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Introduction: Alzheimer’s disease (AD) is characterized by disrupted brain 
connectivity, but the network changes across disease stages remain poorly 
understood. This observational cross-sectional study investigated alterations in 
functional brain networks across the AD continuum using minimum spanning 
tree (MST) analysis of resting-state EEG (rsEEG) data.
Methods: We analyzed rsEEG data from 65 participants (30 healthy controls, 
14 mild cognitive impairment due to AD [MCI-AD], 21 AD). Phase Lag Index 
(PLI)-based connectivity and MST metrics (such as diameter, eccentricity, 
and maximum degree) were computed across five frequency bands. Group 
differences were assessed using Kruskal-Wallis tests, and correlations with 
cognitive measures, disease severity, and cerebrospinal fluid (CSF) biomarkers 
were examined.
Results: Significant alterations in rsEEG network topology were observed 
across HC, MCI-AD, and AD groups. AD patients showed increased theta band 
connectivity (higher mean PLI, diameter, and eccentricity) and decreased beta 
band connectivity (lower mean PLI and eccentricity) compared to HC. MCI-
AD group exhibited higher delta band maximum degree and altered beta 
band network organization compared to HC and AD. These network changes 
correlated with cognitive performance and disease severity. Beta band mean PLI 
and theta band eccentricity effectively discriminated between AD/MCI-AD and 
HC. Significant correlations were also found between specific MST metrics and 
CSF biomarkers (t-Tau, p-Tau, Aβ1–42).
Conclusion: AD progression is characterized by frequency-specific alterations 
in brain network topology, particularly in theta and beta bands, detectable 
through rsEEG-based MST analysis. These findings suggest EEG-derived 
network measures may serve as potential biomarkers for early AD diagnosis and 
monitoring disease progression.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder characterized by severe memory impairment, cognitive 
decline, and a significant impact on quality of life (Gaugler et al., 
2022). As the disease progresses, patients experience a decline in their 
ability to perform daily activities and maintain social relationships. 
The World Health Organization projects that AD will become a 
leading cause of disability and mortality among older adults by 2050 
(Nichols et al., 2022; Scheltens et al., 2021). To better understand AD 
and develop effective treatments, it is essential to investigate its 
neurobiological signatures using multiple imaging modalities, 
including electroencephalography (EEG), magnetoencephalography 
(MEG), functional magnetic resonance imaging (fMRI), positron 
emission tomography (PET), and single-photon emission computed 
tomography (SPECT) (Albert et al., 2011; Davatzikos et al., 2011).

Recent studies have extensively explored AD using various 
approaches, including altered EEG spectral power, disrupted 
functional connectivity patterns, and changes in brain network 
topology (Perez-Valero et al., 2021; Scheijbeler et al., 2023; Kehm 
et al., 2023). These studies have reported increased slow-wave activity 
(delta and theta bands), decreased fast-wave activity (alpha and beta 
bands), reduced functional connectivity in higher frequency bands, 
and alterations in small-world network properties in AD patients. 
While these findings have significantly contributed to our 
understanding of AD, inconsistencies and contradictions exist due to 
differences in study populations, experimental designs, analytical 
methods, and other limitations (Maestú et al., 2015; Palop and Mucke, 
2016; Engels et al., 2017; Horvath et al., 2018; Babiloni et al., 2020). 
Therefore, more advanced methods and techniques are needed to 
explore the complex nature of AD and its symptomatic predementia 
phase, mild cognitive impairment due to AD (MCI-AD), which is 
characterized by cognitive decline and may progress to AD-related 
dementia over time (Albert et al., 2011; Horvath et al., 2018; Meghdadi 
et al., 2021; Benwell et al., 2020; Tait et al., 2019).

Previous studies have shown that AD is associated with alterations 
in EEG spectral power and functional connectivity across different 
frequency bands. Graph theoretical approaches have significantly 
advanced the analysis of these complex EEG patterns (Youssef et al., 
2021; Reijneveld et al., 2007). However, traditional methods of brain 
network analysis face several challenges. Conventional approaches 
rely on arbitrary thresholds to define network connections, which can 
lead to biases in network characterization. Furthermore, different 
thresholds used across studies hinder direct comparisons of network 
properties. The use of continuous association matrices in conventional 
neuroimaging techniques also presents a dense network of 
connections, which does not accurately reflect the brain’s sparse 
network structure (Bahrami et al., 2023; Bijsterbosch et al., 2020). This 
discrepancy complicates the accurate depiction of brain connectivity 
and introduces potential biases in subsequent analyses (Bahrami et al., 
2023; Crimi et al., 2019).

To overcome the limitations of traditional network analysis 
methods, the Minimum Spanning Tree (MST) approach has 
emerged as a promising solution for studying brain networks in 
AD and other neurological disorders (Blomsma et  al., 2022; 
Canario et al., 2022; Tewarie et al., 2015). MST is a subgraph that 
connects all nodes in the original weighted network without 
forming cycles, offering significant advantages over traditional 

approaches (Tewarie et al., 2015; Ciftçi, 2011). By retaining the 
most critical connections and preserving the network’s essential 
topological structure, MST ensures that all analyzed networks have 
the same number of nodes and links (Canario et al., 2022; Tewarie 
et  al., 2015). This approach effectively captures the modular 
structure of brain networks, revealing areas with dense intra-
module connections and sparse inter-module connections (Tewarie 
et al., 2015; Song et al., 2014; Becske et al., 2024; Tewarie et al., 
2014). In AD research, MST’s ability to detect subtle changes in 
network topology is particularly valuable, as it can indicate 
compromised communication between brain regions and network 
disintegration into isolated clusters.

Recent studies, such as Canario et al. (2022), have shown that 
MST is effective in AD research, revealing less integrated network 
structures in AD patients compared to MCI and normal controls. This 
sensitivity to subtle changes in brain connectivity is crucial for 
understanding AD progression, especially during the early stages or 
the transition from MCI to AD. However, despite MST’s potential, 
previous EEG-based MST studies in AD have produced inconsistent 
results, with some studies reporting more line-like MST topology and 
others finding more centralized networks (Tijms et al., 2013). These 
discrepancies likely result from heterogeneous diagnostic criteria and 
the lack of biomarker confirmation, highlighting the need for more 
rigorous methodologies.

To address these limitations and clarify conflicting findings, our 
study uses a comprehensive diagnostic approach that combines 
established clinical criteria with advanced biomarker assessments. 
This approach ensures accurate patient classification and increases the 
reliability of our findings. By integrating resting-state EEG (rsEEG) 
data with neuropsychological tests and cerebrospinal fluid biomarkers, 
we aim to provide a more comprehensive understanding of AD-related 
network alterations. This multi-modal approach advances our 
understanding of AD and sets a new standard for the application of 
MST analysis in clinical neuroscience research.

