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NMDA receptors (NMDARs) are widely distributed throughout the central nervous 
system (CNS) and play pivotal roles in normal physiological processes such as synaptic 
plasticity, learning, and memory. Substantial evidence indicates that NMDAR dysfunction, 
particularly excessive calcium influx, critically contributes to the pathogenesis of major 
neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Dysregulated 
glutamatergic signaling synergizes with pathological protein aggregation (e.g., Aβ, 
α-synuclein, mutant huntingtin) to drive neuronal loss. We systematically delineate 
NMDAR-related mechanisms underlying neurodegeneration, highlighting spatial-
specific roles (e.g., synaptic NMDAR-mediated neuroprotection versus extrasynaptic 
NMDAR-mediated excitotoxicity) and crosstalk with mitochondrial dysfunction and 
oxidative stress. We critically evaluate current therapeutic strategies targeting NMDARs, 
including subunit-selective modulators, downstream effector modulation, and glutamate 
transporter modulation designed to restore NMDAR homeostasis. Consequently, 
NMDARs and their modulators represent promising therapeutic targets for these 
refractory conditions. This review comprehensively summarizes current research on the 
involvement of NMDARs and the glutamatergic system in neurodegenerative diseases. 
Furthermore, we discuss the clinical application of NMDAR-targeting agents and explore 
emerging therapeutic strategies focused on modulating NMDAR-related pathways. 
This article aims to provide a reference for elucidating the molecular mechanisms 
underlying these neurodegenerative disorders and to highlight potential avenues for 
future drug development.
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1 Introduction

Glutamatergic neurotransmission, primarily mediated by N-methyl-D-aspartate receptors 
(NMDARs), underpins synaptic plasticity, learning, memory and other critical physiological 
functions (Bannerman et al., 2014; Paoletti et al., 2013; Morris, 2013). However, this critical 
signaling pathway exhibits a profound duality: its exquisite calcium permeability, essential for 
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physiological processes like long-term potentiation (LTP) (Lüscher 
and Malenka, 2012), concurrently renders neurons vulnerable to 
pathological cascades (Kodis et  al., 2018). Crucially, NMDAR 
dysregulation is now recognized not merely as a consequence but as a 
central driver of the progressive neuronal dysfunction and loss in 
major neurodegerative diseases, including amyotrophic lateral 
sclerosis (ALS) (Paul and de Belleroche, 2014; Spalloni et al., 2013), 
Parkinson’s disease (PD) (Xu et  al., 2012; Picconi et  al., 2012), 
Huntington’s disease (HD) (Sepers and Raymond, 2014; Fernandes 
and Raymond, 2009) and Alzheimer’s disease (AD) (Xu et al., 2012; 
Wang and Reddy, 2017; Babaei, 2021).

While the neurotoxic potential of excessive NMDAR activation, 
termed “excitotoxicity,” has been a milestone concept since its first 
description by Olney in the 1970s (Rothman and Olney, 1987), 
contemporary research is rapidly dismantling simplistic views, 
revealing context-dependent signaling outcomes. This complexity 
simultaneously illuminates novel therapeutic avenues.

The frontier of neurodegeneration research has moved decisively 
beyond a monolithic view of the NMDARs. Key advances have 
demonstrated that functional consequences hinge on dynamic 
interactions among: subunit composition (GluN2A versus GluN2B), 
subcellular localization (synaptic versus extrasynaptic), developmental 
stage, neuronal subtype, and associated proteins including scaffolding 
proteins and signaling effectors (Paoletti et al., 2013; Lohmann and 
Kessels, 2014; Gladding and Raymond, 2011; Sanz-Clemente et al., 
2013). The oversimplified dichotomy attributing neuroprotection 
exclusively to GluN2A-containing receptors and toxicity to GluN2B-
containing receptors has evolved into a more nuanced understanding 
paradigm. No NMDAR subunit is intrinsically “good” or “bad”; their 
roles are context-dependent (Hardingham and Bading, 2003). 
Synaptic NMDARs – often enriched in GluN2A subunits in mature 
neurons, typically activate pro-survival pathways supporting neuronal 
plasticity and survival. In contrast, extrasynaptic pools, which 
frequently contain GluN2B, preferentially couple to mitochondrial 
dysfunction and oxidative stress when chronically overactivated (such 
as pathological glutamate spillover) (Hardingham and Bading, 2010). 
Subunits with restricted expression (such as GluN2D and GluN3A) 
contribute uniquely to disease-specific vulnerabilities in AD and PD 
(Crawley et  al., 2022; Mellone et  al., 2019; Swanger et  al., 2015). 
Developmental and pathological reprogramming further complicates 
this landscape: GluN2B dominance is vital in neurodevelopment but 
exacerbates excitotoxicity in mature degenerating neurons. 
Conversely, AD induces pathological GluN2A internalization and 
GluN2B surface accumulation, favoring excitotoxic signaling.

Pathologically, neurodegenerative processes actively corrupt this 
finely tuned NMDAR signaling system. Several universal mechanisms 
are shared by different neurodegenerative diseases by which NMDAR 
dysfunction propagates neurodegeneration: (1) excitotoxic calcium 
overload (Dong et al., 2009; Lau and Tymianski, 2010); (2) synaptic/
extrasynaptic receptor imbalance (Hardingham and Bading, 2010; 
Parsons and Raymond, 2014), (3) mitochondrial dysfunction and 
oxidative stress (Lin and Beal, 2006; Islam, 2017), and (4) 
proteinopathy-induced receptor mislocalization (Aβ in AD; 
α-synuclein in PD) (Wang et  al., 2013; Durante et  al., 2019). 
Understanding these convergent pathways is key to developing broad-
spectrum therapeutic strategies.

