
fnagi-17-1602426 July 17, 2025 Time: 14:36 # 1

TYPE Review
PUBLISHED 18 July 2025
DOI 10.3389/fnagi.2025.1602426

OPEN ACCESS

EDITED BY

Liane Kaufmann,
Ernst von Bergmann Clinic, Germany

REVIEWED BY

Rohan Gupta,
University of South Carolina, United States
Ali Amouzandeh,
Ernst von Bergmann Clinic, Germany

*CORRESPONDENCE

Wei Yan
sdweirui2018@163.com

RECEIVED 29 March 2025
ACCEPTED 26 June 2025
PUBLISHED 18 July 2025

CITATION

Yang N, Liu J, Sun D, Ding J, Sun L, Qi X and
Yan W (2025) Motor symptoms of
Parkinson’s disease: critical markers for early
AI-assisted diagnosis.
Front. Aging Neurosci. 17:1602426.
doi: 10.3389/fnagi.2025.1602426

COPYRIGHT

© 2025 Yang, Liu, Sun, Ding, Sun, Qi and Yan.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Motor symptoms of Parkinson’s
disease: critical markers for early
AI-assisted diagnosis
Ni Yang1, Jing Liu2, Dan Sun3, Jiajun Ding4, Lingzhi Sun5,
Xianghua Qi5 and Wei Yan5*
1Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine,
Jinan, China, 2College of Rehabilitation Medicine, Shandong University of Traditional Chinese
Medicine, Jinan, China, 3Extravascular Department, Qingdao Traditional Chinese Medicine Hospital,
Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China, 4School of Design, Shanghai
Jiao Tong University, Shanghai, China, 5Neurology Department, Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, China

Parkinson’s disease is a prevalent neurodegenerative disorder, where early

diagnosis is essential for slowing disease progression and optimizing treatment

strategies. The latest developments in artificial intelligence (AI) have introduced

new opportunities for early detection. Studies have demonstrated that before

obvious motor symptoms appear, PD patients exhibit a range of subtle but

quantifiable motor abnormalities. This article provides an overview of AI-driven

early detection approaches based on various motor symptoms of PD, including

eye movement, facial expression, speech, handwriting, finger tapping, and gait.

Specifically, we summarized the characteristic manifestations of these motor

symptoms, analyzed the features of the data currently collected for AI-assisted

diagnosis, collected the publicly available datasets, evaluated the performance

of existing diagnostic models, and discussed their limitations. By scrutinizing

the existing research methodologies, this review summarizes the application

progress of motor symptom-based AI technology in the early detection of PD,

explores the key challenges from experimental techniques to clinical translation

applications, and proposes future research directions to promote the clinical

practice of AI technology in PD diagnosis.
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1 Introduction

Parkinson’s disease is the second most common neurodegenerative disease worldwide
(Elbaz et al., 2016). It is distinguished by motor symptoms such as bradykinesia, resting
tremor, rigidity, and postural instability, along with those non-motor symptoms such as
decreased sense of smell, sleep disturbances, and cognitive decline (Bloem et al., 2021).
According to the Global Burden of Disease study, the prevalence and incidence rates of PD
have increased significantly in recent decades. It is estimated that there will be more than
12 million cases worldwide by 2040, representing a huge burden on public health systems
(Zhang et al., 2024). Despite the typical clinical manifestations of PD, early diagnosis
remains a major challenge. Current diagnostic criteria, such as the UK Brain Bank criteria
(Clarke et al., 2016) and the MDS clinical diagnostic criteria (Postuma et al., 2015), rely
heavily on subjective clinical assessment. Patients are typically discovered only after the
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onset of overt motor symptoms. By this time more than 50% of
dopaminergic neurons in the substantia nigra may have been lost,
missing the best opportunity for early intervention (Lee et al.,
2022). Traditional biomarkers, such as cerebrospinal fluid alpha-
synuclein assays and dopamine transporter imaging, can improve
diagnostic accuracy but are limited by high cost, invasiveness,
and accessibility, making them unsuitable for large-scale screening
(Bernhardt et al., 2025). Therefore, seeking rapid, objective, non-
invasive, and scalable early diagnostic methods is critical.

Recent advances in artificial intelligence (AI), particularly
Machine learning (ML) and deep learning (DL), have shown
tremendous potential for early detection of PD. Research has
shown that subtle and quantifiable preclinical movement disorders
occur before the clinical onset of PD, including abnormal eye
movements, reduced facial expressions, speech changes, difficulty
writing, irregular finger-tapping rhythms, and gait disturbances
(Rana et al., 2022a). These features can be captured through
computer vision, speech signal processing, and motion sensor
analysis, enabling AI-driven automatic detection and classification
(Rana et al., 2022b). Compared with traditional diagnostic
methods, AI-based recognition has high sensitivity, repeatability,
and non-invasive nature, which is helpful for objective screening
and remote diagnosis (Gupta et al., 2023). However, there
are still some challenges, including data heterogeneity, model
interpretability, cross-population generalizability, and clinical
feasibility (Voigtlaender et al., 2024).

This review covers early detection of PD using AI in the field of
motor symptom-related areas: eye movements, facial expressions,
speech, handwriting or finger tapping, and gait analysis. We
discussed the specific manifestations of these symptoms, the
workflow of AI-assisted diagnosis, data collection methods, feature
extraction techniques, available public datasets, and the current
performance and limitations of diagnostic models. By evaluating
existing research methods, we explored the opportunities and
challenges of integrating AI into early PD diagnosis and provided
insights for future research to advance the use of AI and precision-
driven PD diagnostic systems in clinical practice.

2 Motor symptoms and
manifestations of PD

Due to factors such as the loss of dopaminergic neurons
in the substantia nigra, abnormalities in the basal ganglia
circuit, pathological aggregation of alpha-synuclein, and
neuroinflammation, PD patients often experience a variety of
motor symptoms (Balestrino and Schapira, 2020). Bradykinesia
is the core motor symptom and is defined as a decrease in the
speed, amplitude, and flexibility of voluntary movement (Xu et al.,
2025). Specific manifestations include difficulty starting, decreased
speed (hypokinesia), amplitude reduction, impaired rhythm and
coordination, and prolonged duration of movement (Bologna et al.,
2016). Affects facial expression (Bologna et al., 2013), writing and
other fine hand movements (Matejicka et al., 2024), speech status,
and expression (Cavallieri et al., 2023) in activities of daily living.
Tremors are generally categorized into static tremors, postural
tremors, and action tremors (Abusrair et al., 2022). Among these,
static tremor is the hallmark symptom of PD, characterized by

regular, rhythmic oscillations that occur when the patient is at rest,
such as while sitting or standing (Gironell et al., 2018). This type of
tremor commonly begins in the hands, most commonly affecting
the index finger and thumb, but it can also involve the chin and
mouth (Fabbri et al., 2017). Patients may also experience postural
tremors, which occur due to muscle tension while maintaining
specific postures. These tremors primarily affect the limbs and
head, especially when the patient maintains an upright posture
or extends their arms (Dirkx and Bologna, 2022). In addition,
tremors related to movements are also quite common, presenting
with a slightly higher frequency, typically ranging from 4 to 8 Hz,
and smaller amplitudes (Wenzelburger et al., 2000). This type
of tremor often occurs at the beginning of the movement and
may progressively intensify with continuing, particularly during
fine activities such as writing or grasping objects (Kraus et al.,
2006). Rigidity is characterized by increased involuntary tension
in limb muscles that cannot be fully relaxed even at rest. The
patient’s limbs exhibit sustained resistance during passive activity,
similar to bending a “lead pipe” (Guayacán et al., 2025). As the
examiner slowly and passively bends or extends the patient’s limbs,
an intermittent, cogwheel-like resistance is felt (Ghiglione et al.,
2005). Due to the continuous increase in muscle tone, patients
may hold on to a flexed posture, which includes a forward tilt of
the head, forward flexion of the trunk, and slight flexion of the
elbows and knees (Xu et al., 2025). Therefore, patients often feel
pain or muscle fatigue, which affects their daily living abilities such
as walking, writing, dressing, and fine motor skills (Kumar et al.,
2025). Figure 1 shows the motor symptoms and corresponding
characteristic manifestations of PD.