Based on these considerations, we hypothesize that MST analysis 
of rsEEG data will reveal distinct network topologies that differentiate 
patients with MCI-AD, AD, and healthy controls, and correlate with 
clinical symptoms and cognitive impairment. We also expect that 
MST-derived metrics from rsEEG, such as leaf fraction, betweenness 
centrality, and tree hierarchy, will be  significantly associated with 
neuropsychological test outcomes and cerebrospinal fluid biomarkers, 
including amyloid-beta (Aβ) and tau proteins. This approach aims to 
clarify conflicting findings and identify more reliable EEG-derived 
network biomarkers for AD, providing consistent insights into the 
neuropathology of AD and improving early detection and 
disease monitoring.

2 Method

2.1 Participants

We conducted our study with a cohort comprising 14 individuals 
diagnosed with MCI-AD, 21 individuals with AD, and 30 HC 
participants, recruited from the Neurology Department of Nanjing 
Brain Hospital between October 2020 and May 2022. The participants 
were diagnosed using standard clinical criteria and biomarker 
detection, including Aβ deposition and tau pathology, through 
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cerebrospinal fluid analysis, following the NIA-AA research 
framework guidelines (Jack et al., 2018).

The inclusion criteria for all participants were: right-handed 
adults aged 50–79 years, no significant visual or auditory impairments, 
and a minimum of 6 years of education. Furthermore, HC participants 
were required to perform daily activities independently, while 
MCI-AD participants required memory concerns substantiated by 
MMSE scores > 20 and meeting the Alzheimer’s continuum criteria. 
AD participants required a clinical AD diagnosis with significant 
cognitive decline and MMSE scores <20.

Exclusion criteria included participants with cognitive decline due 
to other conditions, major psychiatric disorders, substance abuse, or 
other neurological disorders affecting cognitive function. These 
standardized criteria ensured a homogeneous sample, minimizing 
confounding variables.

The control group consisted of healthy elderly adults who were 
community volunteers, with no evidence of dementing or other 
neuropsychological disorders. The study was approved by the Medical 
Research Ethics Committee of the Brain Hospital Affiliated to Nanjing 
Medical University. Informed consent was obtained from all 
participants prior to the initiation of the study.

2.2 Clinical and neuropsychological 
assessments

Participants in both groups underwent comprehensive and 
standard clinical and neuropsychological evaluations. The test battery 
included the MMSE and the Montreal Cognitive Assessment (MoCA) 
for assessing global cognitive function (Horton et al., 2015; Tombaugh 
and McIntyre, 1992); the Revised Hasegawa’s Dementia Scale (HDS-R) 
for assessing the severity of dementia (Imai and Hasegawa, 1994); the 
Clinical Dementia Rating (CDR) for evaluating cognitive and social 
functioning (Morris, 1993); the Auditory Verbal Learning Test (AVLT) 
for assessing verbal memory and learning (Vakil and Blachstein, 
1993); and the Hamilton Anxiety Scale (HAMA) and Hamilton 
Depression Scale (HAMD) (Maier et al., 1988; O'Hara and Rehm, 
1983) for evaluating emotional state. Experienced neuropsychologists 
assessed participants’ general cognitive function, episodic memory, 
and emotional state using these scales.

2.3 Analysis of cerebrospinal fluid markers

All participants in the MCI-AD and AD groups underwent lumbar 
punctures to confirm the cerebrospinal fluid (CSF) profile indicative of 
AD pathology. This included measuring the concentrations for Aβ1–42 
and Aβ1–40, the ratio of Aβ42/Aβ40, and the levels of phosphorylated tau 
(p-Tau) and total tau proteins (t-Tau). The INNO-BIA AlzBio3 
immunoassay kit (Innotest, Fujirebio, Ghent, Belgium) was utilized for 
these determinations. Threshold values were established based on prior 
research and insights from our laboratory (Mulder et al., 2010).

2.4 EEG data acquisition

EEG recordings were captured using 64 Ag/AgCl electrodes 
placed on a BrainCap elastic cap according to the international 

10–20 system. Electrodes for horizontal and vertical eye 
movements were positioned at the outer canthus of the right eye 
and above the inner canthus of the left eye, respectively. The EEG 
signals were recorded at a sampling rate of 1,000 Hz using the 
BrainAmp DC amplifier (Brain Products GmbH, Gilching, 
Germany). All electrode impedances were maintained below 
10kΩ. EEG recordings took place between 10 a.m. and 4 p.m. on 
working days. Participants sat in a dimly lit and quiet room, 
remaining alert and relaxed, and underwent an 8 min eyes-closed 
recording session.

2.5 EEG data preprocessing

EEG data were preprocessed using EEGLAB v.13.5.4 (Delorme 
and Makeig, 2004) on the Matlab2021a platform (Mathworks, Inc., 
Natick, MA, United States) following these steps: (1) EOG channels 
were excluded from the analysis; (2) Raw EEG signals were 
re-referenced offline to the global cerebral average reference; (3) The 
data were then band-pass filtered offline between 0.5–48 Hz; (4) The 
filtered data were down-sampled to 250 Hz; (5) The data were 
segmented into 2 s epochs; (6) Epochs containing artifacts such as eye 
movements, muscle activity, and line noise were visually inspected and 
excluded; and (7) A minimum of 40 artifact-free 2 s epochs per 
participant were included in the analysis. The functional connectivity 
analysis and subsequent brain network topology analysis were 
conducted using the FieldTrip toolbox (Oostenveld et al., 2011).

2.6 Functional connectivity analysis

Functional connectivity is assessed using the Phase Lag Index 
(PLI), a robust method that quantifies the asymmetry in the 
distribution of phase differences between two signals (Stam et al., 
2007). The PLI quantifies the asymmetry of phase difference 
distributions between two signals, offering robustness against volume 
conduction effects. For time series X and Y with phase difference 
Δφ(t), the PLI is defined as:

	
( )( )ϕ = ∆ sin tPLI sign

PLI values range from 0 (no coupling) to 1 (perfect phase locking). 
Increased PLI values suggest enhanced phase locking between two 
signals. We computed PLI between all pairs of 62 EEG channels across 
five frequency bands: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha 
(8–13 Hz), Beta (13–30 Hz), and Gamma (30–48 Hz). The mean PLI 
across all channel pairs in each band was calculated to represent global 
brain synchronization. We chose PLI over its variants, such as the 
Weighted Phase Lag Index (wPLI), for two primary reasons. First, this 
approach preserves methodological continuity with prior EEG-MST 
studies in Alzheimer’s Disease. Second, it avoids the complexities of 
parameter tuning (e.g., squared or debiased variants), which can 
be  particularly challenging with short clinical rsEEG segments. 
Notably, our choice is further justified by our use of MST, a threshold-
free method that relies on the relative ranking of edge weights 
(1 − PLI), ensuring stable topological comparisons across our 
heterogeneous clinical population.
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2.7 Minimum spanning tree analysis

In this section, we describe the construction of the MST for each 
frequency band using a 62×62 PLI adjacency matrix. To prepare the PLI 
values for MST analysis, we transform the PLI matrix into a weight 
matrix by subtracting the PLI values from 1, such that lower values in 
the resulting matrix indicate stronger connections due to higher phase 
synchrony. Subsequently, we employ the Kruskal algorithm to construct 
the MST (Kruskal, 1956). This algorithm involves sorting all connections 
according to their weights in ascending order, where smaller values 
represent stronger and more critical connections. Each connection, 
starting with the one with the smallest weight, is added to the MST only 
if it does not form a cycle with the connections already included. 
Connections that would lead to a cycle are excluded. This procedure is 
repeated until a spanning tree is formed that connects all N nodes 
(where N = 62, representing the EEG channels) with M = N − 1 edges 
(i.e., 61 edges), thereby capturing all essential connections based on the 
strongest phase synchrony.