The limited disease-modifying efficacy of broad antagonists such 
as memantine (an uncompetitive, low-affinity, open-channel blocker 
that preferentially blocks the extrasynaptic NMDAR) (Johnson and 

Kotermanski, 2006) underscores the futility of non-selective blockade 
and the imperative for precision targeting. Current strategies focus on: 
subunit-selective modulators, including GluN2B-selective negative 
modulators (such as ifenprodil and its derivatives) (Egunlusi and 
Joubert, 2024) or GluN2A-selective positive modulators (which are 
less investigated) (Hanson et  al., 2020), aiming to restore subunit 
balance. Location-biased interventions strive to selectively inhibit 
pathological extrasynaptic NMDAR signaling while sparing crucial 
synaptic function. Novel strategies such as modulation of NMDAR 
upstream kinases and phosphatases (such as PKC) and downstream 
effectors (such as DAPK), dissociation of NMDA receptor complex 
are also emerging and under active investigation.

This review synthesizes the latest mechanistic insights into 
multifaceted NMDAR dysregulation in neurodegeneration. 
We critically evaluate subunit-specific, localization-dependent, and 
context-governed signaling in disease models and human pathology. 
Emphasis is placed on translating this complexity into emerging 
therapeutics that restore physiological homeostasis or selectively block 
pathological cascades, moving beyond crude receptor inhibition.

2 NMDAR composition and spatial 
distribution

Structurally, functional NMDARs are obligate heterotetramers, 
typically assembled as dimeric pairs of glycine-binding GluN1 
subunits (the obligatory co-agonist site) and glutamate-binding 
GluN2 subunits (the agonist site) (Cull-Candy et al., 2001; Hansen 
et al., 2018) (Figure 1). The GluN1 subunit (encoded by GRIN1) is 
essential for channel activity and is ubiquitous in all NMDARs (Tu 
and Kuo, 2015; Chou et al., 2024). The critical functional diversity is 
conferred primarily from the incorporation of GluN2 subunits 
(GluN2A-D, encoded by GRIN2A-D, respectively), each conferring 
distinct biophysical, pharmacological, and signaling properties to the 
receptor complex (Wyllie et al., 2013; Paoletti, 2011). GluN2A and 
GluN2B predominate in the forebrain, particularly in specific regions 
such as the hippocampus and cortex. GluN2C and GluN2D are more 
restricted, expressed notably in the cerebellum, thalamus, and during 
early development (Monyer et al., 1994; Watanabe et al., 1994; Köhr, 
2006). Additionally, GluN3 subunits (GluN3A-B, encoded by 
GRIN3A-B), which are not a component of most natural NMDARs, 
can incorporate into complexes alongside GluN1 and GluN2, 
forming non-canonical glycine-activated receptors characterized by 
low calcium permeability and insensitive to magnesium block 
(Henson et al., 2010; Chatterton et al., 2002). This combinatorial 
assembly generates a vast array of receptor subtypes with 
tailored properties.

The spatial distribution of NMDARs within neurons is highly 
organized and functionally critical. Crucially, NMDARs exhibit a distinct 
synaptic versus extrasynaptic localization, a dichotomy with profound 
implications for neuronal signaling and survival (Gladding and Raymond, 
2011; Parsons and Raymond, 2014). Synaptic NMDARs, anchored by 
scaffolding proteins like the PSD-95 family to the postsynaptic density 
(PSD) (Chen et al., 2015; Niethammer et al., 1996), are activated by 
vesicular glutamate release into the synaptic cleft. They are key mediators 
of physiological processes, including the induction of long-term 
potentiation (LTP) and long-term depression (LTD), the foundation of 
learning and memory (Lüscher and Malenka, 2012; Bliss and Collingridge, 
1993). In contrast, extrasynaptic NMDARs, localized to the plasma 

https://doi.org/10.3389/fnagi.2025.1604378
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnagi.2025.1604378

Frontiers in Aging Neuroscience 03 frontiersin.org

membrane outside the PSD such as the dendritic shaft and soma, are 
often associated with different scaffolds proteins (SAP102 and SAP97) or 
adhesion molecules (cadherin and catenin) (Petralia et al., 2010; Groc 
et al., 2009; Li et al., 2011), are primarily activated under pathological 
conditions involving excessive glutamate spillover or impaired astrocytic 
glutamate reuptake.

Critically, the location of NMDAR also determines the downstream 
transcriptional consequences (Bading, 2017). Synaptic NMDAR 
activation promotes phosphorylation of the transcription factor cAMP 
response element-binding protein (CREB), driving expression of 
pro-survival, anti-apoptotic genes such as the brain-derived neurotrophic 
factor (BDNF) (Greer and Greenberg, 2008) Conversely, extrasynaptic 
NMDARs induce CREB shut-off pathway while concurrently activating 
pro-death signaling pathways (Hardingham et al., 2002).

Collectively, this intricate molecular architecture, defined by 
subunit composition, post-translational modifications, and precise 
subcellular positioning, establishes the NMDAR as a pivotal regulator 
of normal brain function. Consequently, disruptions in subunit 
expression, trafficking, synaptic localization, or downstream signaling 
cascades contribute profoundly to the pathogenesis of diverse 
neurodegenerative diseases.

3 NMDAR in neuronal impairment: 
excitotoxicity and beyond

3.1 NMDAR-induced excitotoxicity

Neuronal responses to NMDA receptor activity follow a bell-
shaped curve where neuronal survival peaks at physiological 

activation levels but declines under both hypoactive and hyperactive 
states (Hardingham and Bading, 2010). Hypoactivation of NMDAR 
has been recognized as a crucial driver in the progression and 
manifestation of age-related cognitive decline through inhibiting 
NMDAR-induced LTP and synaptic plasticity and other diseases such 
as schizophrenia (Nakazawa and Sapkota, 2020; Lindsley et al., 2006; 
Dong et al., 2023). This paradigm, first established by Hardingham 
and Bading, arises from spatiotemporal segregation of receptor 
subtypes. Under physiological conditions, NMDA receptors are briefly 
activated by a saturating (~1 mM) concentration of glutamate to 
conduct synaptic transmission (Vyklicky et al., 2014). While under 
conditions of hypoactivation, NMDAR hypofunction leads to drastic 
alterations in calcium influx and cellular signalling, impairing receptor 
transport to the postsynaptic membrane. Conversely, hyperactivation, 
caused by pathological glutamate spillover (μM concentrations of 
glutamate) according to different types of pathology or impaired 
receptor internalization, triggers downstream excitotoxic cascades 
including ROS production, mitochrondrial dysfunction and 
eventually neuronal death (Papadia et al., 2005).

