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Background: Non-motor symptoms (NMS) in Parkinson’s disease (PD) often

precede motor manifestations and are challenging to detect with conventional

MRI. This study investigates the use of the Multi-Flip-Angle and Multi-Echo

Gradient Echo Sequence (MULTIPLEX) in MRI to detect previously undetectable

microstructural changes in brain tissue associated with NMS in PD.

Methods: A prospective study was conducted on 37 patients diagnosed

with PD. Anxiety and depression levels were assessed using the Hamilton

Anxiety Scale (HAMA) and Hamilton Depression Scale (HAMD), respectively. MRI

techniques, including 3D T1-weighted imaging (3D T1WI) and MULTIPLEX -

which encompasses T2∗-mapping, T1-mapping, proton density-mapping, and

quantitative susceptibility mapping (QSM)—were performed. Brain subregions

were automatically segmented using deep learning, and their volume and

quantitative parameters were correlated with NMS-related assessment scales

using Spearman’s rank correlation coefficient.

Results: Correlations were observed between QSM and T2∗ values of certain

subregions within the left frontal and bilateral temporal lobes and both anxiety

and depression (absolute r-values ranging from 0.358 to 0.480, p < 0.05).

Additionally, volume measurements of regions within the bilateral frontal,

temporal, and insular lobes exhibited negative correlations with anxiety and

depression (absolute r-values ranging from 0.354 to 0.658, p < 0.05). In T1-

mapping and proton density-mapping, no specific brain regions were found to

be significantly associated with the NMS of PD under investigation.

Conclusion: Quantitative parameters derived from MULTIPLEX MRI show

significant associations with clinical evaluations of NMS in PD. Multiparametric

MR neuroimaging may serve as a potential early diagnostic tool for PD.
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Introduction

Parkinson’s disease (PD) is primarily characterized by motor
dysfunction; however, the majority of patients also exhibit a
range of non-motor symptoms (NMS), including hypotension,
anxiety, depression, and executive dysfunction. Notably, these
NMS often manifest before the typical motor symptoms. Due
to the lack of definitive biomarkers (Bloem et al., 2021;
Xie and Hu, 2022), distinguishing NMS from standard age-
related manifestations remains challenging, frequently resulting
in delayed PD diagnosis and suboptimal treatment (Kalia, 2019;
Tolosa et al., 2021).

In PD research, MRI serves as a critical tool for identifying
pathological changes. However, conventional MRI techniques
often fail to detect subtle structural changes in gray and
white matter, thereby limiting their sensitivity to PD-
related pathological processes. Quantitative MRI (qMRI)
offers a potential solution by enabling non-invasive direct
quantification of microstructural alterations in apparently
normal brain tissues (Xie and Hu, 2022; Vignando et al., 2022).
Reduced T2∗ values indicate iron deposition, particularly in
the substantia nigra, which may impair neuronal function
and survival via oxidative stress mechanisms (Ryckewaert
et al., 2010). Shortened T1 values not only reflect iron
deposition but also suggest neurodegenerative processes, such
as neuronal loss and tissue remodeling. Changes in T1 values
within the basal ganglia reveal more extensive pathological
processes (Baudrexel et al., 2010). These imaging features
are interconnected and collectively contribute to disease
progression. For instance, iron deposition may exacerbate
neuronal damage through oxidative stress, while neuronal loss
alters the local microenvironment, influencing T1 and T2∗ values
(You et al., 2015).