3 AI and its role in auxiliary diagnosis

Machine learning is a subfield of AI that enables computer
systems to automatically learn and make predictions or decisions
through data-driven approaches (Sarker, 2021a). In recent years,
for instance, ML-based methods have demonstrated promising
outcomes in medical diagnosis research (Izonin et al., 2023).
DL is a specialized area within ML that utilizes artificial neural
networks, particularly deep neural networks, to simulate the
functioning of the human brain (Sarker, 2021b). DL has the
ability to automatically learn intricate patterns within data and
shows excellent performance when dealing with large-scale data,
making it particularly suitable for tasks like natural language
processing, image or speech recognition (Deng, 2015; Su and
Li, 2020). In medical diagnosis ML techniques are effectively
employed to identify diseases based on datasets derived from
patient symptoms. In this process, doctors play a crucial role in
augmenting or validating the decision-making of AI to ensure
appropriate decisions about diseases with reasonable accuracy
(Richens et al., 2020). Over the past few years, ML algorithms have
assisted in resolving more complex problems and have emerged
as valuable supplementary tools for doctors (Gagliano et al., 2017;
Zhou et al., 2019). By uncovering hidden information in data that
was previously overlooked in PD clinical diagnosis (Kononenko,
2001), these algorithms have significantly enhanced diagnostic
accuracy in the healthcare industry. Due to the exponential changes
brought about by the digital revolution, the collection, utilization,
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FIGURE 1

Motor symptoms and corresponding characteristic manifestations of Parkinson’s disease.

storage, and sharing of medical data have become a reality. The
progress of technology has spurred the increasing sophistication of
algorithms, enabling more accurate and efficient data applications.
As a result, AI technology is playing an even greater role in medical
diagnosis. Based on this, we summarized the clinical manifestations
of PD motor symptoms and their application in auxiliary diagnosis.
Figure 2 shows the application process of artificial intelligence
technology in PD adjunctive diagnosis.

4 Eye movement

The eye movement functions of patients with PD exhibit
significant abnormalities, primarily affecting fundamental tasks
such as saccades, fixation, and smooth pursuit. Saccadic movement
in PD patients is usually slow and uncoordinated, with a prolonged
scanning latency, reduced velocity, and decreased movement
amplitude compared to healthy individuals (Lohnes and Earhart,
2011). In short-distance saccade tasks, both the accuracy and
speed of eye movements are notably impaired, which is closely
associated with dysfunction in the basal ganglia (Jung and
Kim, 2019; Armstrong, 2015). Furthermore, PD patients often
experience frequent gaze instability, manifesting as nystagmus and
micro-saccades. These disturbances, with an average fundamental
frequency of 5.7 Hz, disrupt the stability of visual fixation on
targets (Gitchel et al., 2012). Deficits in smooth pursuit are also
pronounced in PD patients, particularly during low-frequency

tracking tasks. Patients frequently struggle to maintain smooth
tracking of moving targets and exhibit frequent saccadic intrusions
(Li et al., 2023). To elicit these abnormal movements, clinicians
commonly use a pen or something with a point for the patient to
focus on, then move the point in various directions. These tasks
typically involve holding the object still and asking the patient to
maintain fixation (fixation) or moving the object back and forth or
up and down (smooth pursuit). Physicians observe abnormalities
in patients’ eye movements as they perform tasks. However, subtle
movements such as nystagmus can be missed by the naked eye, even
by experienced clinicians. These eye movement abnormalities may
serve as valuable biological markers for early diagnosis and clinical
assessment of PD.

With the advent of AI, capturing these delicate abnormal
eye movements through video and analyzing them with software
has become feasible. Usually, various eye movement tasks induce
pupil responses and are then recorded as videos. The first step in
video analysis involves pupils detecting, boundary refining, and
accurately locating (Kassner et al., 2014). Given the subtle nature
of abnormal eye movements in PD patients, it is essential to
employ visualization techniques that magnify the eye movements
and filter out interferences, such as those caused by head tremors.
Techniques like virtual overlay of the pupil center and contour
ellipse, background subtraction (Bustos et al., 2023), and Eulerian
Video Magnification (EVM) are commonly used to enhance the
visibility of the movements (Wu et al., 2012; Williams et al.,
2020a). After processing, algorithms are applied to track and
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FIGURE 2

The application process of artificial intelligence technology in Parkinson’s disease adjunctive diagnosis.

quantify the eye movements, thus providing objective data on
abnormalities. Finally, based on the extracted objective data, a
recognition model is constructed to achieve the identification
and detection of PD. For instance, Brien et al. (2023) gathered

video-recorded eye-tracking measurements from 104 PD patients
and 106 healthy individuals participating in an alternating pro/anti-
saccade protocol. By analyzing features such as saccades, pupil
behavior, and blink patterns, they trained an ML classifier to
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predict confidence scores for diagnoses. Using a Linear Mixed
Model, they determined disease probabilities based on eye-tracking
biomarkers. The classifier achieved a sensitivity of 0.83, a specificity
of 0.78, and a Receiver Operating Characteristic Area Under
the Curve (ROC-AUC) of 0.88. The predicted confidence scores
correlated with motor and cognitive performance in PD patients,
demonstrating that eye-tracking markers can reflect these clinical
scores dependably. This finding highlights the potential of eye-
tracking technology as a non-invasive method for prodromal
screening of PD. Similarly, Bejani et al. (2022) employed the
same technology to analyze smooth tracking eye movements.
They measured various parameters, including complexity based on
entropy and regularity, which describe the dynamic characteristics
of the system and assess self-similarity. Using a Support Vector
Machine (SVM) for classification, they achieved an accuracy of
0.74 (sensitivity: 0.73, specificity: 0.74) in PD diagnosis. This
further supports the utility of eye-tracking data, particularly the
dynamic system features, in differentiating PD patients from
healthy subjects.