Excitotoxicity, first described by Olney in the 1970s (Rothman 
and Olney, 1987), is a critical neurodegenerative mechanism 
wherein excessive NMDAR activation triggers neuronal death 
through calcium overload and downstream cytotoxic cascades 
(Rothman and Olney, 1995) (see Figure 2). This cascade initiates 
with disrupted glutamate homeostasis. Under physiological 
conditions, extracellular glutamate concentrations are regulated by 
excitatory amino acid transporters (EAATs), predominantly 
EAAT1/2 on astrocytes. The glutamate reuptake mechanism of 
EAATs fundamentally relies on the transmembrane sodium gradient 
established and maintained by ATP-fueled Na+/K+-ATPase activity 

FIGURE 1

Subunit composition of NMDA receptors. This schematic illustrates the heterotetrameric organization of the NMDARs. Structurally, functional NMDARs 
are obligate heterotetramers, typically assembled as dimeric pairs of GluN1 subunits and GluN2 subunits. The GluN1 subunit is essential for channel 
activity, binds the coagonists glycine or D-serine, and exhibits functional diversity through alternative splicing. The regulatory GluN2 subunit, which 
binds the primary agonist glutamate, confers distinct biophysical properties, pharmacological profiles, and signaling capabilities to the receptor 
complex. While the precise roles of GluN3 subunits are less defined, emerging evidence indicates their incorporation forms non-canonical NMDARs 
characterized by reduced calcium permeability and insensitivity to voltage-dependent magnesium block, suggesting unique contributions to 
neuropathological mechanisms and potential therapeutic targeting.
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(Alleva et al., 2020; Alleva et al., 2022). This indirect but absolute 
energy dependence creates a critical vulnerability point: when 
under conditions of ischemia, mitochondrial dysfunction, or 
oxidative stress, which impair ATP production and inhibit the 
normal function of ion pumps, can lead to the collapse of the ion 
gradient. Consequently, EAAT-mediated glutamate clearance fails, 
allowing glutamate to persistently activate postsynaptic NMDARs 
(Andersen et  al., 2021; Murphy-Royal et  al., 2017; Mahmoud 
et al., 2019).

Overactivation of NMDARs further promote calcium influx, 
initiating downstream neurotoxic cascades: Intracellular calcium 
surge overwhelms mitochondrial buffering capacity, inducing 
mitochondrial membrane depolarization, halting ATP synthesis, 
and reactive oxygen species (ROS) explosion (Neves et al., 2023; 
Rego and Oliveira, 2003; Szydlowska and Tymianski, 2010). 
Concurrently, calcium-dependent enzymes initiate destructive 
processes: calpains degrade cytoskeletal proteins and activate 
pro-apoptotic Bcl-2 family members (Raynaud and Marcilhac, 2006; 
Chan and Mattson, 1999); NO causes inhibition of mitochondrial 
respiratory chain, rapid glutamate release from both astrocytes and 
neurons, and subsequent excitotoxic death of the neurons (Dawson 
et al., 1991; Brown and Bal-Price, 2003); phospholipase A2 (PLA2) 
promotes arachidonic acid (AA) release, fueling inflammatory 
cascades (Sun et al., 2004).

These pathways converge via necrosis, apoptosis, or dysregulated 
autophagy, constituting a final common pathway in neurodegeneration.

3.2 Beyond excitotoxicity: NMDAR as an 
amplifier of neuronal damage

While the etiology of neurodegenerative diseases remains 
incompletely understood, emerging evidence implicates defects in 
energy metabolism and oxidative damage as key co-pathogenic 
mechanisms beyond excitotoxicity (Beal, 1995; Tripathi et al., 2020; 
Stark and Bazan, 2011). Involvement of oxidative damage and 
mitochondrial dysfunction has been suggested as a common feature 
shared by multiple neurodegenerative diseases (Cenini et al., 2019; 
Reed, 2011).

Oxidative stress is suggested to be involved in the etiology of 
both brain aging and neurodegenerative diseases such as AD and 
PD. (Puspita et al., 2017; Malinski, 2007) NMDAR overactivation 
leads to excessive calcium influx, which not only triggers 
excitotoxic cell death but also initiates a cascade of oxidative 
events. Elevated intracellular calcium binds with calmodulin and 
activates neuronal nitric oxide synthase (nNOS), to convert 
l-arginine to citrulline and nitric oxide (NO). NO can function as 
a messenger molecule in the CNS under physiological conditions, 
however, when generated in excessive amounts, NO can 
be neurotoxic (Dawson and Dawson, 1996). NO can be scavenged 
in a rapid reaction with superoxide (O2

−) to generate peroxynitrite 
(ONOO−). ONOO− is a potent oxidant and the primary 
component of nitroxidative stress (Malinski, 2007). These free 
radicals further impair mitochondrial function, creating a vicious 

FIGURE 2

NMDAR-mediated excitotoxic cascade. This schematic illustrates the core sequence of molecular events driving glutamate excitotoxicity: The 
glutamate reuptake by EAATs fundamentally relies on the transmembrane sodium gradient established and maintained by ATP-dependent Na+/K+-
ATPase activity. Pathological conditions of ischemia, mitochondrial dysfunction, or oxidative stress, impair ATP production, inhibit ion pumps, can lead 
to the collapse of the ion gradient. Consequently, astrocytic EAATs fail to clear synaptic glutamate. Persistent glutamate accumulation caused sustained 
NMDAR overactivation, triggering pathological calcium influx that initiates downstream neurotoxic cascades, including further mitochondrial 
dysfunction and neuronal death.
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cycle of oxidative damage (Duncan and Heales, 2005; Ghasemi 
et al., 2018). Notably, mitochondrial dysfunction exacerbates ROS 
production (Murphy, 2009), which may establish a feedforward 
loop that accelerates neurodegeneration.