Multiparametric quantitative MRI (MP-qMRI) extends
this approach by utilizing thresholds or mean values from
regions of interest as diagnostic benchmarks in multisite
studies (Vignando et al., 2022; Luo and Collingwood, 2022;
Cheng et al., 2020). Mounting evidence suggests that MP-qMRI
measurements of proton density, T1, and T2∗ can provide
standard distributions of these metrics, enhancing assessments
of neurological conditions (Vignando et al., 2022; Cheng et al.,
2020). However, lengthy scan durations limit widespread adoption.
To address this, recent single-scan techniques that rapidly
generate multiparametric quantitative images, such as Magnetic
Resonance Fingerprinting (MRF), Quantitative Transient-state
Imaging (QTI), and Magnetic Resonance Image Compilation
(MAGiC), have been developed (Jiang et al., 2022; Gómez

Abbreviations: NMS, Non-motor symptoms; PD, Parkinson’s disease;
MULTIPLEX, Multi-Flip-Angle and Multi-Echo Gradient Echo Sequence; 3D
T1WI, 3D T1-weighted imaging; HAMA, Hamilton Anxiety Scale; HAMD,
Hamilton Depression Scale; QSM, Quantitative susceptibility mapping;
qMRI, Quantitative MRI; MP-qMRI, Multiparametric quantitative MRI; MRF,
Magnetic Resonance Fingerprinting; QTI, Quantitative Transient-state
Imaging; MAGiC, Magnetic Resonance Image Compilation; MDS-UPDRS,
Movement Disorder Society-sponsored revision of the Uni-fied Parkinson’s
Disease Rating Scale; H&Y, Hoehn and Yahr; MMSE, Mini Mental State
Examination; HAMA, Hamilton Anxiety Scale; AAL3, Automatic Anatomical
Labeling Atlas version 3; LASSO, Least absolute shrinkage and selection
operator algorithm; LR, Logistic regression; PNES, Psychogenic non-
epileptic seizures; CI, Confidence interval.

et al., 2020; Bipin Mehta et al., 2019). Building upon these
modalities, the Multi-Flip-Angle and Multi-Echo Gradient Echo
Sequence (MULTIPLEX) incorporates sequences like Susceptibility
Weighted Imaging (SWI), proton density-weighted imaging,
and quantitative maps including Quantitative susceptibility
mapping (QSM), R2∗, T2∗, T1-mapping, and proton density-
mapping. This allows comprehensive brain mapping in under
6 min, facilitating integration into clinical practice and research
(Ye et al., 2022).

Brain structural integrity is notably affected by
neurodegenerative disorders such as Alzheimer’s disease, PD,
and multiple sclerosis (Sidenkova, 2021). Recent advancements
in MRI and image processing now make it feasible to analyze
brain measures on a subregional basis, providing more
precise insights into aging and disease (Basukala et al., 2021;
Sheng et al., 2021; Erdaş and Sümer, 2023). These subregional
assessments have demonstrated sufficient sensitivity to discern
variations in cognitive performance and have consistently
exhibited higher sensitivity compared to other macroscopic
structural alterations (Galimzianova et al., 2016). However,
manual segmentation introduces inefficiencies and potential
inaccuracies. Contemporary advancements in computational
medical imaging now enable the application of fully automated
techniques, including deep learning, to perform operations
such as registration and segmentation seamlessly (Jung et al.,
2019).

In the present investigation, the objective is to assess the
correlation between whole-brain volume and signal changes in
PD patients exhibiting NMS by segmenting and quantitatively
analyzing MULTIPLEX MR images. The study further seeks to
determine the potential of utilizing MP-qMRI measurements to
understand intrinsic disease progression in PD and to inform or
oversee initial therapeutic interventions.

Materials and Methods

Participant sample

This prospective study was approved by the Medical Research
Ethics Committee of China-Japan Union Hospital of Jilin
University (No. 2023053014). All procedures involving human
participants were conducted in strict accordance with the
ethical standards set by the institutional and national research
committees, as well as the 1964 Declaration of Helsinki and
its amendments. Since this was not a clinical trial, no trial
number was assigned. In line with the Declaration of Helsinki, all
participants provided written informed consent. Comprehensive
physical, neurological, and neuropsychological assessments
were conducted on each participant, who met the clinical
diagnostic criteria established by the UK PD Brain Bank.
Experienced neurologists conducted the clinical evaluations.
Motor disability was assessed using the Movement Disorder
Society-sponsored revision of the Uni-fied Parkinson’s Disease
Rating Scale (MDS-UPDRS) (Goetz et al., 2008), while the
Hoehn and Yahr (H&Y) staging was utilized to gauge disease
severity (Hoehn and Yahr, 1967). According to the diagnostic
guidelines, patients with H&Y stages 1-2 are categorized

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1602245
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1602245 July 15, 2025 Time: 13:4 # 3

Sui et al. 10.3389/fnagi.2025.1602245

TABLE 1 Participant characteristics.