Eye tracking also shows great potential in the clinical and
social application of PD. A study validated the use of consumer-
grade eye-tracking systems like Eye Tribe to detect PD-relevant
biomarkers with comparable accuracy to clinical-grade devices,
demonstrating the feasibility of accessible and cost-effective eye-
tracking tools in real-world settings (Szymański et al., 2017).
Virtual reality (VR) environments integrated with machine
learning have also shown potential. A study using VR-based
eye-tracking and SVM algorithms achieved high classification
performance between PD and control groups, highlighting the
benefits of immersive, standardized testing platforms for inducing
and measuring disease-relevant visual behaviors (Jiang et al.,
2024). Moreover, deep transcranial magnetic stimulation studies
have linked eye-tracking metrics (e.g., saccade rate, fixation
duration) to neuropsychological assessments, suggesting that eye
movement parameters could serve as sensitive markers not only
for motor but also for cognitive symptom monitoring (Cont
et al., 2025). Beyond diagnosis, machine learning models have
also been used to predict disease severity based on eye movement
data, aiding in personalized treatment planning and progression
tracking (Chudzik et al., 2020). Beyond conventional eye-tracking,
mixed reality environments offer innovative ways to record eye-
gaze behaviors under naturalistic conditions. A study proposed
an MR-based system to assess eye movements in PD patients,
demonstrating that wearable and wireless MR glasses could
facilitate home-based, real-time diagnosis, providing a scalable
and user-friendly solution for continuous monitoring (Daniol
et al., 2024). In terms of technical innovation, researchers are
also exploring Human-in-the-Loop systems, where clinician gaze
data improves ML model selection of diagnosis-relevant features
in eye images. This hybrid approach enhances both accuracy and
interpretability, highlighting the synergy between human expertise
and algorithmic efficiency (Fong et al., 2016). In recent years, the
availability of wearable sensors has been increasing, and the ability
of machine learning algorithms to process multimodal and high-
frequency gaze data has been enhanced (Zhao et al., 2024). With the
increasing popularity of eye-tracking data as a digital biomarker, it
is conducive to promoting early detection and personalized disease
tracking (Sekar et al., 2024).

While ML-based eye movement tracking technology has made
notable improvement in recognizing PD, there are still several
challenges that need to be addressed. Head movements, especially
head tremors, can interfere with eye movement tracking, making
it difficult to differentiate between vestibular reflexes and the
eye response characteristics of the disease (Gitchel et al., 2012).
Although some studies have attempted to reduce this impact by
isolating head tracking from eye tracking (similar to a 2D user
interface element) (Orlosky et al., 2017), further technological
advancements are needed to reduce the impact of head tremors on
eye movement analysis. Additionally, using VR glasses and similar
devices to record eye movements may cause adverse reactions
such as dizziness in some patients (Hu et al., 2023), highlighting
the need for new, more comfortable devices for eye movement
tracking. Many elderly patients also suffer from presbyopia or other
refractive errors (Loh and Ogle, 2004), which can affect the accuracy
of visual tracking tasks. Moreover, large-scale studies are still
needed to widely validate the automatic prediction capabilities of
this technology. Furthermore, differences in pupil dilation during
eye movement tracking remain a topic for future investigation,
as this phenomenon may also have diagnostic significance
(Orlosky et al., 2017).

5 Facial expression

A hallmark feature of PD is “hypomimia,” characterized by the
reduction or absence of facial expressions (Goetz, 2011). Patients
typically exhibit a decreased blinking rate and a rigid, unnatural
facial appearance, even during voluntary attempts to express
emotions (Wu et al., 2014). Facial muscle dysfunction contributes
to this phenomenon, leading to a significant reduction in the
intensity and duration of spontaneous expressions. Additionally,
the ability to mimic facial expressions, particularly those associated
with emotions like happiness or anger, is severely impaired
(Kang et al., 2019). Moreover, patients show a pronounced
delay in the speed of emotional responses (Bowers et al., 2006).
Upper facial dyskinesia is most evident in the reduced frequency
of spontaneous blinking and prolonged pauses between eyelid
closure and reopening (Agostino et al., 2008). Lower facial motor
abnormalities are primarily reflected in expressive movements such
as smiling. For instance, the peak velocity and amplitude of lip
corner movements during postural or voluntary smiles are notably
reduced, with these kinematic deficits strongly correlating with
the severity of bradykinesia in the limbs (Marsili et al., 2014).
Furthermore, patients frequently struggle to initiate expressions
that align with their actual emotional states (Simons et al., 2004).
In contrast to the typically asymmetric motor symptoms of
PD, facial expression deficits are generally bilaterally symmetrical
(Bologna et al., 2013). However, isolated cases of asymmetrical
facial hypoexpression have been documented (Phillips et al., 2020;
Panichelli and Spitz, 2021; Kurtis et al., 2019). Studies employing
facial electromyography and action unit analysis have revealed
significantly reduced muscle activity in the periocular region and
at the corners of the mouth in PD patients compared to healthy
controls (Priebe et al., 2015; Smith et al., 1996). These muscular
deficits further exacerbate limitations in expressive capacity. The
severity of facial expression impairment in PD varies widely. While
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mild cases may present with a slightly dull expression, severe cases
can result in a complete loss of facial expressivity (Gunnery et al.,
2017). This deficit not only hampers emotional expression and
social interaction but also serves as a valuable clinical indicator for
assessing the severity of motor dysfunction in PD.

The implementation of facial recognition for PD using AI
involves several key steps. The first step is to record the subject’s
facial expressions under appropriate lighting conditions, typically
using video or photographs. These recordings are then analyzed
frame-by-frame, followed by standardized processing of the facial
images (Jabberi et al., 2023), such as alignment using the OpenCV
library. In terms of ML, facial key features, such as texture
characteristics and facial landmarks, need to be extracted (Krithika
and Priya, 2021). Finally, an AI recognition model is constructed
for facial identification, which is optimized through iterative
training to enhance accuracy. Image-based facial expression
recognition is typically 60%–90% accurate (Grammatikopoulou
et al., 2019; Rajnoha et al., 2018), while frame-by-frame video
analysis can achieve 85%–95% accuracy (Bandini et al., 2017;
Gómez-Gómez et al., 2022; Hou et al., 2021; Hou et al., 2022; Jin
et al., 2020). With the advancement of AI technology, the generative
neural network model on a small dataset has even achieved a 100%
recognition rate (Huang et al., 2024).

Facial analysis technologies have demonstrated considerable
potential in diagnosing PD by detecting micro-expressions, facial
asymmetry, and reduced action unit activation. Action Unit
detection and transfer learning are central to many studies, such
as the Facial Region Awareness framework, which improved the
consistency of facial region representation across tasks, enhancing
downstream classification performance (Gao and Patras, 2024).
For instance, Ali et al. (2021) developed a facial micro-expression
classifier achieving 95.6% accuracy using Support Vector Machines,
identifying lower variance in action units (e.g., AU6, AU12, AU4)
in PD patients compared to controls. Similarly, Gómez-Gómez
et al. (2022) used facial expression sequences with affective-domain
adaptation and deep learning to model hypomimia, improving
detection accuracy up to 87.3%. Emerging multimodal models
have been particularly effective. For example, Kyprakis et al. used
3D CNN-LSTM and Swin Transformer models on facial video
data to predict depressive symptoms–a non-motor symptom of
PD–with over 94% accuracy, providing a non-invasive method
for comprehensive assessment (Kyprakis et al., 2025). Adnan
et al. (2023) proposed an AI framework using smile videos from
over 1,000 participants to distinguish PD patients with over 87%
accuracy and noted generalizability across diverse populations.
Privacy and accessibility have also been addressed. Jiang et al.
(2022) proposed a privacy-preserving AIoT edge framework using
encrypted facial data to monitor PD patients undergoing deep
brain stimulation (DBS), showing facial features could reflect
treatment efficacy. Due to the limited dataset, enhancing the
training accuracy and generalization capacity of the model poses a
significant challenge. Therefore, Huang et al. (2024) used StarGAN
to synthesize facial expressions of PD patients and combined
these with a Swin Transformer to integrate multi-modal features.
Their model achieved 100% diagnostic accuracy on data from 95
PD patients. A particularly notable direction is the use of self-
administered or home-based diagnostic tools. Mishra, for example,
developed an application based on the Facial Action Coding System
and neural networks, allowing users to assess Parkinson’s symptoms

remotely (Mishra, 2021). Facial expression analysis, powered by
deep learning and computer vision, is emerging as a powerful
and non-invasive biomarker for PD diagnosis and monitoring.
These systems, especially when combined with privacy-aware
frameworks and large-scale video datasets, show promise in
supporting clinicians and enabling remote health assessments.