Lipid peroxidation, as a critical downstream consequence, directly 
links oxidative stress to NMDAR regulation and participates in AD, 
HD, and PD pathophysiology (Reed, 2011). ROS attack 
polyunsaturated fatty acids (PUFAs) in neuronal membranes to 
generate highly reactive aldehydes such as 4-hydroxynonenal (4-HNE) 
and malondialdehyde (MDA) (Gaschler and Stockwell, 2017). These 
lipid peroxidation products can impair glutamate transport through 
HHE modification of EAAT2 (Lovell et al., 2012), reducing glutamate 
clearance and further potentiating NMDAR overactivation.

4 Flux-independent NMDAR signaling

Beyond its canonical role as an ionotropic receptor mediating fast 
excitatory synaptic transmission, emerging evidence highlights the 
significance of flux-independent (non-canonical or metabotropic-
like) NMDAR signaling in neurodegenerative diseases. Several 
studies have indicated that flux-independent NMDARs mediate LTD, 
cell membrane molecular dynamics, pH sensing, and synaptic 
depression induced by amyloid-β (Aβ) oligomers (de Oca and 
Balderas, 2018; Park et al., 2022). Tamburri et al. (2013) demonstrated 
that oligomeric Aβ induces rapid synaptic depression in hippocampal 
neurons of slices through a mechanism independent of ion influx but 
dependent on synaptic NMDAR activaion. Kessels et  al. further 
established that Aβ-induced synaptic depression requires GluN2B-
containing NMDARs, as evidenced by blockade with the competitive 
antagonist D-2-Amino-5-phosphonopentanoic acid (D-APV) (a 
non-selective GluN2 antagonist) but not by the open-channel blocker 
MK-801 or glycine-site antagonist 7 chloro-kynurenate (7CK) 
(Kessels et al., 2013). However, Nabavi et al. reported a contradictory 
result that 7CK failed to block LTD, which was suspected to be caused 
by subtle methodological difference (Nabavi et al., 2014). Collectively, 
these findings support the involvement of flux-independent NMDAR 
signaling in synaptic dysregulation during neurodegeneration. While 
this emerging paradigm holds significant therapeutic promise, 
important limitations remain: the precise molecular mechanisms 
underlying flux-independent NMDAR signaling are still incompletely 
characterized, and like most new knowledge, flux-independent 
NMDARs has been controversial, as contradictory findings exist. 
These questions are currently under active investigation.

5 NMDAR in neurodegenerative 
diseases

5.1 NMDAR and amyotrophic lateral 
sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a devastating 
neurodegenerative disease characterized by the progressive loss of 
upper and lower motor neurons, leading to muscle atrophy, paralysis, 
and ultimately respiratory failure (Hardiman et al., 2017; Feldman 
et  al., 2022). Although its etiology remains incompletely defined, 
growing evidence implicates glutamate-mediated excitotoxicity as a 

key contributor to motor neuron degeneration (Paul and de 
Belleroche, 2014; Spalloni et al., 2013; Heath and Shaw, 2002).

Motor neurons are particularly vulnerable to NMDAR-mediated 
excitotoxicity due to their low calcium-buffering capacity and 
abundant NMDAR expression (Van Den Bosch et  al., 2006). 
Preclinical studies and patient-derived motor neurons have 
demonstrated that NMDAR overactivation results in mitochondrial 
dysfunction, oxidative stress, and activation of apoptotic pathways, 
ultimately culminating in motor neuron death (Paul and de 
Belleroche, 2014; Heath and Shaw, 2002; Menzies et al., 2002; Catania 
et al., 2001; Paul et al., 2014).

Interrupted glutamate homeostasis further contributes to 
excitotoxicity. Studies have revealed elevated levels of glutamate and 
aspartate in the cerebrospinal fluid of ALS patients (Rothstein et al., 
1990). This accumulation is strongly linked to the selective loss or 
dysfunction of the major astrocytic glutamate transporter, EAAT2, 
observed in the motor cortex and spinal cord of ALS patients and in 
transgenic ALS mouse (SOD1 mutant) models (Rothstein et al., 1995; 
Howland et al., 2002). Critically, the reduced EAAT2 expression is 
induced by dysregulated NF-κB signaling, which represses EAAT2 
expression (Frakes et al., 2014; Crosio et al., 2011). Paradoxically, 
NF-κB is also required for both activation and repression of the 
EAAT2 promoter, which positioning it as a context-dependent 
regulator (Kim et  al., 2011). For example, N-myc and NF-κB are 
required for TNF-α-mediated transcriptional repression of EAAT2. 
On the contrary, NF-κB also mediates EGF-, TGF-α-, and cAMP-
induced EAAT2 promoter activation (Su et al., 2003; Sitcheran et al., 
2005). Besides its effects on glutamate transporters, NF-κB may also 
contribute to ALS pathogenesis by induction of pro-inflammatory 
gene expression (Källstig et  al., 2021). Consequently, excessive 
synaptic glutamate persistently activates NMDARs. Oxidative stress 
may also participate in ALS pathogenesis through oxidative stress-
mediated protein injury, lipid peroxidation, and DNA and RNA 
oxidation have been observed in ALS patients (Singh et al., 2019).

Beyond glutamate, pathological accumulation of the NMDAR 
co-agonist D-serine driven by impaired degradation such as the DAO 
R199W mutation shifts its role from physiological modulator to 
neurotoxic effector (Sasabe et  al., 2012). Excess D-serine drives 
NMDAR overstimulation that exacerbates neurodegeneration 
through two convergent pathways: direct potentiation of excitotoxic 
calcium influx via extrasynaptic NMDARs, and indirect induction of 
non-excitotoxic death mechanisms including autophagic flux blockade 
and intrinsic apoptosis (Mitchell et al., 2010; Kondori et al., 2018).