2.7.1 Metrics for comparing MST topological 
structures

Several metrics are employed to compare MST topological 
structures, including Degreemax, Kappa, Betweenness Centrality (BC), 
Diameter, Eccentricity (Ecc), Leaf fraction (Lf), and tree hierarchy 
(Th) (Tewarie et al., 2015; Stam et al., 2014). Table 1 summarizes the 
definitions and interpretations of all MST metrics utilized in this 
study. These metrics include node-specific measures (Degree, BC, 
Eccentricity), their tree-level aggregates (Degreemax, BCmax, Eccmean), 
and global tree characteristics (e.g., Kappa, Diameter, Leaf fraction, 
Tree hierarchy).

2.7.2 Topological extremes of MST
In MST analysis, two topological extremes are identified: the 

chain and star shapes (Figure 1). The chain form is characterized by 
an elongated structure where all nodes connect to the endpoints, 
resulting in lower Degreemax and BCmax, a longer diameter, and fewer 
leaf nodes. Conversely, a star-shaped MST features a central node 
connected to all other nodes, exhibiting higher Degreemax and BCmax 
values, a shorter diameter, and more leaf nodes. While the star-
shaped topology is highly efficient for information transmission, it 
is vulnerable to overload due to its centralized structure. The optimal 
MST topology lies between these two extremes, balancing central 
concentration and node load (van Dellen et al., 2014; van Lutterveld 
et al., 2017). This balance is quantified through the Tree hierarchy 
metric, which measures the degree of equilibrium in the 
tree structure.

2.7.3 EEG data processing and network analysis 
workflow

Figure 2 illustrates the step-by-step workflow for processing and 
analyzing EEG data to study brain connectivity. Starting with raw EEG 
epochs (Panel A), artifacts are removed from the data, followed by 
band-pass filtering to remove noise (Panel B). Subsequently, the PLI 
connectivity matrix is computed to evaluate synchronization between 
EEG channels (Panel C). This matrix is then used to calculate the 
mean PLI, which provides a summary of overall brain connectivity 
(Panel D). Using this data, a MST connectivity matrix is generated 
(Panel E), which simplifies the network by focusing on the most 
significant connections. Finally, the resulting MST is visualized on a 
3D brain model (Panel F), highlighting important network properties 
such as leaf fraction, betweenness centrality, and tree hierarchy, and 

TABLE 1  Descriptive parameters of MST features.

Symbol Feature Explanation Mathematical expression

N Nodes Number of nodes in the MST. –

M Links Number of connections in the MST. –

K Degree Number of connections passing through a node. Degreemax  denotes the 

maximum degree among all nodes, indicative of a “hub” or key area in functional 

brain networks.

= = ≠∑ 1,Ki eN
j j i ij

BC Betweenness 

centrality
Probability of a node on shortest paths between other nodes. BCmax  is the 

maximum BC value among all nodes in the MST, describing the importance of 

central node and network center efficiency.

( ) ( )
( )ρ

ρ
=

− −
∈ ≠ ≠ ≠

∑1
1 2

, , , ,

i
BC

N N
ij

i
ijh j N h i h j i j

Ecc Eccentricity The longest shortest path from a node to any other node in the MST. Low average 

eccentricity implies a more centralized node status in the MST.
( ){ }= ∈max d i,E j j Ni

D Diameter Indicates the overall network organization efficiency, measured by the maximum 

path length in the MST. A smaller network diameter indicates more effective 

information processing between distant brain regions.

= /D d M

Lf Leaf fraction Measured by the number of leaves (nodes with only one connection) in the MST. =L L Mf 

Th Tree hierarchy Quantifies the balance between large-scale concentration and central node load in 

the MST.
=
2h

L
T

MBCmax

k Kappa Measures the breadth of degree distribution. A network with a lower score is more 

vulnerable to attacks, potentially leading to more significant damage to overall 

network functionality.
=

2k
k

k

This table summarizes the definitions and interpretations of all MST features used in this study. Definitions and notions adapted from the studies by Tewarie et al. (2015) and van Dellen et al. 
(2014). ρij  is the number of shortest paths between nodes i and j, and ( )ρ iij  is the number of shortest paths between i and j that pass through i. dijrepresents the shortest path between nodes 
i and j. Lf denotes the total number of leaves in the MST.
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providing insights into the functional architecture of the brain’s 
connectivity network.

2.8 Statistical methods

Statistical analyses were conducted using SPSS version 19.0 (SPSS 
Inc., Chicago, Illinois, United States) to analyze the demographic, 
clinical data, biomarkers, and the correlation with MST features of the 
subjects. Data is represented as mean ± standard deviation (SD). For 
normally distributed data, one-way ANOVA was used for multiple 
group comparisons, followed by LSD-t test for pairwise comparison. 
For non-normally distributed data, the Mann–Whitney U test was 
used for two-group comparison, and the Kruskal-Wallis test was used 

for multiple group comparisons, followed by Dunn’s test for further 
pairwise comparisons. To control for multiple testing, the Holm-
Bonferroni method was used to adjust p-values. Categorical data were 
analyzed with a Chi-square test. All tests were two-tailed, and 
statistical significance was defined as p < 0.05.

3 Results

3.1 Demographic and clinical data of 
participants

This study included 30 healthy controls, 14 MCI-AD patients, and 
21 AD patients. The sample size was determined based on the 

FIGURE 1

Topological variants of the MST. Three distinct configurations of MSTs are illustrated: path-like tree (left), characterized by a linear arrangement of 
nodes; hierarchical tree (center), showing a branching structure with multiple levels; and star-like tree (right), featuring a central hub node connected 
to multiple peripheral nodes. Red nodes indicate central or key positions in each topology, while green nodes represent leaf or terminal positions.