However, there are still several issues that warrant attention.
AI models rely heavily on large, high-quality datasets for training
and validation. However, existing PD facial recognition datasets
are generally small and lack sufficient diversity to capture all
possible facial variations. PD patients exhibit significant individual
differences in facial expression changes (Xu et al., 2022), which
are closely related to the progression of the disease, individual
characteristics (e.g., gender, age, disease duration), and treatment
approaches (e.g., medication or deep brain stimulation) (Palmeri
et al., 2020). AI models may have limitations when addressing
these individual differences, potentially affecting their accuracy
and generalizability. This issue is particularly pronounced in
early-stage patients, where facial feature changes are minor.
Currently, there is a lack of targeted research on early-stage PD
patients, and traditional AI techniques may struggle to capture
sufficient features. Additionally, PD patients often experience
comorbid emotional disorders such as depression or anxiety,
which significantly impact their facial expressions. These emotional
disorders, combined with the disease’s characteristic “masked face,”
complicate the accurate expression of emotions (Jin et al., 2017).
Consequently, AI models may struggle to accurately capture the
patient’s emotional state, leading to incorrect emotion recognition.
Furthermore, the expression of emotions is influenced by social,
cultural, contextual, and individual differences, all of which
increase the difficulty of emotion recognition.

6 Speech features

Pathological changes in PD significantly affect the control
of speech muscles, drawing widespread attention to the speech
characteristics associated with the condition. Patients often exhibit
abnormalities across multiple dimensions, including intonation,
articulation, fluency, and rhythm of language expression, which
serve as key diagnostic criteria (Karan et al., 2020a; Azadi
et al., 2021). In the early stages of PD, monotonic pitch
and volume are common, which may gradually progress into
hypophonia (Jankovic, 2008; Kursun et al., 2012). Increased
breathiness, hoarseness, and nasality are particularly noticeable
during phonation in the early to mid-stage PD. These symptoms are
likely attributed to laryngeal rigidity or bradykinesia (Shahbakhti
et al., 2013). Compared with healthy individuals, PD patients
show significant alterations such as increased frequency jitter and
intensity shimmer, alongside a reduced harmonic-to-noise ratio
(Azadi et al., 2021). These findings suggest incomplete vocal
cord closure and weakened motor function of the vocal cords,
especially in individuals with advanced disease (Rusz et al., 2015;
Holmes et al., 2000). Acoustic analyses further reveal imprecise
consonant production, asymmetric articulation, and abnormal
formant frequency distributions, underscoring the pronounced
motor control deficits in the vocal organs caused by PD (Arias-
Vergara et al., 2017; Mawdsley and Gamsu, 1971). Dynamic
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analyses highlight significant deviations in the transition from
sound to silence, including delays in onset and offset (Laganas et al.,
2022). Additionally, irregular speech rates, unwarranted pauses,
and disruptions in speech fluency reflect the impact of bradykinesia
on pronunciation control (Arias-Vergara et al., 2017; Holmes et al.,
2000; Laganas et al., 2022). The severity and manifestation of
these speech characteristics vary with disease progression. While
early-stage patients exhibit mild speech suppression, late-stage
patients are more likely to experience unclear articulation, impaired
respiratory control, and vocal cord lesions (Kovac et al., 2021;
Shahbakhti et al., 2013). In addition to vocal impairments, patients
with PD often exhibit significant linguistic abnormalities. In terms
of morphology, unsupervised morphological segmentation reveals
abnormal distributions of morpheme categories (prefixes, stems,
suffixes) (Eyigoz et al., 2018). Cross-linguistic studies conducted
in Spanish, German, and Czech have identified specific verbal
markers. PD patients display distinct morphological patterns,
lexically, there is a noticeable decline in lexical diversity. Patients
frequently repeat words and use fewer common and proper nouns
(Yokoi et al., 2023). While the total number of verbs may increase,
there is a marked reduction in the use of action verbs (e.g., “play,”
“take”) (Escobar-Grisales et al., 2023a). Semantically, patients have
deficits in processing action verbs (e.g., “run,” “jump”) (García
et al., 2022). Latent semantic analysis shows weaker associations
between these verbs and action concepts, and patients rely more
on non-action domains (e.g., “read,” “say”) (García et al., 2016).
Grammatically, patients tend to produce syntactically simplified
utterances, characterized by shorter sentence lengths, reduced
dependency distances, and fewer noun, verb, and prepositional
phrases. The frequent use of repetitive fillers (e.g., the Spanish filler
“pues”) is also observed (Pérez-Toro et al., 2019). Additionally,
PD patients exhibit an increased rate of grammatical errors and
a higher frequency of subordinate clauses (e.g., those beginning
with “because” or “although”) (García et al., 2016). They also tend
to overuse negation markers, produce fewer segmented sentences,
and rely more heavily on digressive syntactic constructions (García
et al., 2016). Sometimes, a skewed distribution of verb tenses (e.g.,
a preference for the present tense), and inconsistent case/gender
marking in determiners and pronouns can also occur (Eyigoz et al.,
2020). At the discourse level, impairments include disorganized
narratives, a decrease in informational content (fewer correct units
in picture descriptions), and incoherent structures (e.g., overused
digressions, fewer full stops) (Favaro et al., 2023b). In addition,
patients also exhibit impairments in syntactic processing and
emotional language processing. Joint assessment of grammatical
comprehension and social emotional processing can serve as a
multidimensional linguistic marker for early diagnosis (Baez et al.,
2020). The summary of the three aspects of speech characteristics
in PD is shown in Figure 3.

Speech analysis encompasses several key aspects, including
phonation, articulation, prosody, and cognitive-linguistic elements.
Phonation refers to the physiological processes involved in speech
production, primarily focusing on the vibration of the vocal
cords and the generation of sound. This process includes the
initiation, maintenance, and cessation of sound, as well as the
regulation of pitch and volume (Dromey et al., 1995). Articulation
involves the movement and positioning of the articulatory organs,
particularly the mouth, tongue, lips, and other related structures.
Articulation ensures speech clarity and accuracy, enabling sounds

to be effectively transformed into intelligible language (Kuruvilla-
Dugdale et al., 2020). Prosody primarily examines paralinguistic
features, such as variations in pitch, syllable rate, and the
expression of emotions within the speech signal (Beier et al.,
2025). Cognitive-linguistic approaches, on the other hand, focus on
analyzing cognitive behavior deviations by assessing factors such
as vocabulary usage, sentence complexity, phrase construction,
and the occurrence of word repetitions, among other indicators
(Miller, 2017). The process of classifying speech recognition
with the assistance of AI involves several key steps. Initially, a
pronunciation task is assigned, typically comprising long vowels
and standard sentences, followed by the collection of high-quality
audio recordings using a high-definition recorder (Asci et al., 2020).
Next, the recorded speech samples undergo preprocessing, which
includes speech signal classification and filtering techniques to
remove potential noise. Subsequently, relevant speech features are
extracted, and a recognition model is developed (Eyben et al., 2013).
Finally, the constructed model is tested to evaluate its performance.