Clinical characteristics Mean SD Min Max

12 male,25 female

Clinically dominate side: 20 right, 7 left

H&Y Stage 1.72 0.65 3 1

Disease duration (year) 5.49 3.52 1 16

MDS-UPDRS 35.59 16.44 13 65

HAMD 10.86 5.34 4 26

HAMA 12.54 7.02 2 33

H&Y Stage, H&Y Hoehn and Yahr stage; MDS-UPDRS, MDS-UPDRS Movement Disorders
Society Unified Parkinson’s Disease Rating Scale; MMSE, Mini-mental State Examination;
HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale.

as early-stage PD patients (generally corresponds to the
lower scoring range on the motor subsection of the UPDRS)
(Postuma et al., 2015). Cognitive function was evaluated using
the Mini-Mental State Examination (MMSE) (Folstein et al.,
1983).

Exclusion criteria included atypical Parkinson’s disease,
pre-existing learning disabilities, and other central nervous
system pathologies such as moderate to severe traumatic
brain injuries, stroke or vascular dementia, and significant
psychiatric or medical conditions. Patients with a disease duration
exceeding 3 years, an H&Y stage of ≥ 3, or an MMSE rating
scale of ≥ 24 were also excluded. Additionally, individuals
with contraindications for MRI were not considered. The
demographic and clinical characteristics of all PD patients are
summarized in Table 1. The experimental workflow is presented
in Figure 1, while the patient enrollment process is illustrated in
Figure 2.

Non-motor symptom assessments

Two experienced movement disorder specialists, LZ (20 years
of experience) and YC (15 years of experience), conducted
neurological evaluations on the participants. These specialists
administered a range of non-motor assessments to the PD patients.
Specifically, the Hamilton Anxiety Scale (HAMA) was used to
assess and categorize anxiety disorders, while the 17-item Hamilton
Rating Scale for Depression (HAMD) was utilized for depression
assessment. Patients ceased antiparkinsonian medications at least
12 h prior to these clinical evaluations (Leentjens et al., 2000;
Hamilton, 1959).

MRI acquisition

MRI scans were conducted using a 3-Tesla MRI system
(uMR780; United Imaging Healthcare, Shanghai, China) paired
with a 32-channel head coil. The MRI protocols included
sagittal 3D T1-weighted imaging (3D T1WI), axial T2-weighted
imaging (T2WI), axial fluid-attenuated inversion recovery (FLAIR)
T2WI, and MULTIPLEX sequences, which comprised T2∗-
mapping, QSM, T1-mapping, and proton density-mapping.
Specific parameters of these sequences detailed in Table 2.

Segmentation and evaluation of
subregions

The deep learning model developed on the United Imaging
platform1 was employed to automatically segment the whole-
brain subregions from each patient’s MULTIPLEX data,
including 3D T1WI, T2∗ mapping, QSM, T1 mapping, and
proton density mapping. This process was guided by the
Automatic Anatomical Labeling Atlas version 3 (AAL3)
(Rolls et al., 2020). The training methodology and reference
standards closely aligned with those reported in prior studies
(Desikan et al., 2006). The automatic segmentation results
encompassed a total of 106 subregions, including 22 temporal
lobe structures, 20 frontal lobe structures, 12 parietal lobe
structures, 8 occipital lobe structures, 8 cingulate gyrus
structures, 2 insular structures, 12 subcortical gray matter
structures, as well as cerebral white matter, ventricles, the
cerebellum, and other anatomical regions. Notably, left and right
hemispheric structures were identified as distinct entities. After
automatic segmentation by the deep learning model, two senior
radiologists (HS, ZH Mo) with over 10 years of experience
reviewed the results. The two radiologists independently
verified the accuracy of the segmentation results for all 106
sub-regions in this study. The inter-rater agreement on image
segmentation accuracy was assessed using Cohen’s kappa
(κ = 0.88).

