, have therapeutic potential in the
management of AD because of their multifaceted mechanism of
action. GLP-1R agonists exhibit neuroprotective effects in AD,
including anti-inflammatory effects, modulation of Aβ deposition
and clearance, improved insulin signaling, and attenuation of
OS. The intersection between DM and AD further highlights the
shared pathophysiological mechanisms, particularly the disruption
of insulin signaling pathways in the brain. This disruption
is referred to as “type 3 diabetes” and is characterized by
neuroinflammation, cognitive deficits, and amyloid pathology,
which are common to both DM and AD. GLP-1R may ameliorate
these conditions by improving insulin signaling and reducing
insulin resistance in the brain.

Although GLP-1R agonists have yielded promising results
in animal models, AD transgenic mice do not fully mimic the
complex pathology of human AD, and there are still some
challenges in translating them into effective AD therapies. For
example, limitations in BBB penetration efficiency allow for
limited distribution in the CNS, which may affect efficacy.
Current studies suggest that peripherally administered GLP-1RA
has low concentrations in the cerebrospinal fluid, and higher
doses or improved delivery systems (e.g., nanoparticles, liposome
encapsulation) may be needed to increase brain exposure. In
addition, there are potential risks and limitations associated with
GLP-1R therapy. Most GLP-1R agonists have gastrointestinal side
effects, including nausea, vomiting, diarrhea and constipation,
which may be more pronounced in elderly patients with AD and
affect treatment compliance. Whether long-term use leads to risks
such as hypoglycemia and thyroid C-cell hyperplasia remains to be
further evaluated.

However, novel drug delivery systems or formulations may
be able to reduce the risk of gastrointestinal side effects and
hypoglycemia. With the in-depth theory of the gut–brain GLP-1R

axis, the breakthrough of new material technology and the rapid
development of AI-assisted drug design, GLP-1R-related research
has also ushered in new opportunities. An in-depth analysis of the
signaling mechanism of GLP-1R in the gut–brain GLP-1R axis is
needed to aid in developing smarter new material delivery systems
to achieve precise targeting and long-lasting release of GLP-
1R agonists. Moreover, AI technology can be used to accelerate
the design and screening of novel GLP-1R agonists to promote
personalized therapy. In conclusion, GLP-1R signaling represents
a promising therapeutic strategy that bridges the treatment of DM
and AD. Its potential to modulate metabolic and neuroprotective
pathways offers hope for the development of new therapies that
could improve the prognosis of patients with both diseases. GLP-
1R is not only a key target for metabolic regulation but also a
bridge between metabolism and the nervous system. With further
research and technological advances, GLP-1R agonists are expected
to become the core drugs for the treatment of AD and DM. Future
studies should continue to explore the dual mechanism of action
of GLP-1R in metabolism and the nervous system, especially its
potential applications at the intersection of AD and DM.
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