Parkinson’s disease-related speech datasets are designed to
help diagnose and assess the symptoms and progression of PD
by collecting articulatory features from patients. The currently
commonly used datasets listed in Table 1, which contain different
numbers of patients and healthy controls, cover various languages
(e.g., Spanish, Italian, Czech, English, etc.) and various speech tasks.
For example, the PD Classification dataset (Sakar et al., 2018)
from the University of Istanbul classifies patients using repeated
vowel articulations, while the Parkinson’s Telemonitoring dataset
(Tsanas et al., 2010) uses 16 phonological features to predict a
patient’s motor and global UPDRS scores. The PC-GITA (Orozco-
Arroyave et al., 2014) and Neurovoz datasets (Mendes-Laureano
et al., 2014) provide rich articulatory tasks to analyze articulatory
dynamics and dysarthria in native Spanish-speaking patients. The
Johns Hopkins Medicine dataset (Favaro et al., 2023a) focuses on
spontaneous speech and read-aloud tasks in English to investigate
the relationship between language fluency and PD. The Italian PVS
dataset in Italy focuses on vowel articulation and read-aloud tasks
in Italian (Dimauro et al., 2017). The dataset from the UC Irvine
ML Repository also comprises a series of voice recordings of PD
patients (Carlos, 2016; Hlavnika et al., 2017; Little, 2007; Olcay et al.,
2013; Sakar et al., 2018; Tsanas et al., 2010).

Research on AI-driven speech recognition for PD has reached
a relatively mature stage, with significant advancements in
methodologies ranging from traditional ML to DL. A key
transition has been made from manual extraction of voiceprint
features to fully automated extraction processes (Escobar-Grisales
et al., 2023b). Current studies primarily focus on DL techniques,
including deep acoustic feature extraction (DAFE) (Khojasteh
et al., 2018), end-to-end (E2E) learning (Quan et al., 2022; Rios-
Urrego et al., 2022), and transfer learning (TL) (Reddy et al.,
2024). Among these, convolutional neural networks (CNNs) (Er
et al., 2021) are widely utilized in E2E models, while Transformer-
based architectures are gaining increasing popularity (Malekroodi
et al., 2024). DAFE enhances the interpretability of results by
examining how deep phonetic features influence ML and other
DL methods. The recognition accuracy of the DAFE method is
usually above 85% (Favaro et al., 2023b; Karan et al., 2020b; Mallela
et al., 2020b). Wav2Vec2.0, VGGish, and Soundnet extraction
of deep acoustic features (Ferrante and Scotti, 2023) as well as
autoencoders combined with deep bilateral learning (Ma et al.,
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FIGURE 3

Speech impairment in Parkinson’s disease.

TABLE 1 Summary of the publicly available speech datasets related to Parkinson’s disease.

Dataset name Number of participants Task(s) involved Cite

Parkinson’s disease classification
(Istanbul)

188 PD, 64 HC Sustained pronunciation of three repeated
vowels (/a/)

Sakar et al., 2018

Parkinson’s telemonitoring 42 PD Sustained vowel phonations ranging from one
to 36 s in length

Tsanas et al., 2010

PC-GITA 50 PD, 50 HC Continuous pronunciation, 45 words, 10
sentences, 1 reading text, 1 monologue task in
Spanish

Orozco-Arroyave et al., 2014

Neurovoz 54 PD, 58 HC Continuous vowel pronunciation, DDK testing,
16 structured listening, repeated persuasion,
monologues in Spanish

Mendes-Laureano et al., 2014

Johns Hopkins medicine (JHM)
dataset

23 PD, 27 HC Spontaneous speech task for image description,
two short text reading tasks in English

Favaro et al., 2023a

Italian PVS 22 elderly HC, 28 young HC, 28 PD Balanced pronunciation of 5 long vowels,
reading short texts, phrases, and words in
Italian

Dimauro et al., 2017

Czech PD 20 PD, 15 HC Sustained phonation, sentence repetition,
passage reading, monologues in Czech

Dimauro et al., 2017

2021) can achieve more than 90% accuracy and even up to 99.6%.
E2E and TL typically have better presentation performance (van
Gelderen and Tejedor-García, 2024). E2E models, especially those
using the Transformer architecture, require relatively larger clinical
datasets and computational resources, with more applications
currently (Hemmerling et al., 2023). It typically achieves more
than 95% accuracy (Hireš et al., 2022; Hireš et al., 2023;
Mallela et al., 2020a; Reddy et al., 2024), and even 100%
in models combining CNNs and LSTMs (Boualoulou et al.,
2023). In contrast, TL enables the transfer of pre-trained models
across various linguistic datasets, reducing computational costs

while improving multilingual adaptability (Hireš et al., 2023;
Vásquez-Correa et al., 2021).

Speech features have been widely used in the diagnosis of PD
for example, a study introduced the PPINtonus system, which
integrates tonal analysis with a GAN-augmented deep neural
network trained on phonetic data collected under real-world
conditions. Utilizing PRAAT software to extract acoustic features,
such as Mel-Frequency Cepstral Coefficients and Shimmer,
from 120-s voice samples, the system achieved an impressive
classification accuracy of 92.5% (Reddy, 2024). García-Ordás
et al. (2024) proposed a multitask multilayer perceptron model
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capable of performing both classification and regression tasks
based on voice data. Their approach attained over 99% accuracy
in distinguishing between severe and non-severe PD cases by
leveraging features such as jitter, harmonic-to-noise ratio, and
articulation rate. Verbal biomarkers such as increased pause
duration, word retrieval delays, and reduced speech fluency are
commonly assessed using both theory-driven psycholinguistic
models and data-driven embedding techniques. For instance,
Padhee et al. (2020) showed that these features can effectively
distinguish PD from other cognitive disorders with high diagnostic
accuracy. Mir et al. (2024) developed an LSTM-based framework,
demonstrating that the temporal dynamics of speech and
movement can be informative for diagnosis, even in the absence of
overt motor symptoms. However, its recognition accuracy is usually
between 70 and 90% (Karaman et al., 2021; Vásquez-Correa et al.,
2021). Despite these technological breakthroughs, most existing
studies rely on voiceprint features extracted from limited public
datasets. These datasets vary in terms of geographical and linguistic
diversity, as well as in the content of the original audio recordings.
Consequently, a standardized approach for collecting acoustic
features has not been established. Further research is required
to develop standardized voiceprint acquisition protocols and to
explore PD speech characteristics across different ethnic subgroups
within various language regions.