FIGURE 2

Workflow for processing EEG data to analyze brain connectivity. (A) Raw EEG epochs. (B) Cleaned and filtered EEG data, with artifacts removed. (C) PLI 
connectivity matrix illustrating synchronization between EEG channels. (D) Mean PLI calculation providing a summary of overall brain connectivity. 
(E) MST connectivity matrix representing the backbone structure of the network, with color-coded connection strengths. (F) 3D visualization of the 
MST network on a brain model, highlighting the spatial distribution of brain connectivity.
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availability of eligible participants within our recruitment period and 
resources, while aiming to maintain group sizes comparable to 
previous EEG studies in Alzheimer’s disease. No significant differences 
were observed among the three groups in terms of gender distribution 
(p = 0.364), age (p = 0.336), and years of education (p = 0.062), 
providing a homogeneous baseline for subsequent 
cognitive comparisons.

3.1.1 Cognitive function assessments
The AD group exhibited significantly lower cognitive function 

compared to both the HC and MCI-AD groups, as assessed by the 
MMSE and MoCA (Table  2). The mean MMSE scores were 
28.16 ± 1.34, 26.40 ± 1.74, and 14.89 ± 5.91 for the HC, MCI-AD, and 
AD groups, respectively (p < 0.001). Similarly, the mean MoCA scores 
were 26.60 ± 1.81, 20.40 ± 4.45, and 9.26 ± 5.59 for the HC, MCI-AD, 
and AD groups, respectively (p < 0.001). The severity of dementia, as 
measured by the CDR and HDS-R, was significantly higher in the AD 
group compared to the HC group. The mean CDR scores were 
0.00 ± 0.00 and 1.05 ± 0.62 for the HC and AD groups, respectively 
(p < 0.001). The mean HDS-R scores were 31.15 ± 1.46 and 
13.04 ± 9.27 for the HC and AD groups, respectively (p < 0.001). The 
AVLT Delayed recall scores significantly differed among the groups 
(p < 0.001, Kruskal-Wallis Test), with the HC group scoring the 
highest (5.70 ± 2.67), followed by the MCI-AD group (1.86 ± 2.12) 
and the AD group (0.13 ± 0.52). Similarly, the AVLT Recognition 
scores were highest in the HC group (22.27 ± 1.72), lower in the 
MCI-AD group (17.14 ± 4.67), and lowest in the AD group 
(11.58 ± 8.79) (p < 0.001, Kruskal-Wallis Test).

3.1.2 CSF biomarkers
No significant differences were observed between the MCI-AD 

and AD groups in the levels of Aβ1–42, Aβ1–40, and the Aβ1–42/Aβ1–40 
ratio (Table 2). The mean Aβ1–42 levels were 417.30 ± 131.76 pg./mL 

and 449.22 ± 141.54 pg./mL, while the mean Aβ1–40 levels were 
8641.30 ± 3744.81 pg./mL and 10,386 ± 4835.20 pg./mL for the 
MCI-AD and AD groups, respectively. The Aβ1–42/Aβ1–40 ratio was 
0.05 ± 0.16 and 0.48 ± 0.18 for the MCI-AD and AD groups, 
respectively. Similarly, no significant differences were found between 
the MCI-AD and AD groups for t-Tau and p-Tau levels. The mean 
t-Tau levels were 566.37 ± 361.19 pg./mL and 719.31 ± 309.02 pg./mL, 
while the mean p-Tau levels were 74.32 ± 73.16 pg./mL and 
121.03 ± 136.18 pg./mL for the MCI-AD and AD groups, respectively.

3.2 Inter-group analysis of whole-brain 
average PLI and MST features across 
frequency bands

3.2.1 Whole-brain average PLI
The Kruskal-Wallis test was applied to compare the mean PLI 

values for each frequency band, followed by Dunn’s test for pairwise 
comparisons. The AD group showed a significant increase in mean 
PLI within the Theta frequency band (χ2(2) = 8.11, p = 0.017) with a 
value of 0.285 ± 0.023, and a significant decrease in the Beta frequency 
band (χ2(2) = 9.94, p = 0.007) with a value of 0.213 ± 0.020 compared 
to the HC group. Interestingly, the MCI-AD group did not display 
significant differences when compared to both the HC and AD groups 
(refer to Table 3; Figure 3).

3.2.2 MST attributes
Using the same statistical approach as for the whole-brain average 

PLI, we  analyzed the MST features, with the addition of Holm-
Bonferroni correction for multiple comparisons. This analysis revealed 
frequency-specific differences in brain network parameters across AD, 
MCI-AD, and HC groups. In the delta band, Max degree showed 
significant group differences (χ2 = 8.30, p = 0.016), with MCI-AD 

TABLE 2  Demographic and clinical data of subjects.

Variable HC (n = 30) MCI-AD (n = 14) AD (n = 21) p value Post hoc

Gender (n, % female) 18 (60.00%) 7 (46.67%) 14 (63.64%) 0.364 b

Age (years, M ± SD) 64.13 ± 8.18 67.20 ± 9.17 63.05 ± 8.43 0.336 a

Education (years, 

M ± SD)

13.30 ± 3.15 11.93 ± 3.71 10.65 ± 4.42 0.062 c

MMSE (M ± SD) 28.16 ± 1.34AD 26.40 ± 1.74AD 14.89 ± 5.91HC, MCI-AD <0.001 a

MoCA (M ± SD) 26.60 ± 1.81MCI-AD, AD 20.40 ± 4.45HC, AD 9.26 ± 5.59HC, MCI-AD <0.001 a

HDS-R (M ± SD) 31.15 ± 1.46 AD 28.57 ± 3.19 AD 13.04 ± 9.27 HC, MCI-AD <0.001 a

CDR (M ± SD) 0.00 ± 0.00 MCI-AD, AD 0.33 ± 0.24 HC, AD 1.05 ± 0.62 HC, MCI-AD <0.001 c

AVLT Delayed (M ± SD) 5.70 ± 2.67 AD 1.86 ± 2.12 AD 0.13 ± 0.52 HC, MCI-AD <0.001 c

AVLT Recognition 

(M ± SD)

22.27 ± 1.72 MCI-AD, AD 17.14 ± 4.67 HC 11.58 ± 8.79 HC <0.001 c

Aβ1–42 (pg/ml, M ± SD) – 417.30 ± 131.76 449.22 ± 141.54 0.327 d

Aβ1–40 (pg/ml, M ± SD) – 8641.30 ± 3744.81 10,386 ± 4835.20 0.304 d

Aβ1–42/Aβ1–40 Ratio – 0.05 ± 0.16 0.048 ± 0.18 0.642 d

t-Tau (pg/ml, M ± SD) – 566.37 ± 361.19 719.31 ± 309.02 0.139 d

p-Tau (pg/ml, M ± SD) – 74.32 ± 73.16 121.03 ± 136.18 0.133 d

Superscripts denote significant between-group differences (p < 0.05). Statistical tests: a, ANOVA with post hoc Tukey’s test; b, Chi-Square test; c, Kruskal-Wallis test; d, Mann–Whitney U test. 
“–” indicates data not collected for HC group. t-Tau, total tau; p-Tau, phosphorylated tau.
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TABLE 3  Comparative analysis of network metrics across frequency bands for HC, MCI-AD, and AD groups.