Feature selection and modeling

Independent samples t-tests were employed to identify
features significantly associated with HAMA and HAMD
rating scales, retaining those with a p-value less than 0.01.
To further refine the feature set, the least absolute shrinkage
and selection operator (LASSO) regression was applied,
performing both variable selection and regularization
to enhance predictive accuracy and interpretability. The
optimal regularization parameter (lambda) for LASSO was
determined using a grid search with 10-fold cross-validation
within the training dataset. After feature selection, the
remaining features served as input for the classifiers. Logistic
regression (LR) models were constructed to predict elevated
HAMA and HAMD rating scales based on the selected
imaging features.

Receiver operating characteristic curve
analysis and area under the curve
calculation

To evaluate the diagnostic accuracy of the LR model in
predicting elevated HAMA and HAMD rating scales, we performed
ROC curve analysis. The ROC curves were generated by plotting
the true positive rate (sensitivity) against the false positive rate (1-
specificity) at various threshold levels of the predictor. Additionally,

1 https://urp.united-imaging.com/#/
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FIGURE 1

Overall flow chart of the experiment. The entire experimental process comprises five key steps. First, data are collected from Parkinson’s disease
patients, and assessments of non-motor symptom scales are performed. Second, image data are acquired using the MULTIPLEX sequence. Third,
automatic brain region segmentation and quantitative data measurement are achieved through deep learning technology. Fourth, brain regions
associated with the studied non-motor symptoms are identified and labeled. Finally, brain region feature selection is conducted, followed by model
performance evaluation.

FIGURE 2

Flowchart of patient enrollment. Flowchart of patient enrollment in this prospective study conducted at China-Japan Union Hospital of Jilin
University (Between January 2017 and December 2021). Among the 53 participants initially screened, 16 were excluded based on predefined criteria
(detailed reasons are shown in the figure). Therefore, a total of 37 participants underwent MR head MULTIPLEX sequence scanning and were
included in the final analysis.

the Area Under the Curve (AUC) was calculated to measure the
overall discriminative power. An AUC of 1.0 represents perfect
discrimination, while an AUC of 0.5 indicates no better than
random guessing.

Statistical analysis

Statistical analyses were conducted using SPSS Statistics
(version 26.0, IBM Corporation, Armonk, NY, United States).
Prior to analysis, data normality was assessed using the Shapiro-
Wilk test. Spearman’s rank correlation coefficient was used to

examine the associations between the volumes and quantitative
imaging parameters of each brain subregion and the rating scales
on the HAMA and HAMD scales. Statistical significance was set at
p < 0.05.

Results

Participant characteristics

Between January 2017 and December 2021, 37 right-handed
patients (12 men and 25 women; mean age 60.67 ± 10.30 years)
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TABLE 2 Parameters of MRI sequences.

Parameters Sagittal 3D T1WI Axial T2WI Flair T2WI Multiplex sequences

FOV (mm) 210 × 210 200 180 190

Resolution (mm3) 0.81 × 0.81 × 0.80 0.76 × 0.68 × 6.00 1.12 × 0.90 × 6.00 1.03 × 0.82 × 2.00

TR/TE 7.5/3.2 4,452/120.96 9,000/101.52 35.5/3.05

FA 9 90 90 –

TA (min: s) 06:36 00:22.6 00:54.1 07:15

Slice thickness (mm) 0.8 6 6 2

Slices – 18 18 –

FOV, field of view; TR, repetition time; TE, echo time; FA, flip angle; TA, acquisition time.