7 Handwriting and tapping

Handwriting and tapping tasks serve as valuable means
for assessing the fine motor skills of the upper limbs in
PD patients. In handwriting, PD patients often demonstrate
progressively smaller writing (micrographia), along with irregular
character shapes and reduced legibility (Letanneux et al., 2014).
Due to bradykinesia and tremor, maintaining consistent stroke
speed and pressure becomes challenging, leading to slower
writing and non-standardized strokes (Zham et al., 2019).
In finger-tapping tests, PD patients typically show a marked
reduction in tapping speed, diminished amplitude, and difficulty
maintaining rhythmic consistency, attributed to bradykinesia and
muscle rigidity (Giovannoni et al., 1999). This impairment is
particularly evident during complex tasks requiring synchronized
multi-finger movements or alternating repetitive tapping, where
movement accuracy and coordination decline markedly (Agostino
et al., 1998). In more intricate hand tasks, such as coin
rotation or manipulating small objects, PD patients often
exhibit reduced independence of finger movements, a condition
known as limb-kinetic apraxia (Syeda et al., 2022). As the
frequency of hand movements increases, their amplitude and
coordination deteriorate further, highlighting movement frequency
as a critical factor influencing motor performance in PD patients
(Stamatakis et al., 2010).

The most commonly used devices for diagnosing PD through
handwriting analysis are drawing tablets (Jackson, 2015) and/or
biometric smart pens (Bashir and Kempf, 2012). These devices
typically provide parameters such as the X and Y coordinates of
the trajectories drawn by the subject on a tablet or in the air,
sampling time, pen orientation angles (azimuth and elevation),
and the pressure applied by the pen during writing. With these

devices, subjects are asked to perform simple drawing tasks (e.g.,
spirals, meandering shapes, and circles), basic writing tasks (such
as writing one or more cursive letters, or continuous and repeated
letters like “lll” or “lele”), as well as more complex writing tasks
(e.g., copying detailed, intricate text) (Aouraghe et al., 2023). The
collected data is first preprocessed by filtering to reduce noise
and smoothing the signals (e.g., normalizing signal duration)
(Impedovo and Pirlo, 2008). Subsequently, relevant kinematic
features, mechanical properties, spatiotemporal features, entropy,
and energy characteristics are extracted (Afonso et al., 2019; Drotár
et al., 2015; Drotár et al., 2016), and finally, recognition models
are built based on the data types. There are currently several PD
handwriting or drawing datasets available to the public (Table 2).
Those contain handwriting samples from PD patients and healthy
individuals, with task types including Archimedean spiral, repeated
letters and words, drawing circles, winding lines, and static and
dynamic spirals. These tasks aim to detect changes in fine motor
control, stability, and fluency in PD patients to assess their motor
coordination and handwriting ability. Multiple datasets provide
valuable resources for early diagnostic tools and monitoring models
by comparing differences in writing behavior between healthy
individuals and PD patients.

Before 2020, the recognition accuracy based on handwriting in
ML and DL typically ranged from 80 to 90% (Cascarano et al., 2019;
Drotár et al., 2016; Gupta et al., 2018; Kotsavasiloglou et al., 2017;
Mucha et al., 2018; Mucha et al., 2019; Xu and Pan, 2020; Zham
et al., 2018). However, since 2022, due to advancements in neural
networks, ML has seen significant improvements. Specifically,
KNN, XGBOOST, and ChiGa-Net models can now achieve an
accuracy rate of 92%–99% (Abdullah et al., 2023; Diaz et al., 2019;
Shrivastava et al., 2024). Meanwhile, in DL, multiple deep CNN
models and deep transfer learning have achieved an accuracy rate
exceeding 98% (Kamran et al., 2021; Naz et al., 2023; Pereira
et al., 2016). Remarkably, in RNN-LSTM and RNN-BLSTM, as
well as VGG16 and VGG19, the accuracy has reached 100%
(Kumar and Ghosh, 2024; Zemmar et al., 2025). Studies have shown
that AI can effectively extract features from dynamic handwriting
signals (e.g., pen pressure, speed, acceleration, stroke patterns) to
distinguish between healthy individuals and PD patients. Models
like Convolutional Autoencoders (CAE), Transformers, Recurrent
Neural Networks, and Multilayer Perceptrons (MLPs), are
commonly used to analyze these spatiotemporal data modalities,
demonstrating high classification accuracy ranging from 85% to
over 95% in certain datasets (Aldujaili et al., 2025). For instance,
Kansizoglou et al. (2025) proposed a hierarchical DL model to
detect PD from online handwriting, focusing on drawing-aware
features. Kasab et al. (2024) demonstrated how CAE can classify
spiral and wave drawings with high sensitivity, while Arasavali
et al. (2024) used an MLP-based framework to dynamically assess
handwriting traits for PD classification.

The use of GAN-augmented datasets and transformer-based
models further enhances the generalization and robustness of PD
classifiers, particularly in early detection stages when symptoms are
subtle (Darkhal and Sedaghat, 2025). Saha et al. (2024) leveraged
multimodal handwriting signals, including micrographia, spiral,
and meander patterns, integrated with ML for high-precision
diagnosis. Kamireddy et al. also emphasized the value of such non-
invasive digital biomarkers through spiral and wave test analysis
using deep learning pipelines (Kamireddy et al., 2025). Notably,
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TABLE 2 Summary of the publicly available handwriting or drawing datasets related to Parkinson’s disease.

Dataset name Number of participants Task(s) involved Cite

Parkinson’s disease handwriting
(PaHaW)

37 PD, 37 HC Archimedean spirals, repetitive loops, the letter
“l,” syllable “le,” Czech words, Czech sentence

Drotár et al., 2016

PD multi MC 16 PD, 16 HC Repetitive longitudinal letters, triangular waves,
rectangular waves, repetitive English words
“Monday” and “Tuesday,” repetitive subject
names

Taleb et al., 2017

Hand PD 74 PD, 18 HC Spiral drawing Pereira, 2021

New hand PD 31 PD, 35 HC Circles, spiral, meander, and signals
handwriting

Xu and Pan, 2020

Parkinson disease spiral drawings
using digitized graphics tablet

62 PD, 15 HC Spirals and stability test on certain point Isenkul and Betul, 2017

these models are often integrated into portable digital platforms,
such as tablets or smart pens, enabling remote and cost-effective PD
screening. This democratizes access to neurological assessments,
especially in underserved regions or for elderly populations unable
to access specialized centers. Its integration into telemedicine tools
could revolutionize how we screen and monitor neurodegenerative
diseases. However, the majority of these studies rely on existing
datasets. Even in the widely recognized largest PD handwriting
dataset, the number of patients is limited to just 74. Additionally,
most of the populations studied are from countries with alphabetic
languages. Consequently, these subjects may perform better in
tasks such as drawing curves, circles, and waves compared to
populations using stroke-based languages like Chinese. Therefore,
it is essential to expand the sample size and include individuals
from diverse linguistic backgrounds. Furthermore, cognitive
impairment levels vary significantly among patients, leading to
considerable differences in drawing performance. For instance,
some patients may struggle to complete handwriting or drawing
tasks due to inattention or memory loss. Future research must focus
on increasing both the size and diversity of datasets by collecting
handwriting and drawing data from various populations and
disease stages, thereby improving the generalizability of AI models.
Additionally, it is crucial to account for emotional and cognitive
factors. Specifically, when analyzing handwriting and drawing
data, a comprehensive consideration of the patient’s emotional
and cognitive state is necessary to enhance diagnostic accuracy.
Furthermore, the development of user-friendly, low-cost devices
for data collection, along with the establishment of standardized
protocols and operating procedures, will be critical in facilitating
the clinical application of these technologies.