Metric AD (N = 21) MCI-AD (N = 14) HC (N = 30) Kruskal-
Wallis Test 

χ2 (p)

Dunn’s test (p) 
for multiple 
comparisonM (SD) M (SD) M (SD)

Delta Mean PLI 0.254 (0.029) 0.253 (0.033) 0.243 (0.044) 4.30 (0.117)

BCmax 0.207 (0.029) 0.194 (0.024) 0.197 (0.022) 1.48 (0.478)

Diameter 0.865 (0.042) 0.867 (0.051) 0.845 (0.053) 4.13 (0.127)

Eccentricity 0.699 (0.038) 0.693 (0.044) 0.677 (0.052) 4.63 (0.099)

Degreemax 6.000 (0.918) 6.643 (1.216) 6.133 (1.008) 8.30 (0.016) MCI-AD vs. HC 

(0.018)

Lf 0.478 (0.035) 0.478 (0.038) 0.455 (0.054) 2.48 (0.290)

Th 0.370 (0.036) 0.373 (0.036) 0.353 (0.050) 1.48 (0.478)

Kappa 2.726 (0.128) 2.787 (0.157) 2.698 (0.147) 0.84 (0.656)

Theta Mean PLI 0.285 (0.023) 0.270 (0.024) 0.263 (0.025) 8.11 (0.017) AD vs. HC (0.014)

BCmax 0.222 (0.025) 0.213 (0.023) 0.204 (0.017) 7.71 (0.021) AD vs. HC (0.018)

Diameter 0.873 (0.044) 0.866 (0.043) 0.851 (0.040) 5.98 (0.053)

Eccentricity 0.747 (0.033) 0.722 (0.039) 0.709 (0.041) 10.70 (0.005) AD vs. HC (0.003)

Degreemax 5.500 (1.000) 5.643 (0.745) 5.700 (1.557) 1.09 (0.580)

Lf 0.436 (0.022) 0.439 (0.033) 0.439 (0.037) 0.55 (0.758)

Th 0.361 (0.029) 0.352 (0.029) 0.347 (0.031) 1.91 (0.385)

Kappa 2.593 (0.085) 2.604 (0.081) 2.618 (0.192) 0.33 (0.846)

Alpha Mean PLI 0.303 (0.047) 0.301 (0.039) 0.312 (0.056) 0.50 (0.779)

BCmax 0.200 (0.029) 0.216 (0.026) 0.207 (0.022) 3.19 (0.203)

Diameter 0.877 (0.033) 0.885 (0.034) 0.879 (0.046) 0.62 (0.733)

Eccentricity 0.759 (0.043) 0.760 (0.041) 0.767 (0.060) 0.23 (0.891)

Degreemax 6.250 (1.943) 5.571 (0.756) 6.233 (1.547) 1.40 (0.497)

Lf 0.460 (0.044) 0.434 (0.040) 0.456 (0.036) 3.13 (0.209)

Th 0.361 (0.041) 0.351 (0.039) 0.356 (0.036) 0.25 (0.882)

Kappa 2.706 (0.231) 2.596 (0.104) 2.682 (0.157) 2.22 (0.329)

Beta Mean PLI 0.213 (0.020) 0.217 (0.020) 0.234 (0.025) 9.94 (0.007) AD vs. HC (0.011)

BCmax 0.194 (0.016) 0.205 (0.026) 0.197 (0.026) 1.50 (0.473)

Diameter 0.840 (0.045) 0.812 (0.048) 0.829 (0.049) 3.53 (0.171)

Eccentricity 0.661 (0.022) 0.668 (0.016) 0.680 (0.032) 6.43 (0.040)

Degreemax 5.900 (1.294) 5.286 (0.611) 5.667 (1.028) 5.75 (0.056)

Lf 0.432 (0.043) 0.404 (0.031) 0.437 (0.036) 7.38 (0.025)

Th 0.340 (0.033) 0.337 (0.029) 0.342 (0.038) 0.41 (0.814)

Kappa 2.617 (0.202) 2.526 (0.079) 2.609 (0.098) 13.52 (0.001) MCI-AD vs. AD 

(0.046), MCI-AD vs. 

HC (0.001)

Gamma Mean PLI 0.188 (0.022) 0.189 (0.025) 0.199 (0.021) 5.54 (0.063)

BCmax 0.201 (0.020) 0.199 (0.023) 0.204 (0.020) 0.43 (0.809)

Diameter 0.867 (0.054) 0.845 (0.070) 0.840 (0.065) 2.18 (0.336)

Eccentricity 0.641 (0.021) 0.644 (0.029) 0.642 (0.029) 0.48 (0.785)

Degreemax 6.250 (2.291) 5.500 (0.855) 5.933 (1.617) 0.77 (0.680)

Lf 0.444 (0.061) 0.426 (0.042) 0.441 (0.056) 0.82 (0.662)

Th 0.350 (0.055) 0.343 (0.038) 0.345 (0.053) 0.12 (0.941)

Kappa 2.688 (0.300) 2.576 (0.113) 2.649 (0.203) 0.89 (0.640)

Values in bold indicate statistical significance (p < 0.05). Italicized values denote trend-level significance (0.05 ≤ p < 0.10). MST, minimum spanning tree; PLI, Phase Lag Index; BC, 
betweenness centrality; Th, tree hierarchy.
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exhibiting higher values than HC (p = 0.018). The theta band 
demonstrated significant group effects in BCmax (χ2 = 7.71, p = 0.021) 
and Eccentricity (χ2 = 10.70, p = 0.005), with AD consistently showing 
higher values compared to HC (all p < 0.05). No significant differences 
were observed in the alpha band. In the beta band, Kappa showed 
significant differences (χ2 = 13.52, p = 0.001), with MCI-AD differing 
from both AD (p = 0.046) and HC (p = 0.001). Eccentricity (χ2 = 6.43, 
p = 0.040) and Leaf fraction (χ2 = 7.38, p = 0.025) in the beta band 
showed significant group effects, but post-hoc tests did not reach 
statistical significance. The gamma band showed no significant group 
differences in MST attributes.

3.3 Visualization and analysis of 
frequency-specific MST brain network 
connectivity

This section extends our previous findings by visualizing and 
analyzing the functional connectivity patterns in the beta and theta 

frequency bands using MST brain network maps (Figure 4). These 
bands were selected based on their significant inter-group differences 
in PLI values and MST features, as highlighted in our earlier analyses. 
The brain connectivity maps provide a spatial representation of the 
network changes, offering insights into the regional specificity of 
alterations in functional connectivity across different stages of 
cognitive decline.