FIGURE 3

Brain subregion correlates with anxiety in PD. (A) The volumes of the right superior frontal gyrus, middle cingulate cortex, caudate nucleus, middle
temporal gyrus, and bilateral insular lobe demonstrated negative associations with the HAMA rating scales. (B) QSM values from the right superior
temporal gyrus, bilateral precuneus, and left entorhinal cortex showed negative correlations with the HAMA rating scales. Brain subregion correlates
with depression in PD. (C) The volumes of the left anterior middle frontal gyrus, frontal pole, bilateral insular lobe, and right superior temporal gyrus
showed a negative correlation with the HAMD rating scales The volume of the right middle cingulate cortex and middle temporal gyrus showed
strong correlations with the HAMD rating scales. (D) QSM values in the left paracentral lobule, bilateral precuneus, and right superior temporal gyrus
showed negative correlations with HAMD rating scales. (E) T2∗ values in the right frontal pole and left lateral occipital gyrus were associated with
HAMD rating scales.

diagnosed with PD at Hoehn and Yahr stages I (n = 30) and II
(n = 7) were selected for analysis following rigorous inclusion
and exclusion criteria. None exhibited indications of atypical
Parkinson’s disease or severe cognitive impairment. All participants
demonstrated significant positive responses to dopaminergic
treatment and underwent examination at their optimal dosages.

In the UPDRS section evaluating motor aspects of daily
life, patients registered an average score of 35.59 (SD 16.44,
range 12–65). Regarding depression assessment, patients had an
average HAMD rating scale of 10.86 (SD 5.34, range 4–26). The
aggregate HAMA rating scale for these PD patients was 12.54 (SD
7.02, range 2–33).

Automatic segmentation results of whole
brain subregions

The 106 subregions encompassed the following: temporal
lobe (hippocampus, parahippocampal gyrus, amygdala, entorhinal
cortex, fusiform gyrus, temporal pole, superior/middle/inferior
temporal gyri, transverse temporal gyrus); frontal lobe (precentral
cortex, superior frontal gyrus, rostral/caudal middle frontal
gyri, frontal pole, lateral/medial orbitofrontal cortices, pars
opercularis/orbitalis/triangularis); parietal lobe (postcentral
cortex, paracentral lobule, superior/inferior parietal lobules,
precuneus, supramarginal gyrus); occipital lobe (cuneus,
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TABLE 3 Correlations between volume of related brain subregions and non-motor symptoms of PD patients in MTP sequences estimated by
Spearman’s correlation test.

Clinical target Subregion r p 95% CI

HAMD R superior frontal gyrus −0.365 0.037 −0.636 to −0.015

L anterior part of the middle frontal gyrus −0.404 0.020 −0.662 to −0.060

R anterior part of the middle frontal gyrus −0.358 0.041 −0.631 to −0.006

R caudal part of middle frontal gyrus −0.354 0.043 -0.628 to -0.001

L frontal pole −0.457 0.008 −0.697 to −0.124

L insular lobe −0.420 0.015 −0.673 to −0.079

R insular lobe −0.451 0.008 −0.693 to −0.117

R middle cingulate cortex −0.658 0.000 −0.820 to −0.398

R entorhinal cortex −0.357 0.042 −0.630 to −0.004

R superior temporal gyrus −0.456 0.008 −0.697 to −0.123

R middle temporal gyrus −0.560 0.001 −0.762 to −0.258

optic chiasma −0.377 0.030 −0.644 to −0.028

HAMA R precentral gyrus −0.388 0.026 −0.651 to −0.041

R superior frontal gyrus −0.406 0.019 −0.663 to −0.062

R tegmentum of pons −0.363 0.038 −0.634 to −0.012

L insular lobe −0.413 0.017 −0.669 to −0.071

R insular lobe −0.508 0.003 −0.730 to −0.190

R middle cingulate cortex −0.446 0.009 −0.690 to −0.111

R caudate nucleus −0.417 0.016 −0.671 to −0.075

R superior temporal gyrus −0.361 0.039 −0.632 to −0.009

R middle temporal gyrus −0.480 0.005 −0.712 to −0.154

CI, confidence interval; L, left; R, right.