ALS-associated genetic mutations further implicate NMDAR 
dysfunction. For example, the C9ORF72 mutation, the most common 
genetic cause of ALS/FTD (Pang and Hu, 2021), contributes to 
neurodegeneration through disrupting the surface expression, 
transport, and recycling of NMDARs. Studies using induced motor 
neurons (iMNs) derived from C9ORF72 ALS/FTD patients revealed 
elevated expression of the essential GluN1 subunit on neurites and 
dendritic spines (Burk and Pasterkamp, 2019; Shi et al., 2018). This 
increase facilitates more frequent calcium influx, thereby 
exacerbating excitotoxicity.

The central role of NMDAR-mediated excitotoxicity makes 
NMDAR a compelling therapeutic target in ALS. However, the 
complexity of ALS pathogenesis (Figure  3) has hindered the 
development of effective disease-modifying treatments. The only 
FDA-approved drug, riluzole, has modest efficacy, and can only 
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extend the average survival time by 3 months and cannot reverse 
motor neuron damage (Miller et  al., 2012). Direct NMDAR 
antagonists (such as memantine) have yielded limited clinical 
success, largely due to their disruptive effects on essential 
physiological NMDAR functions in synaptic plasticity and cognition, 
leading to unacceptable side effects. While preclinical studies in 
SOD1 mutant mice demonstrate that memantine treatment delays 
disease progression and improves motor neuron survival, likely 
through inhibition of spinal cord NMDA receptors (Wang and 
Zhang, 2005; Joo et al., 2007), these findings have not translated to 
clinical benefit in ALS patients. Notably, several clinical trials 
evaluating memantine in sporadic ALS showed that though 
memantine is well-tolerated in ALS patients, no significant effects on 
disease progression or survival time were found (de Carvalho et al., 
2010; Bhai et al., 2025). Thus, while memantine remains a valuable 
tool for investigating NMDAR-mediated mechanisms in ALS 
models, current evidence does not support its therapeutic use 
in patients.

Consequently, research is shifting towards more refined 
approaches, such as subunit-selective NMDAR antagonists or 
modulators targeting allosteric sites. Additionally, combination 
therapies targeting both upstream triggers (such as enhancing 
glutamate uptake) or downstream effectors of NMDAR 
overactivation (such as anti-apoptotic agents, antioxidants), even 
gene therapies, alongside selective NMDAR modulation hold 
promise for providing broader neuroprotection for ALS patients 
(Jiang et al., 2022).

5.2 NMDAR and Parkinson’s disease (PD)

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder characterized by the loss of dopaminergic neurons in the 
substantia nigra pars compacta (SNc) and the formation of Lewy 
bodies. This pathology leads to core motor symptoms including 
bradykinesia, rigidity, and resting tremor, as well as non-motor 
manifestations such as cognitive impairment and psychiatric 
disturbances (Kalia and Lang, 2015; Hayes, 2019; Melzer and 
Monyer, 2020).

Chronic NMDAR overactivation is a key mechanism of 
dopaminergic neuron degeneration (Beal, 1998). Basal ganglia 
circuit imbalance, specifically disinhibition of the subthalamic 
nucleus (STN) due to striatal dopamine depletion, drives excessive 
glutamate release onto substantia nigra pars compacta (SNc) 
neurons, resulting in sustained NMDAR stimulation and 
downstream neurotoxic events (Dunah et al., 2000; Rodriguez et al., 
1998). This excitotoxic cascade is compounded by two intrinsic 
vulnerabilities of SNc neurons: low expression of calcium-buffering 
proteins (notably calbindin-D28K) (Liang et al., 1996; Sulzer and 
Surmeier, 2013) and high surface density of GluN2B-containing 
NMDARs (Suárez et  al., 2010; Jones and Gibb, 2005). Besides, 
misfolded α-synuclein oligomers exacerbate NMDAR 
hyperactivation by inducing astrocytic glutamate release (Trudler 
et al., 2021). These interactions jointly trap NMDARs in a hyperactive 
state, exacerbating calcium influx and overwhelming mitochondrial 
calcium buffering capacity.

FIGURE 3

NMDAR dysregulation in amyotrophic lateral sclerosis (ALS). This schematic illustrates the key mechanisms driving excitotoxicity in ALS. Interrupted 
glutamate homeostasis is a key promoter in the pathogenesis of ALS, primarily due to selective loss or dysfunction of EAAT2. Pathologically elevated 
levels of the NMDAR coagonist D-serine, resulting from impaired degradation due to the DAO R199W mutation, further promote NMDAR activation. 
Altered NMDAR trafficking and increased surface expression, characterized by elevated GluN1 subunit density in neurons harboring C9ORF72 
mutations, provide an additional substrate for overactivation. These astrocytic and neuronal defects collectively sustain NMDAR overactivation, 
facilitating pathological calcium influx and exacerbating excitotoxic injury to motor neurons.
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Beyond excitotoxicity, NMDAR dysregulation in PD also 
contributes to impaired synaptic plasticity and the non-motor 
symptoms of the disease, such as cognitive impairment and 
depression. An unbalanced GluN2A/GluN2B subunit ratio of the 
striatal synaptic NMDAR is thought to be a crucial determinant in the 
regulation of motor behaviour and synaptic plasticity in PD (Mellone 
et  al., 2015). Pathological alterations include: (1) an imbalanced 
GluN2A/GluN2B ratio with selective depletion of GluN2B-containing 
receptors; (2) reduced phosphorylation of GluN1 and GluN2B; (3) 
dopamine D1 receptor-dependent redistribution of NMDARs 
between synaptic and postsynaptic sites (Landwehrmeyer et al., 1995; 
Paillé et al., 2010; Zhang and Chergui, 2015; Dunah and Standaert, 
2001). These changes collectively impair synaptic function and may 
mediate adverse effects of dopaminergic therapy such as the levodopa-
induced dyskinesia (LID) (Zhang et al., 2023).