3.3.1 Beta band connectivity patterns
In the beta band, the HC group displayed a well-distributed 

network with strong connections, particularly in the posterior and 
central regions. The MCI-AD group showed a marked reduction in 
connection strength and more dispersed network patterns, while 
the AD group demonstrated a further decline, with sparse and 
weaker connections primarily in the central and frontal regions. 
Notably, the AD group exhibited a more pronounced decline in 
functional connectivity within the anterior regions compared to the 
posterior regions, highlighting the varying effects of Alzheimer’s on 
different brain areas. Overall, the beta band exhibits a gradual 

FIGURE 3

Violin plots representing inter-group comparisons of whole-brain PLI and MST features across different frequency bands. In each boxplot, the central 
line represents the median; the lower and upper edges of the box indicate the 25th and 75th percentiles, respectively; and the whiskers extend to 1.5 
times the interquartile range. Overlaid violin plots show the probability density of the data. Statistical significance between groups is denoted as: * 
p < 0.05, ** p < 0.01, ns: not significant.
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decrease in PLI values from HC to AD, indicating a disruption of 
network integrity.

3.3.2 Theta band connectivity patterns
In contrast to the beta band, the theta band shows a progressive 

increase in PLI values from HC to AD. The HC group exhibited a 
robust network with strong connections distributed across the 
brain, signifying a balanced and widespread  interregional 
interplay. The MCI-AD group displayed a decrease in connectivity 
strength, especially in the posterior regions, although some 
residual high-weight edges persisted. The AD group showed the 
most pronounced changes, with an overall sparser network, and a 
relative posterior predominance of the remaining high-weight 
edges, indicating a spatial shift of connectivity despite reduced 
global density.

3.4 Correlation analysis of clinical features 
and MST network measures

Correlation analysis revealed significant associations between 
MST network metrics and clinical scores, with distinct patterns 
across frequency bands (Figure 5). In the theta band, key metrics 
such as Mean PLI, BC, and Eccentricity were robustly correlated 
with poorer cognitive performance (e.g., negative correlations with 
MMSE and MoCA) and greater disease severity (positive 
correlation with CDR). In contrast, the beta band showed an 

opposing trend, where Mean PLI and Eccentricity were significantly 
associated with better cognitive outcomes and lower 
disease severity.

3.5 ROC analysis of MST features for 
differentiating AD, MCI-AD, and HC

In this study, we assessed the classification capabilities of specific 
MST parameters to differentiate AD, MCI-AD, and HC subjects 
using ROC curve analysis. We selected Eccentricity and mean PLI 
as the primary features for classification analysis based on their 
significant results in inter-group difference analysis. For 
distinguishing AD from HC, beta band mean PLI and theta band 
Eccentricity demonstrated excellent performance, with AUCs of 
0.83 (95% CI: 0.675–1.0, p < 0.0001) and 0.84 (95% CI: 0.664–1.0, 
p < 0.0001), respectively. In differentiating MCI-AD from HC, beta 
band mean PLI showed the strongest discriminatory power 
(AUC = 0.87, 95% CI: 0.612–0.986, p = 0.0004), whereas theta band 
Eccentricity showed a trend but did not reach significance 
(AUC = 0.81, 95% CI: 0.457–0.941, p = 0.0608). When 
distinguishing MCI-AD from AD, theta band parameters exhibited 
moderate performance, with Eccentricity (AUC = 0.75, 95% CI: 
0.491–1.0, p = 0.0151) slightly outperforming mean PLI 
(AUC = 0.73, 95% CI: 0.499–1.0, p = 0.0221). Notably, beta band 
parameters did not reach statistical significance in this comparison 
(Figure 6).

FIGURE 4

Differential distribution of MST brain network alterations in AD and MCI-AD. Topographical distribution of mean PLI values in MST brain networks for 
beta (13–30 Hz, top row) and theta (4–8 Hz, bottom row) frequency bands across HC, MCI-AD, and AD groups. The color scale represents PLI values 
from 0.3 (blue) to 0.9 (red).
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3.6 Associations between MST parameters 
and CSF biomarkers

Correlation analysis revealed significant associations between 
MST parameters and CSF biomarkers across different frequency 
bands, persisting after adjusting for sex, age, and years of education. 
In the beta band, degree exhibited a positive correlation with total tau 
(t-Tau) levels (Pearson r = 0.36, p = 0.037). Within the theta band, leaf 
fraction demonstrated a negative correlation with phosphorylated tau 
(p-Tau) levels (Pearson r = −0.34, p = 0.048), while tree hierarchy 
showed a positive correlation with Aβ1–42 levels (Pearson r = 0.35, 
p = 0.046). These findings indicate specific association patterns 

between MST parameters and AD-related CSF biomarkers across 
different frequency bands. The observed correlations, each unique to 
different MST parameters and CSF biomarkers, potentially reflect the 
complex relationship between brain network topology and AD 
pathology (Figure 7).

4 Discussion

This study examines functional brain network alterations 
across the AD spectrum using MST analysis of rsEEG data. 
We  identified distinct frequency-specific changes in network 

FIGURE 6

Classification of AD, MCI-AD, and HC using MST parameters. MST parameters from beta and theta band EEG recordings were evaluated for their ability 
to discriminate between AD, MCI, and HC groups using logistic regression with a 50% train-test split. For AD vs. HC, beta band mean PLI showed 
excellent performance (AUC = 0.83), with theta band eccentricity achieving the highest AUC (0.84). In distinguishing MCI-AD from HC, beta band 
mean PLI demonstrated the strongest discriminatory power (AUC = 0.87), followed by theta band eccentricity (AUC = 0.81). For MCI-AD vs. AD, theta 
band eccentricity showed moderate performance (AUC = 0.75), slightly outperforming mean PLI (AUC = 0.73).

FIGURE 5

Correlation heatmaps for MST features and cognitive scores. (A) Theta band: Pearson correlations between network metrics (PLI, BC, eccentricity, Lf, 
degree, diameter, Th) and clinical scores (MMSE, MoCA, HDS-R, CDR, HAMA, HAMD, ADL, AVLT-delay, AVLT-recog). (B) Beta band: correlations 
between identical metrics and scores in the beta frequency range. Blue and red indicate positive and negative correlations, respectively. Color intensity 
represents the Pearson correlation coefficient (−1 to 1). Significance: * p < 0.05, ** p < 0.01, ***p < 0.001. mean PLI, mean Phase Lag Index; BC, 
betweenness centrality; Th, tree hierarchy; Lf, leaf fraction.
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topology that differentiate AD, MCI-AD, and healthy controls. 
Particularly notable were the increased connectivity and altered 
topology in the theta band and decreased connectivity in the beta 
band in AD patients, alongside unique network configurations in 
MCI-AD. Importantly, these network parameters correlated with 
cognitive performance and CSF biomarkers of AD pathology. Our 
analysis revealed that certain MST metric relationships in AD 
differ from theoretical expectations seen in healthy networks, 
suggesting that neurodegenerative processes fundamentally alter 
brain network organization principles. Rather than simple 
disruptions, these changes appear to represent specific 
pathological reorganization patterns that reflect the underlying 
disease process.