lingual gyrus, pericalcarine cortex, lateral occipital cortex);
cingulate gyrus (anterior/mid/posterior cingulate gyri, isthmus
of cingulate gyrus); insular lobe; subcortical gray matter
(caudate, putamen, pallidum, thalamus, nucleus accumbens,
claustrum); cerebral white matter; ventricles (lateral, third, fourth
ventricles, cerebrospinal fluid); cerebellar structures (cortex, white
matter); and additional regions (choroid plexus, inferior horn
of lateral ventricle, brainstem, optic chiasm, corpus callosum).
Notably, left and right hemispheric structures were identified as
distinct entities.

Volume of brain subregions correlate
with non-motor symptoms in PD

The investigation revealed a negative correlation between the
volume of the left anterior part of the middle frontal gyrus,
frontal pole, bilateral insular lobe, and right superior temporal
gyrus and the HAMD rating scale. Strong correlations with the
HAMD rating scale were also identified for the volume of the right
middle cingulate cortex and middle temporal gyrus. Moreover,
the volumes of the right superior frontal gyrus, middle cingulate
cortex, caudate nucleus, middle temporal gyrus, and the bilateral
insular lobe demonstrated negative associations with the HAMA

rating scale (p < 0.05). Details are provided in Figures 3A,C and
Table 3.

Quantitative indicators of brain
subregion correlate with anxiety in PD

QSM values from the right superior temporal gyrus, bilateral
precuneus, and left entorhinal cortex demonstrated negative
correlations with HAMA (p < 0.05). These findings are further
detailed in Figures 3B, 4, as well as Table 4.

Quantitative indicators of brain
subregion correlate with depression in
PD

In the analyzed PD patients, correlations were observed
between HAMD and both T2∗ and QSM values in specific brain
subregions. Specifically, QSM values in the left paracentral lobule,
bilateral precuneus, and right superior temporal gyrus exhibited
negative correlations with HAMD (p < 0.05). Furthermore, T2∗

values in the right frontal pole and left lateral occipital gyrus
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FIGURE 4

Heatmap of the correlations between various brain subregion
indicators and non- motor symptoms in PD. A heatmap is shown
demonstrating Spearman correlations between different values
(volume, PD (proton density), QSM, T1 and T2∗) and HAMD, HAMA
rating scales at various regions of the brain.

demonstrated associations with HAMD (p < 0.05). Detailed
findings are presented in Figures 3D,E, 4.

HAMD and HAMA rating scale models

Following the feature selection process, several parameters
were identified for constructing the HAMD rating scale
prediction model: QSM of the left paracentral lobule and
bilateral precuneus, volumes of the middle cingulate gyrus,
middle temporal gyrus, and right middle frontal gyrus, T2∗ of
the left frontal pole, and T1 of the left lateral occipital gyrus.
For the HAMA rating scale prediction model, the selected
features included QSM of the right middle frontal gyrus, left
entorhinal cortex, and right precuneus, along with the volumes
of the insula, middle cingulate gyrus, caudate nucleus, and right
middle temporal gyrus. The retained features after t-tests and

LASSO selection are presented in Supplementary Table 1. The
performance metrics of these models are presented in Table 5 and
Figure 5.

Discussion

This study utilized MP-qMRI MULTIPLEX imaging (including
3D T1WI, QSM, T2∗-mapping, proton density-mapping, and
T1-mapping) in PD patients with NMS. By integrating deep
learning-driven automatic brain segmentation and measurement
methodologies, we determined that changes in volume and
quantitative parameters within brain subregions are discernible.
Further analysis revealed correlations between the derived tissue
parameter values and NMS manifestations in PD, such as anxiety
and depression. These findings underscore the potential of these
morphological metrics in early PD, aiding in the preliminary
recognition and diagnosis of the disease.