Therapeutically, NMDAR antagonists show dual promise: they 
protect SNc neurons in preclinical models and ameliorate motor 
complications. Amantadine, an antagonist of NMDAR as an adjuvant 
to levodopa therapy, has been found to significantly ameliorate motor 
complications in PD and supports the idea that NMDAR 
hyperfunction contributes to levodopa-associated motor 
complications (Papa and Chase, 1996; Greenamyre and O'Brien, 1991; 
Metman et al., 1998). Memantine exhibits more modest efficacy and 
lacks amatadine’s anti-dyskinetic activity (Merello et al., 1999). The 
second generation of adamantane-based drugs is being designed, 
seeking to improve the clinical efficacy (Dembitsky et al., 2020). Given 
the dual role of NMDARs in motor and non-motor symptoms, future 
therapies may need to adopt a multifaceted approach, targeting 
specific receptor subtypes or brain regions to address the diverse 
manifestations of PD.

5.3 NMDAR and Huntington’s disease (HD)

Huntington’s disease (HD) is an autosomal dominant disorder 
caused by CAG trinucleotide expansions in the HTT gene that results 
in polyglutamine (polyQ)-expanded mutant huntingtin (mHTT) 
protein. This mutation drives progressive striatal degeneration largely 
through mHTT-induced NMDAR dysregulation, manifesting as 
motor dysfunction, cognitive decline, and psychiatric disturbances 
(McColgan and Tabrizi, 2018; Walker, 2007).

The selective vulnerability of striatal medium spiny neurons 
(MSNs) stems from their high GluN2B-NMDAR expression and 
intense corticostriatal glutamatergic input, rendering them 
particularly sensitive to mHTT-induced alterations in NMDAR 
trafficking, localization, and signaling (Landwehrmeyer et al., 1995; 
Li et al., 2003; Cepeda et al., 2007).

The pathogenic cascade begins with mHTT disrupting 
postsynaptic organization: mHTT exhibits reduced binding to PSD-95 
compared to wild-type HTT (Sun et  al., 2001). Yet mHTT 
paradoxically enhances PSD-95/GluN2B interactions in HD models, 
which may be linked to increased extrasynaptic NMDAR mislocation 
in HD (Fan et al., 2009; Milnerwood et al., 2010). This shift toward 
extrasynaptic NMDAR dominance creates a permissive environment 
for excitotoxicity, which has been suggested as a major player in HD 
pathogenesis (Fan and Raymond, 2007; Raymond et al., 2011).

Concurrently, elevated GluN3A subunit expression in HD 
striatum accelerates afferent synapse loss onto medium spiny 

neurons (MSNs). Notably, suppressing GluN3A in the YAC128 HD 
mouse model corrects NMDAR hyperexcitability, rescues 
synapses, ameliorates motor and cognitive deficits, and reduces 
striatal atrophy (Marco et  al., 2013; Wesseling and Pérez-
Otaño, 2015).

Therapeutic strategies targeting NMDAR dysfunction in HD are 
evolving to address the complexity of receptor dysregulation, with a 
growing emphasis on subunit-selective modulation and the restoration 
of synaptic-extrasynaptic NMDAR balance. GluN2B-selective 
antagonists such as memantine have shown considerable promise in 
preclinical models. In a small pilot trial in HD patients, 20 mg of 
memantine daily intake can significantly improve motor symptoms 
(Ondo et al., 2007). Besides, the application of neurotrophic factors, 
autophagy regulators, stem cells, and genetic therapies are also under 
investigation for HD treatment (Kim et al., 2021).

5.4 NMDAR and Alzheimer’s disease (AD)

Alzheimer’s disease (AD), the most prevalent neurodegenerative 
cause of dementia, is defined by progressive cognitive decline 
alongside neuropathological hallmarks including amyloid-β (Aβ) 
plaques and neurofibrillary tau tangles (Lane et al., 2018; Scheltens 
et al., 2021). Central to AD pathogenesis is NMDAR dysregulation, 
manifesting through excitotoxicity, synaptic failure, and bidirectional 
interactions with Aβ/tau pathology (Wang and Reddy, 2017; Raïch 
et al., 2024; Escamilla et al., 2024) (see Figure 4).

Aβ oligomers were described to accumulate in the AD patient 
brain, or in  vitro in human cortex neuronal cultures, at GluN2B-
containing synapses. Aβ oligomers bind to cellular prion protein 
(PrPc) and metabotropic glutamate receptor 5 (mGluR5), forming a 
complex that promotes phosphorylation of the GluN2B subunits. This 
triggers initial NMDAR surface accumulation followed by 
internalization, driving calcium overload, mitochondrial dysfunction, 
calpain activation, and dendritic spine loss (Um et al., 2013; Um et al., 
2012; De Felice et al., 2007). Concurrently, Aβ disrupts glutamate 
homeostasis by mislocalizing astrocytic EAAT2 transporters and 
impairing glutamine synthetase (GS) activity, elevating extracellular 
glutamate and sustaining NMDAR stimulation (Scimemi et al., 2013; 
Aksenov et al., 1995). Aβ additionally induces pathological NMDAR 
subunit switching (GluN2B to GluN2A) and alters vesicular glutamate 
release via vGluT1 and/or vGluT2 downregulation (Kessels et  al., 
2013; Rodriguez-Perdigon et al., 2016; Mi et al., 2023). Additionally, 
reduced activity and expression of GS have been reported in both 
patient tissue and animal models, contributing to the glutamate 
homeostasis disruption (Kulijewicz-Nawrot et al., 2013; Robinson, 
2000). Tau pathology amplifies this dysfunction when 
hyperphosphorylated tau impairs synaptic NMDAR trafficking while 
promoting receptor internalization (Hoover et al., 2010).