4.1 Frequency-specific network alterations

In the theta band, AD patients exhibited increased mean PLI, 
BCmax, and Eccentricity compared to HC. The concurrent increases in 
BCmax (indicating higher centrality) and Eccentricity (indicating 
longer paths) challenge conventional network theory, which typically 
predicts an inverse relationship between these metrics. This unusual 
configuration suggests AD-specific network disruption where certain 
nodes become more critical for information flow while overall 
network integration decreases. This may result from neurodegenerative 
processes forcing communication through fewer surviving pathways 
while requiring longer routes between regions. While mean PLI 
provides valuable information about functional connectivity strength, 
it does not directly reflect how connections between nodes are 
organized. Our MST analysis addresses this limitation by examining 
topological properties independent of absolute connectivity values. 
This distinction between connectivity strength and network 
organization is crucial for interpreting the complex neural dynamics 
in AD. Conversely, in the beta band, we observed decreased mean PLI 
in AD patients, suggesting a more regularized network structure. 
These findings are consistent with previous studies on AD-related 
network changes. For instance, Stam et al. (2009) reported increased 
theta band functional connectivity in AD using synchronization 
likelihood. In contrast, Engels et al. (2015) found that AD patients had 
weaker functional connectivity than controls, especially in higher 
frequency bands, and that active regions seem more prone to AD 
pathology. Similarly, Koelewijn et al. (2017) observed disrupted alpha 

and beta-band resting-state oscillatory network connectivity in AD 
using MEG data. Notably, our study extends these findings by 
demonstrating specific changes in MST metrics, such as BCmax and 
Eccentricity, thereby providing a more detailed characterization of the 
topological alterations in both AD and MCI-AD. The posterior 
predominance observed in the theta band despite reduced global 
density may reflect compensatory recruitment in response to AD 
pathology, though this interpretation remains provisional and requires 
longitudinal confirmation.

These findings complement previous MST studies in 
neurodegenerative disorders, such as those by Yu et  al. (2016) in 
frontotemporal dementia, Peraza et al. (2015) in dementia with Lewy 
bodies, and Ciftçi (2011) in Alzheimer’s disease. Our results align with 
the broader literature on network disruptions in neurodegenerative 
diseases, while providing novel insights into the frequency-specific 
alterations in AD and MCI-AD. For instance, van Dellen et al. (2015) 
reported a loss of EEG network efficiency in dementia with Lewy 
bodies, which was related to cognitive impairment. Additionally, 
Wang et  al. (2014) found decreased coherence and functional 
connectivity in AD using traditional connectivity measures, further 
supporting the notion of network disruptions in neurodegenerative 
disorders. In the delta band, MCI-AD patients showed increased 
maximum degree despite a trend toward higher mean eccentricity, 
which appears contradictory as these metrics typically exhibit negative 
correlation. This pattern may reflect an early compensatory 
mechanism where specific nodes develop stronger centrality while 
overall network efficiency decreases, potentially characterizing the 
transitional state between healthy cognition and established 
AD. Intriguingly, the MCI-AD group did not display significant 
differences in mean PLI when compared to both the HC and AD 
groups in any frequency band. However, MST analysis revealed that 
in the beta band, the MCI-AD group had significantly different Kappa 
values compared to both AD and HC groups, suggesting a unique 
network topology in this prodromal stage of AD. The lower Kappa 
values in the MCI-AD group indicate a less uniform degree 
distribution, which may reflect early pathological processes such as 
synaptic dysfunction and neuronal loss (Tijms et al., 2013). Notably, 
the beta-band Kappa pattern in MCI-AD differed from both HC and 
AD, suggesting a non-linear, prodromal-specific reconfiguration 
rather than a simple intermediate state. This dissociation warrants 
emphasis as a candidate biomarker for the transitional phase; 
replication, test–retest reliability, and external validation are needed 

FIGURE 7

Correlations between MST parameters and CSF biomarkers. Scatter plots showing significant correlations between (A) degree and t-Tau in beta band, 
(B) leaf fraction and p-Tau in theta band, and (C) tree hierarchy and Aβ1–42 in theta band. Pearson correlation coefficients (r) and p-values are indicated 
for each plot. Pearson correlation coefficients (r) and p-values are indicated for each plot. t-Tau, total tau; p-Tau, phosphorylated tau.
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to establish clinical utility. This vulnerability in network structure may 
contribute to the cognitive deficits and increased risk of progression 
to AD observed in this population (Petersen et al., 2018). Furthermore, 
the specificity of these changes to the beta band highlights the 
importance of considering frequency-specific network alterations in 
the early stages of AD.

4.2 Network metrics and cognitive 
performance

In the theta band, cognitive scores negatively correlated with both 
BCmax and Eccentricity. Rather than being contradictory, these parallel 
correlations suggest that both increased centrality and increased path 
length represent maladaptive changes in AD. As cognitive function 
deteriorates, networks appear to develop greater dependence on 
central hubs alongside less efficient overall organization. This dual 
impairment may reflect increasingly constrained information flow as 
AD progresses. This is consistent with previous studies reporting 
increased theta band synchronization in AD and MCI patients 
(Koelewijn et al., 2017; Stam, 2014). The positive correlations between 
Leaf fraction and cognitive scores (HDS-R, AVLT-delay) further 
support this interpretation, suggesting that preserved network 
diversity relates to better cognitive performance, contrary to the 
conventional view that higher Leaf fraction necessarily indicates a less 
efficient network organization (Yu et  al., 2016). In the beta band, 
cognitive scores positively correlated with mean PLI and Eccentricity. 
Notably, the positive correlation between diameter and cognitive 
scores requires careful interpretation, as increased diameter 
traditionally indicates less integrated topology. This counter-intuitive 
finding likely reflects compensatory mechanisms where the brain 
adapts to pathology through alternative communication pathways. In 
the beta band specifically, a degree of functional segregation may limit 
propagation of pathological synchronization while preserving 
essential cognitive processes. This observation aligns with previous 
studies reporting altered beta band synchronization in AD and MCI 
(Maestú et al., 2015; López et al., 2014), and suggests that conventional 
network efficiency metrics may require disease-specific interpretation. 
The positive correlations between Tree hierarchy and cognitive scores 
(MoCA, AVLT-delay) further suggest that certain aspects of network 
organization in the beta band contribute to maintaining cognitive 
function (Stam et al., 2007), though our interpretation emphasizes the 
potential adaptive value of maintained network differentiation rather 
than simply increased integration.