Our analysis indicates that NMS, as assessed with HAMD
and HAMA, correlates with atrophy predominantly observed
in the frontal, temporal, and parietal regions. These findings
align with those documented in early PD patients (Danti et al.,
2015; Pereira et al., 2014). In studies of brain structure in
psychogenic non-epileptic seizures (PNES), similar conclusions
were drawn, noting an association between atrophy in premotor
regions and elevated depression rating scales. Conversely, in
recently diagnosed PD patients without cognitive impairment,
no significant thinning of the parietal or temporal lobes was
discerned when compared to control groups (Noh et al., 2014). This
discrepancy might be attributed to the heightened sensitivity of our
methodological approach, which accentuates nuanced variations
in cortical thickness. A pronounced correlation was also identified
between insular atrophy and symptoms of depression and anxiety,
mirroring findings from studies on traumatic brain injury with
PNES (Sharma et al., 2022).

Recent evidence indicates that iron shortens the T2∗ value
and reduces signal in gradient echo amplitude imaging; as a
result, iron content is indirectly assessed (Rispoli et al., 2018).
QSM is an emergent post-processing technique designed for the
quantitative evaluation of tissue magnetization rates (Thomas
et al., 2020). Both QSM and T2∗ are proposed to possess
a heightened sensitivity for detecting iron quantities in deep
cerebral nuclei. The association of QSM and T2∗ values in
specific regions of the frontotemporal cortex with the cognitive,
depression, and anxiety symptoms of PD patients was corroborated
by findings from the study conducted by Thomas et al. (2020).
Interestingly, traditional iron deposition areas in PD, such
as the substantia nigra and red nucleus, were absent in the
current results. This may suggest that these neural regions are
more intricately tied to motor symptoms rather than non-
motor symptoms. A parallel observation was made by Shin
et al., where the severity of non-motor symptoms in early PD
patients showed no correlation with iron accumulation. This
assertion, however, requires validation through extensive future
investigations (Chaewon et al., 2018).

Previous studies suggest that the quantitative T1 value might
serve as a significant indicator for tracking progressive neuronal
loss associated with PD. Given that the T1 value for gray matter
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TABLE 4 Correlations between values in various brain subregions and non-motor symptoms of PD patients in MTP sequences estimated by Spearman’s
correlation test.

Clinical target Subregion Parameter r p 95% CI

HAMD L paracentral lobule QSM −0.480 0.005 −0.712 to −0.153

L precuneus QSM −0.376 0.031 −0.643 to −0.027

R precuneus QSM −0.358 0.041 −0.631 to −0.006

R superior temporal gyrus QSM −0.416 0.016 −0.670 to −0.074

R frontal pole T2* 0.376 0.031 0.027 to 0.643

L gyri occipitales laterales T2* −0.371 0.033 −0.640 to −0.021

HAMA R posterior central gyrus T1 0.349 0.047 −0.005 to 0.624

R caudal part of middle frontal gyrus QSM −0.352 0.044 −0.627 to 0.000

L entorhinal cortex QSM −0.415 0.016 −0.669 to −0.073

L precuneus QSM −0.422 0.015 −0.674 to −0.081

R precuneus QSM −0.450 0.009 −0.693 to −0.116

R superior temporal gyrus QSM −0.386 0.027 −0.650 to −0.039

CI, confidence interval; L, left; R, right; T2*: T2 star.

TABLE 5 The performance in different models.

Models SPE SEN Youden index ACC AUC

HAMD 0.87 0.96 0.83 0.94 0.98

HAMA 0.75 0.91 0.66 0.68 0.92

SPE, specificity; SEN, sensitive; ACC, accuracy; AUC, Area Under Curve.