The distribution of synaptic versus extrasynaptic NMDARs has 
emerged as a key profile in neurodegenerative diseases including 
AD. In AD, extrasynaptic NMDARs oppose synaptic NMDARs by 
triggering CREB (a master regulator of synaptic plasticity) shut-off 
and promoting mitochondrial dysfunction and neuronal death 
(Hardingham et al., 2002; Wang et al., 2004; Esposito et al., 2013). 
CREB is a crucial molecular factor for learning and memory and its 
downregulation is assumed to result in cognitive deficits in AD (Rosa 
and Fahnestock, 2015; Bartolotti et  al., 2016). Critically, Aβ 
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downregulates CREB phosphorylation, and suppresses downstream 
BDNF expression (Amidfar et  al., 2020; Garzon and 
Fahnestock, 2007).

Mitochondrial-ROS dysregulation converges on NMDAR 
pathology: Reduced PGC-1α levels in AD impair ROS detoxification 
and reduce mitochondrial density, diminishing neuronal resilience to 
excitotoxic stress (Sweeney and Song, 2016; Qin et al., 2009; Wareski 
et al., 2009; Cui et al., 2006).

Mechanistically, NF-κB signaling also plays a crucial role in AD 
pathogenesis by regulating different molecules responsible for 
promoting the morbidities associated with AD (Sun et  al., 2022). 
NF-κB induces the expression of β-secretase, resulting in the 
formation of amyloid fibrils, which consequently aggregate into 
amyloid plaques (Cole and Vassar, 2007). Similarly, Aβ oligomers can 
in turn stimulate NF-κB activation in neurons and glial cells, forming 
a vicious cycle (Snow and Albensi, 2016).

Therapeutic strategies targeting NMDAR dysfunction in AD have 
evolved from simple receptor blockade to more nuanced approaches 
aimed at restoring physiological receptor function. Memantine 
remains the only FDA-approved drug targeting NMDARs for AD 
treatment, however its efficacy remains modest (Xia et  al., 2010; 
Glasgow et al., 2017; Reisberg et al., 2003). Current research mainly 
focuses on subunit-selective modulators and spatially-targeted agents 
like NitroMemantine, a selective extrasynaptic NMDAR antagonist 
developed on the basis of memantine, which targets specific localized 
NMDARs, is of great potential for AD treatment.

6 NMDA receptor as a target for 
treating neurodegenerative diseases

NMDARs represent pivotal therapeutic targets for 
neurodegenerative diseases, governing excitotoxicity, synaptic 
dysfunction, and neuronal survival. Their dualistic nature: 
physiological activation supporting cognition versus pathological 
overstimulation driving degeneration, demands precisely calibrated 
interventions. Current therapeutic strategies prioritize activity-
dependent modulation over complete receptor blockade. Subunit-
selective agents now dominate therapeutic innovation: GluN2B-
selective antagonists (e.g., ifenprodil and its derivatives) preferentially 
target neurodegenerative extrasynaptic receptors without impairing 
cognition in AD and HD models (Ugale et al., 2024), while GluN2A-
positive allosteric modulators (PAMs) counteract synaptic depletion 
in late-stage disease (Yukawa et al., 2023).

Novel therapeutic strategies further expand the landscape: (1) 
Targeting kinases/phosphatases upstream of NMDARs (such as PKC 
activator bryostatin-1) or effectors downstream (such as DAPK1/
NR2B uncoupler) (Zhang et al., 2020). Bryostatin-1 demonstrates 
efficacy in AD trials by reducing Aβ, promoting synaptogenesis, and 
suppressing oxidative stress, with favorable safety profiles enabling 
clinical application (Hongpaisan et al., 2011; Tian et al., 2023). In 
contrast, administration of a peptide NR2BCT1292–1,304 to uncouple the 
activated DAPK1 from the NMDA receptor complex protects against 
brain damage, which indicates that targeting DAPK1-NMDA receptor 

FIGURE 4

Aβ-induced excitotoxic cascade via NMDAR dysregulation in Alzheimer’s disease. This schematic illustrates the Aβ-triggered pathological cycle: Aβ 
oligomers drive presynaptic glutamate spillover through impaired glutamate transporter expression, decreased glutamine synthetase activity, and 
altered vesicular glutamate release. Postsynaptic NMDARs undergo Aβ-induced phosphorylation and internalization, leading to pathological 
overactivation and calcium influx dysregulation. Resultant calcium overload triggers mitochondrial dysfunction, reactive oxygen species (ROS) 
production, energy failure and eventually neuronal death. This self-amplifying cascade culminates in neuronal edema, synaptic loss, and 
neurodegeneration.
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interaction can be considered as a practical strategy (Wang et al., 
2017); (2) Receptor complex dissociation: Small molecules like ZL006 
(uncoupling NMDAR/PSD-95) selectively block neurotoxic NO 
signaling without impairing physiological receptor function (Tao 
et  al., 2020); (3) Neural circuit rebalancing (Ghatak et  al., 2021), 
Restoring excitatory/inhibitory (E/I) imbalances caused by 
extrasynaptic NMDAR hyperactivity in autism and AD (Vico Varela 
et al., 2019; Schuch et al., 2016).

Despite robust preclinical evidence for NMDAR modulation in 
neurodegeneration, clinical translation has been hampered by 
intersecting pharmacological and biological barriers. Blood–brain 
barrier (BBB) penetration remains a primary bottleneck (Egunlusi 
and Joubert, 2024). Species divergence in receptor biology further 
complicates the clinical translation, rendering compounds optimized 
for murine receptors ineffective (such as the different effect of 
memantine in ALS on animal model and patients mentioned before). 
Crucially, achieving subunit-or localization-specific drug delivery in 
human patients is also a key barrier underlying the current NMDAR-
based therapeutics. Emerging therapies aiming to overcome these 
hurdles include novel drug delivery systems such as lipid nanoparticles, 
loaded with riluzole (Bondì et  al., 2010) and dopamine (Ortega 
Martínez et al., 2024), have shown promising results in increasing 
drug bioavailability in the CNS for ALS and PD treatment.