For finger-tapping, some existing work suggests the use of
wearable sensors (Pasluosta et al., 2015). A recognition model
was built using parameters such as speed and acceleration of the
tapping, and the accuracy of the X-ception and SVM models
was 71.3% (Singh et al., 2023) and 87.0% (Shin et al., 2024),
respectively. However, these sensors inevitably come into physical
contact with PD patients, which may affect the patient’s movement
due to the weight and contact of the sensors. In addition, the
data collected by the sensors are affected by gravity, thus complex
procedures are required for calibration (Shima et al., 2019). Some
studies use colored markers or gloves (Buongiorno et al., 2019;
Krupicka et al., 2017) to facilitate visual capture, catch subtle
movements by using video cameras, especially the depth camera

in recent years (House et al., 2017), and measure the relative
direction and pixel-level distances of finger movements (Khan
et al., 2014; Liu et al., 2019; Williams et al., 2020b). It is capable
of detecting and estimating hand joint positions and postures,
thereby extracting 3D hand kinematic features. Notably, 2D or 3D
vision can not only achieve an accuracy of over 85% in binary
models (identifying PD and healthy individuals) (Amprimo et al.,
2023; Buongiorno et al., 2019; Kajan et al., 2024; Khan et al., 2014;
Monje et al., 2021), but also evaluate the classification of patients’
movement disorders in multi-class models, but the accuracy is
usually lower than that of binary models, between 70 and 90%
(Guarín et al., 2024; Guo et al., 2022; Li et al., 2021; Li et al., 2022;
Park et al., 2021; Yang et al., 2022; Yu et al., 2023). The use of
smartphone applications (Lee et al., 2016; Surangsrirat et al., 2022)
for self-management of PD assessment is becoming increasingly
popular. For instance, participants were instructed to use their
index finger to rapidly and repeatedly click on both sides of a
rectangle displayed on the touchscreen. Subsequently, indicators
such as click accuracy and movement distance are used for disease
assessment (Lee et al., 2016). PDGs is one such application that has
achieved over 94.5% recognition accuracy on various smartphones
(Teng et al., 2023). It is noteworthy that one system employed
a k-nearest neighbor classifier to rapidly facilitate the differential
diagnosis of repetitive finger-tapping features captured by the
gyroscope within a wearable system equipped with inertial sensors
(Belić et al., 2023). This system can effectively distinguish among
patients with PD, those with atypical Parkinson’s syndromes such
as progressive supranuclear palsy and multiple system atrophy, and
healthy controls (HC). In multi-classification tasks, it achieved an
overall classification accuracy of 85.18%.

8 Gait

Gait abnormalities in PD are crucial indicators for diagnosis
and monitoring, reflecting multiple impairments in the patient’s
motor system. Dynamic feature analysis shows that PD patients
exhibit significant decreases in stride length, step duration,
stance time, swing time, and support time, with shortened stride
length, reduced walking speed, and decreased gait rhythm being
particularly substantial (Mirelman et al., 2019; Wahid et al., 2015;
Wang et al., 2016; Zhao et al., 2021). It is worth noting that although
gait rhythmicity is reduced, PD patients can improve gait to some
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extent by adjusting step frequency under external prompts, which
provides a new direction for gait treatment (Sarbaz et al., 2012;
Wu and Krishnan, 2010). Regarding spatial characteristics, PD
patients tend toward reduced forward displacement and increased
vertical displacement when walking forward, with these changes
becoming more pronounced as the disease progresses (Hausdorff,
2009; Ogata et al., 2022). Furthermore, gait freezing (FoG) is a
hallmark symptom of PD, characterized by a sudden cessation of
movement or an inability to continue walking (Jankovic, 2008).
This condition compromises gait stability and typically occurs
during gait transitions, turning, navigating narrow spaces, or while
performing dual tasks (Rahimpour et al., 2021). These various
gait changes can also lead to asymmetric gait of both lower
limbs, thereby affecting the balance of the body during walking
(Rahimpour et al., 2021).

In PD AI gait recognition research, patients typically perform
a series of gait tasks designed to assess the severity, progression,
and mobility of the disease by analyzing the dynamic features
of gait. The Regular Walking Task helps to capture the patient’s
basic gait pattern, requiring the patient to walk at a normal pace
on a flat surface (Ahmadi et al., 2021). This aims to assess the
patient’s gait characteristics, such as step length, step frequency,
stride length, swing, and support time, without any disturbances
or obstacles. The gait acceleration or deceleration task requires
patients to increase their speed to their maximum sustained speed
or deliberately slow. These can be used to evaluate patients’
adjustment of gait when facing challenges, observing whether there
is a phenomenon of shortened or unstable gait. In gait freezing
tasks, patients are usually guided through certain situations, such
as confined spaces (Almeida and Lebold, 2010), to observe whether
the patient experiences freezing and to analyze the conditions and
characteristics of its occurrence. Turning tasks typically require
patients to walk along a particular curve or make turns in different
directions within a defined area (King et al., 2022), while obstacle-
crossing tasks require patients to cross an obstacle placed on the
ground, such as a small step or an obstacle bar (Vitório et al., 2014).
This task simulates scenarios that patients may encounter in their
daily lives, estimating their gait stability and flexibility in dealing
with obstacles. In dual-task-walking, patients need to perform
other cognitive tasks (such as memorizing numbers, solving simple
arithmetic problems, etc.) while walking (Kelly et al., 2012).
Typically, patients show more pronounced gait abnormalities,
particularly reduced stride length and unstable gait rhythm, when
performing dual tasks (Salazar et al., 2017). These gait tasks play
an important role in research into AI recognition of gait in
PD. By collecting gait data from patients performing these tasks,
researchers can use sensor technologies (e.g., inertial measurement
units, accelerometers, gyroscopes, etc.) (Hubble et al., 2015) and
AI algorithms to extract gait features, including spatiotemporal,
kinematic, dynamic, electromyographic, sensor-based, and visual-
based standing intervals, swing time, stride time, number of steps,
gait velocity, stride length, walking speed, power spectral density,
hip flexion, and plantar flexion offset (Sharma et al., 2022). These
features provide the basis for building models to identify and
predict gait abnormalities and assist clinicians in early diagnosis
and monitoring of disease progression.

At present, there are datasets available for public use regarding
the gait of PD. The “Gait in PD” (Hausdorff, 2008) database
contains gait measurements, demographic information and disease

severity from 93 patients and 73 healthy participants. The dataset
includes recordings of the vertical ground reaction force of the
participants, those who walked on a flat surface at their self-chosen
pace for around 2 min. This information reflects the changes in
pressure over time, as well as the activity time of each foot (such
as stride time and swing time). The Gait in Neurodegenerative
Disease Database (Hausdorff, 2000) records stride interval, swing
interval, stance interval, double support interval information, and
clinical information for each subject, including age, sex, height,
weight, walking speed, and Hohn and Yahr scores for disease
severity. Parkinson’s Freezing of Gait Prediction (The Michael J Fox
Foundation, 2023) consists of three sub-datasets, each containing
sensor and video recordings of patients’ frozen gait before and after
medication, as well as their daily gait.