4.3 Diagnostic potential of MST parameters

The ROC analysis demonstrated the potential of MST 
parameters, particularly beta band mean PLI and theta band 
Eccentricity, in differentiating AD and MCI-AD from healthy 
controls. These findings are comparable to those reported by 
previous studies using MST measures to investigate brain network 
changes in AD. Canario et  al. (2022) found that MST measures 
derived from functional near-infrared spectroscopy (fNIRS) data 
were effective in characterizing brain topologies and distinguishing 
AD patients from those with mild cognitive impairment (MCI) and 
healthy controls. Similarly, a systematic review by Blomsma et al. 

(2022) highlighted the potential of MST metrics for assessing disease 
specificity and transdiagnostic sensitivity in neurological and 
psychiatric conditions, including neurodegenerative disorders. 
However, our study extends this to include MCI-AD, highlighting 
the potential of these measures for early diagnosis. The moderate 
performance in distinguishing MCI-AD from AD suggests that 
while these measures are sensitive to early network changes, they 
may be  less effective in tracking progression once significant 
pathology is established. This underscores the potential of MST 
parameters as early diagnostic biomarkers but also highlights the 
need for complementary measures to track disease progression. 
Clinically, this positions EEG-MST metrics primarily as tools for 
early detection and cohort enrichment, while progression 
monitoring in established AD may require composite models that 
combine MST features with longitudinal cognitive change, CSF/PET 
biomarkers, or structural/functional MRI to capture disease 
dynamics more sensitively.

4.4 CSF biomarkers and network topology

Our study is among the first to directly link MST parameters with 
CSF biomarkers of AD. The positive correlation between beta band 
Degree and t-Tau levels, and the negative correlation between theta 
band Leaf fraction and p-Tau levels, provide novel insights into the 
relationship between network topology and AD pathology. These 
findings extend previous work by Smailovic et al. (2021), who found that 
the relationships between EEG measures and CSF biomarkers are also 
reflected in the topological properties of functional networks, as well as 
the earlier work by Smailovic et al. (2018) on the correlation between 
quantitative EEG power/synchronization and Alzheimer’s disease CSF 
biomarkers. The positive correlation between theta band tree hierarchy 
and Aβ1–42 levels is noteworthy. Lower levels of Aβ1–42 in the CSF indicate 
more amyloid deposition in the brain, a hallmark of AD. This positive 
correlation suggests that more amyloid deposition (i.e., lower Aβ1–42 
levels) is associated with a less complex or less ordered hierarchical 
structure in the theta band activity, possibly reflecting poorer cognitive 
function or more neurodegeneration. Interestingly, Palop and Mucke 
(2016), in their review of neural network dysfunction in AD, suggest 
that amyloid pathology may lead to network dysfunctions that precede 
overt neurodegeneration. Our finding of a less organized theta band 
hierarchy in the presence of more amyloid deposition aligns with this 
notion, potentially capturing an early stage of network disruption. From 
a neurobiological perspective, the observed frequency–biomarker 
mapping is plausible. Theta-band coordination is strongly shaped by 
hippocampo–thalamo–cortical loops and local inhibitory–excitatory 
balance; amyloid-related synaptic and interneuron dysfunction is 
therefore expected to preferentially perturb slower rhythms, which is 
consistent with a less organized theta hierarchy when amyloid burden 
is higher. By contrast, beta-band organization depends on long-range 
cortico–cortical coupling within frontoparietal and sensorimotor 
systems; axonal/myelin injury and neuronal loss associated with tau 
pathology could weaken distributed hub integration, in line with the 
beta-band topology changes and the Degree–t-Tau association. These 
mechanistic links are provisional and should be tested using multimodal 
or longitudinal designs (e.g., PET–EEG, source-level analyses).

Several methodological considerations warrant mention. First, 
we focused on MST topology rather than mean PLI alone, as MST 
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provides specific insights into network organization. Second, the 
apparent contradictions between certain MST metrics likely reflect 
disease-specific reorganization patterns rather than 
methodological inconsistencies.

4.5 Limitation and future directions

Our study provides valuable insights into network alterations in 
AD and MCI-AD; however, several limitations should be acknowledged. 
Despite applying strict inclusion and exclusion criteria to ensure sample 
homogeneity and minimize confounding variables, our sample size, 
especially for the MCI-AD group, was relatively small, potentially 
limiting the generalizability of our findings. While we controlled for 
age, education, and handedness, other potential confounders such as 
medication use, comorbidities, and lifestyle factors were not accounted 
for, which may impact brain network organization. In particular, 
CNS-active medications and multimorbidity may systematically bias 
frequency-specific EEG features (e.g., sedative–hypnotics can increase 
beta activity, anticholinergic burden can alter slower rhythms), and 
we did not systematically record drug class, dose, or duration. Future 
studies should quantify medication exposure and perform sensitivity 
analyses to assess its impact on MST-derived metrics. Additionally, 
although we  employed a comprehensive battery of clinical and 
neuropsychological assessments to evaluate participants’ cognitive 
function and emotional state, the cross-sectional design limits our 
ability to draw conclusions about the temporal dynamics of network 
changes throughout disease progression. Future studies with larger 
cohorts, consideration of a broader range of confounding factors, 
validation with alternative connectivity metrics like wPLI, and 
longitudinal designs are necessary to confirm our results, enhance 
generalizability, provide a more comprehensive understanding of 
network alterations in AD and MCI-AD, and elucidate how brain 
networks evolve as the disease progresses from the prodromal stage to 
full-blown AD. Finally, because MST-based topology relies on the rank 
ordering of edge weights, it emphasizes group-level connectivity 
patterns and may under-represent individual idiosyncrasies; subject-
level reliability and individualized tree approaches were beyond our 
scope and warrant future work.

The potential of MST analysis in detecting network changes across 
the AD spectrum, as demonstrated in our study, underscores its utility 
as a valuable tool for investigating network alterations in 
neurodegenerative disorders. As discussed by Tewarie et al. (2015) and 
Stam et al. (2014), MST analysis provides an unbiased method for 
characterizing complex brain networks, making it a valuable tool for 
investigating network changes in AD. By employing this approach, 
we  contribute to the growing body of evidence supporting the 
potential of network analysis techniques in uncovering early 
biomarkers of AD, as emphasized by Maestú et al. (2019) in their 
discussion of the potential of M/EEG in AD research.

5 Conclusion

In summary, our MST analysis revealed frequency-specific 
alterations in brain network topology across the AD spectrum. 
These changes correlated with cognitive performance and CSF 
biomarkers, while unusual relationships between MST metrics likely 

reflect disease-specific reorganization patterns. These findings 
underscore EEG-based MST analysis as a promising non-invasive 
tool for capturing AD network pathology. Future longitudinal 
studies are needed to track these network changes during 
disease progression.
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