FIGURE 5

(A) The ROC curve of the HAMA rating scale prediction model. The AUC of the ROC curves for the 0–4 five-category rating scale prediction model
of HAMA are 0.976, 0.795, 0.878, 0.967, and 1.000, respectively. The macro-average AUC of the ROC curve for the HAMA rating scale prediction
model is 0.929. (B) The ROC curve of the HAMD rating scale prediction model. The AUC of the ROC curves for the 0–2 three-category rating scale
prediction model of HAMD are 1.000, 0.977, and 0.978, respectively. The macro-average AUC of the ROC curve for the HAMD rating scale prediction
model is 0.989.

typically surpasses that of white matter, PD is associated with a loss
of gray matter (Wansapura et al., 1999). In Spearman correlation
analysis, a 95% confidence interval (CI) that includes zero indicates
a lack of statistical significance in the observed correlation. This
implies that the data do not provide sufficient evidence to reject the
null hypothesis, as the probability of observing such a correlation—
or an even more extreme one—exceeds 5%. Consequently, in

our prediction model for brain regions associated with PD-
related anxiety, we excluded the T1 value of the right posterior
central gyrus (95% CI: −0.005 to 0.624) and the QSM value
of the right caudal part of the middle frontal gyrus (95% CI:
−0.627 to 0.000), given that neither demonstrated a statistically
meaningful association with anxiety symptoms in PD. Thus, no
significant association was found between the T1 values of specific
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brain regions and NMS (anxiety and depression) of Parkinson’s
disease in this experiment. Although previous studies have shown
that deep gray matter regions (such as the substantia nigra) in
Parkinson’s disease patients are significantly affected in the early
stage of the disease, with their T1 values shortening three times
within 6.5 years compared to the control group, reflecting the loss
of gray matter in the contralateral limb, this method may not be
effective in evaluating brain regions related to NMS (Nürnberger
et al., 2017).

Another key advantage of this study is the integration of deep
learning models for multi-region brain structure segmentation,
which significantly enhances the objectivity and reproducibility
of the research. Compared with traditional manual or semi-
automated segmentation approaches, deep learning models offer
greater automation and superior feature extraction capabilities,
enabling more accurate identification and differentiation of
subtle structural variations across distinct brain regions. This
high-precision segmentation minimizes human-induced bias and
markedly improves the consistency and stability of data processing,
thereby enhancing the scientific validity and reliability of the
findings. Moreover, applying this model to multi-region brain
analysis allows for the simultaneous evaluation of multiple PD-
related brain areas, rather than focusing solely on isolated regions.
This comprehensive approach facilitates a broader understanding
of the disease’s pathophysiological mechanisms across the entire
brain, particularly in relation to NMS. For example, PD patients
frequently experience non-motor manifestations such as anxiety,
depression, and cognitive dysfunction, which are typically mediated
by complex interactions among distributed neural circuits (Jiang,
2022). By systematically analyzing these interconnected brain
regions using deep learning techniques, we can gain deeper insights
into the underlying neural circuitry associated with NMS. Looking
ahead, this method can be further applied to conduct more detailed
and systematic investigations of additional PD-related non-motor
symptoms, ultimately contributing to the construction of a more
comprehensive brain structure-function correlation map. Such
advancements will not only deepen our understanding of the
overall pathological progression of PD but also provide novel
strategies and technical support for early clinical diagnosis and
personalized therapeutic interventions. Furthermore, as the model
continues to evolve and is trained on increasingly diverse datasets,
its applicability across larger cohorts and various PD subtypes can
be validated, laying a solid foundation for future large-scale clinical
studies and translational applications.

This study presents several limitations. Firstly, the limited
participant count restricts the broad applicability of the findings.
Secondly, the diagnosis of PD relied solely on clinical criteria
without pathological confirmation, which might affect the
outcome. Lastly, given the potential for participants in this
age bracket to possess other neurodegenerative diseases, future
expansion in the patient sample size is essential, accompanied by
meticulous comparisons across varied age groups.

Conclusion

This research demonstrates the potential of qMRI MULTIPLEX
neuroimaging across the entire brain for examining crucial clinical

indices of NMS in PD. PD exhibits an array of microstructural
alterations, potentially linked to corresponding pathological and
maladaptive processes inherent in the disease’s pathophysiology.
The methodologies employed here pave the way for in vivo
exploration of diverse facets of PD pathology, potentially serving
as early diagnostic tools, biomarkers, and parameters to evaluate
treatment efficacy in forthcoming studies.
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