The future of NMDAR-targeted therapy lies in personalized 
combinatorial approaches: integration of subunit-selective drugs, 
neuroprotective agents, and disease-modifying treatments tailored to 
disease stage and specific pathology of each neurodegenerative 
disorder. By addressing both the excitotoxic mechanisms and the 
broader cellular context of NMDAR dysfunction, these strategies hold 
significant potential to slow or even halt neurodegeneration.

7 Discussion

The multifaceted role of NMDA receptors in neurodegenerative 
diseases has emerged as a central paradigm in understanding both the 
pathogenesis and potential treatment strategies for these 
neurodegenerative diseases. Our synthesis of current evidence reveals 
that NMDAR dysfunction operates through a complex, interconnected 
network of mechanisms that vary across different neurodegenerative 
disorders while sharing common pathological themes. At the core of 
this dysregulation lies the delicate balance between synaptic and 
extrasynaptic NMDAR signaling, a delicate balance that becomes 
profoundly disrupted in disease states. The consequences of this 
imbalance manifest through multiple converging pathways: 
excitotoxic calcium overload, oxidative stress, mitochondrial 
dysfunction, impaired synaptic plasticity, and maladaptive 
transcriptional changes.

Though the application of memantine and other NMDAR 
antagonists in different neurodegenerative diseases has shown 
certain potential, however, the efficacy of existing NMDAR 
antagonists is still limited and often result in significant side 
effects, such as euphoria, psychotic symptoms and increased 
blood pressure, indicating gaps in our current understanding of 
the diseases and the complexity of NMDAR functions (Muir, 
2006). Recent advances in structural biology and receptor 
pharmacology have enabled the design of compounds with 
unprecedented specificity for particular NMDAR subtypes and 

locations. GluN2B-selective antagonists such as ifenprodil and its 
deriavtives (Gogas, 2006) represent a significant step forward by 
preferentially targeting receptors implicated in neurodegeneration 
while sparing those essential for cognitive function. Several recent 
studies have also investigated the potential of novel GluN2A-
targeting positive allosteric modulators such as AGE-718 and 
6-methylpyridin-2-one (Yukawa et al., 2023; Beckley et al., 2024), 
which also offers a complementary strategy to bolster synaptic 
resilience. Together, these approaches aim to restore the 
physiological balance between neuroprotective and neurotoxic 
NMDAR signaling.

Beyond direct receptor modulation, innovative strategies targeting 
downstream effectors (such as DAPK1) or upstream kinases/
phosphatases (such as PKC) offer complementary value. Small 
molecules that disrupt the GluN2B-PSD95-nNOS complex such as 
ZL006 demonstrate how specific protein–protein interactions can 
be  targeted to block neurotoxic signaling while preserving 
physiological receptor function.

The future of NMDAR-targeted therapy lies in precision medicine 
frameworks, considering the patient-specific genetic and molecular 
profiles to tailor NMDAR-targeting therapies. Another major frontier 
is the optimization of drug delivery to overcome the blood–brain 
barrier while maintaining therapeutic concentrations in relevant brain 
regions. The emergence of novel delivery systems, such as nanoparticle 
carriers holds promise for addressing this challenge. Perhaps most 
importantly, future therapies must account for the dynamic nature of 
NMDAR changes throughout disease progression. The receptor 
alterations that drive early synaptic dysfunction may differ 
substantially from those mediating late-stage neuronal death, 
suggesting that optimal interventions may need to evolve with 
disease progression.

The remarkable progress in understanding NMDAR biology over 
the past decades has transformed our approach to understand and 
treat neurodegenerative diseases. From viewing these receptors 
primarily as mediators of excitotoxicity, we now appreciate their roles 
in diverse pathological processes ranging from protein misfolding to 
neuroinflammation. This expanded understanding has given rise to a 
new generation of therapeutic strategies that seek not just to block 
excessive NMDAR activity, but to restore the delicate balance of 
synaptic and extrasynaptic signaling. As we continue to unravel the 
complexities of NMDAR regulation in health and disease, the prospect 
of developing truly disease-modifying treatments grows increasingly 
tangible. The path forward will require continued collaboration across 
disciplines, from structural biology to clinical neurology. By building 
on the foundations laid by current research and embracing the 
challenges that remain, we  may finally be  able to translate our 
knowledge of NMDAR mechanisms into transformative therapies for 
neurodegenerative diseases.
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Glossary

NMDAR - N-methyl-D-aspartate receptor

ALS - Amyotrophic Lateral Sclerosis

PD - Parkinson’s Disease

HD - Huntington’s Disease

AD - Alzheimer’s Disease

LTP - Long-term Potentiation

LTD - Long-term Depression

PSD - Postsynaptic Density

AMPAR - Amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptor

CNS - Central Nervous System

EAAT2 - Excitatory Amino Acid Transporter 2

CREB - cAMP Response Element-binding Protein

BDNF - Brain-derived neurotrophic factor

ROS - Reactive Oxygen Species

nNOS - neuronal Nitric Oxide Synthase

PLA2 - Phospholipase A2

PUFAs - Polyunsaturated Fatty Acids

AA - Arachidonic Acid

4-HNE - 4-hydroxynonenal

MDA - Malondialdehyde

D-APV - D-2-Amino-5-phosphonopentanoic acid

7CK - 7 chloro-kynurenate (7CK)

SNc - Substantia Nigra Pars Compacta

STN - Subthalamic Nucleus

LID - Levodopa-induced Dyskinesia

DAPK1 - Death-associated Protein Kinase 1

NF-κB - Nuclear Factor Kappa-Light-Chain-Enhancer of 
Activated B Cells

HTT - huntingtin

mHTT - mutant Huntingtin

MSNs - Medium Spiny Neurons

PrPc - Cellular Prion Protein

mGluR5 - Metabotropic Glutamate Receptor 5

Aβ - Amyloid-β

GS - Glutamine Synthetase
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