Machine learning and DL techniques have demonstrated
substantial promise in leveraging gait analysis for the diagnosis
and early detection of PD. These computational methods can
detect subtle motor impairments by analyzing spatiotemporal
gait parameters, often imperceptible to clinicians during routine
examinations. The synergy of wearable sensor data, advanced
signal processing, and AI models enables robust classification
and staging of PD, including early-stage detection and symptom
monitoring. For instance, the application of the support vector
machine with linear decision boundaries has led to an overall
classification accuracy of 95% (Alkhatib et al., 2020). Moreover,
the reinforcement fine-tuning method not only facilitates binary
classification for PD diagnosis but also attains an average accuracy
of 96.4% ± 2.3% when assessing the severity of the disease
(Varrecchia et al., 2021). In addition, there are specific tests for
gait freezing in patients that play a role in helping to diagnose
PD and can also predict gait freezing in time to prevent falls.
Wearable inertial measurement units placed on limbs or embedded
in smart insoles have been effectively used to collect gait data
for input into AI models, achieving high sensitivity in identifying
FoG episodes (Cluzel et al., 2025). The accuracy, sensitivity, and
specificity of FOG prediction were all around 85% in patients
receiving dopaminergic therapy (1 h after levodopa ingestion) and
in those not receiving dopaminergic therapy (at least 12 h after
levodopa discontinuation) (Borzì et al., 2021). Beyond detection,
DL models also support disease monitoring and risk prediction.
Multidomain analysis including gait, voice, and tapping through
smartphones offers a scalable, non-invasive tool for PD screening,
particularly in remote or resource-limited settings (Lim et al., 2025).
Gait abnormalities, such as asymmetry, reduced stride length,
and variability in cadence, have been effectively quantified using
AI to track disease progression or response to medication or
Deep Brain Stimulation (Priya et al., 2025). Furthermore, gait
analysis has been proposed not just for diagnosis but also as a
digital biomarker for fall prediction, severity scoring, and even
to differentiate PD from atypical Parkinsonian syndromes (Terry
and Alvarez-Vazquez, 2025). Based on postural instability and gait
analysis, the application of an enhanced weighted voting ensemble
method demonstrates high sensitivity but relatively low specificity
when differentiating atypical parkinsonism from PD (Song et al.,
2022). These advancements illustrate a shift toward personalized
and continuous neurology, where machine intelligence enhances
clinical decision-making. In summary, the integration of gait
analysis with AI offers a promising frontier for improving the
accuracy, objectivity, and timeliness of PD diagnosis. However,
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the biggest problem with gait analysis is that a complete standard
collection procedure has not yet been established. Since most of
the technicians are scientific researchers rather than experts with
clinical experience, the methods of collecting patient gait vary from
study to study. Moreover, the lack of data volume in the dataset
is also an important aspect that affects the classification decision
model (Sharma et al., 2022).

9 Discussion

This review primarily aims to explore the roles of motor
symptoms and their corresponding characteristic manifestations
of PD in AI-assisted diagnosis. We summarized the specific
manifestations of facial expressions, eye movements, speech,
handwriting, finger - tapping, and gait in PD, their applications
in AI-assisted diagnosis, publicly accessible datasets, current
limitations, and future development directions.

Generally speaking, research on PD recognition based
on speech, handwriting, finger-tapping, and gait is relatively
comprehensive, and the model recognition accuracy is quite
high. In the realm of speech analysis, for instance, several studies
delved into the unique pitch, rhythm, and articulation patterns
associated with Parkinson’s patients (Faragó et al., 2023; Favaro
et al., 2023b; Ma et al., 2021). Various publicly available datasets
greatly facilitated the development of AI-based diagnostic models.
Similarly, in handwriting, tremors, micrographia (abnormally
small handwriting), and irregularities in stroke formation have
been well-documented. These datasets have enabled the training of
models to accurately identify signs of the disease from handwritten
samples. In finger-tapping and gait analysis, a multi-class
assessment of the disease progression degree can be accomplished,
its speed, rhythm, and force exerted during the tapping motion
can provide valuable insights into the progression of the disease
(Kim et al., 2011; Rose et al., 2020). Gait analysis, on the other
hand, focuses on parameters such as stride length, walking
speed, and balance. However, despite these achievements, the
accuracy of these assessment methods still requires improvement.
There are still challenges in accounting for individual variations
among patients, as well as the influence of external factors such
as fatigue and environment. Regarding facial expression and
eye movement recognition, perhaps due to the dynamic visual
changes involved, the overall recognition accuracy still needs to
be enhanced through further technological advancements when
compared with other motor symptoms. Detecting these subtle
changes in real time is a complex task, as facial expressions can
be affected by emotional states and social context. Eye movement
analysis, which includes saccades (rapid eye movements) and
smooth pursuit, also presents challenges due to the high-speed
and fine-grained nature of these movements. In the future, more
in-depth studies are required to develop more accurate and
robust AI-assisted diagnostic models. Additionally, the research
of more advanced algorithms that can better handle the dynamic
and complex nature of facial expressions and eye movements
will be crucial for enhancing the recognition accuracy in these
areas.

There remain numerous common issues that demand further
attention. When it comes to raw data, a significant portion of

studies is concentrated within a limited number of datasets, and
the evaluation of the included patients and the recording of
related information are incomplete. The quantity, quality, type,
and representativeness of data play essential parts in model
construction. For different types of motor symptoms, collecting
raw data requires establishing a comprehensive standardized
process to improve data quality and representativeness of typical
features. When recruiting patients, a comprehensive evaluation
should be carried out under the guidance of specialized doctors.
It is necessary to make action tasks that can trigger specific
manifestations and form expert consensus. Specific details such
as the patient’s race, disease duration, and severity should be
annotated to establish a large-scale, high-quality unified dataset,
ensuring that the models are trained on a diverse and representative
set of data, thus improving their generalization ability. In the
aspect of visualizing dynamic information like eye movements
and facial expression changes, technological advancements are still
required to support the high-quality extraction and utilization of
the necessary features. With the complexity of PD manifestations
and the diversity of data sources, it is difficult to accurately extract
valuable information from the raw data. Traditional data analysis
methods may not be sufficient to handle the large-scale and high-
dimensional data generated in modern research. Therefore, more
advanced ML and AI algorithms should be introduced to dig out
hidden patterns and relationships in the data. Moreover, there
are certain challenges for AI to differentiating PD from atypical
Parkinson-syndromes based solely on motor disorders. In such
scenarios, AI may play a supportive role for doctors in detecting
variations in the movement states (closed/open) of the same patient
(Vasquez-Correa et al., 2019).

Currently, research on multimodal PD diagnosis based
on large-scale and high-quality datasets and the development
of wearable devices integrating multiple features are in high
demand and represent a major trend in future research. Close
cooperation between researchers, clinicians, and industry
partners is essential. Researchers should work closely with
clinicians to understand the actual needs in the clinical
setting and develop practical solutions. Identification models
should adapt to different application scenarios, such as
community screening, home monitoring, and hospital-
assisted diagnosis. Improving the real-time performance and
usability of model recognition facilitates the early detection and
diagnosis of the disease, enabling early intervention to delay
disease progression.

10 Conclusion

This article reviews the role of the motor symptoms and
corresponding characteristic manifestations of PD in AI-assisted
diagnosis. At present, PD recognition technology based on speech,
handwriting, Tap, and gait is relatively mature, but the extraction
of dynamic features such as facial expressions and eye movements
still needs to be strengthened. Establishing a standardized
data collection process and a large-scale dataset containing
multiple information labels is currently an urgent problem that
needs to be solved. In the future, research on multimodal
recognition models and wearable devices is a promising direction.
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These suggestions may provide better services for both patients and
doctors and contribute to social healthcare.
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