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Objective: Develop a multimodal biomarker framework integrating DTI-ALPS 
(Diffusion Tensor Imaging along the Perivascular Space), hippocampal diffusivity, 
and CSF profiles for staging Alzheimer’s disease (AD) progression across the 
HC → MCI → AD continuum.

Methods: Cross-sectional analysis of 60 age-matched participants [18 healthy 
controls (HC), 20 with mild cognitive impairment (MCI), and 22 with Alzheimer’s 
disease (AD)] combining 3 T MRI-derived biomarkers (bilateral hippocampal 
fractional anisotropy (FA) and mean diffusivity (MD), and DTI-ALPS). Cerebrospinal 
fluid (CSF) analysis (Aβ42, p-tau181, t-tau), and cognitive assessments (MMSE, 
MoCA). Statistical analyses included ANOVA with Bonferroni correction, Pearson 
correlations, and ROC curve evaluation for disease classification.

Results: DTI-ALPS exhibited a progressive decline (HC: 1.31 ± 0.12 → MCI: 
1.26 ± 0.09 → AD: 0.87 ± 0.19; p < 0.001 for AD vs. HC/MCI). Bilateral FA 
reductions plateaued in MCI (left: 0.57 ± 0.11 vs. HC: 0.82 ± 0.07, p < 0.001; 
right: 0.57 ± 0.11 vs. HC: 0.80 ± 0.07, p < 0.001) without further progression 
at the AD stage. MD showed a right-lateralized progression (HC → MCI → AD: 
left 0.53 → 0.74 → 0.78, right 0.51 → 0.71 → 0.77; p < 0.001), with a significant 
increase only in right MD from MCI to AD (p = 0.014). CSF biomarkers revealed a 
hierarchical depletion of Aβ42 (AD: 370.7 ± 145.9 vs. HC: 910.8 ± 191.5 pg./mL, 
p < 0.001) and accumulation of tau (t-tau: AD>MCI > HC, p < 0.001). Receiver 
operating characteristic (ROC) analysis identified right hippocampal MD and 
t-tau as optimal classifiers for AD.

Conclusion: The framework reveals distinct biomarker trajectories: DTI-ALPS 
distinguishes symptomatic AD from preclinical stages, while right hippocampal 
MD progression reflects tau-mediated neurodegeneration. Early FA reductions 
in MCI combined with CSF profiles suggest a hierarchical staging model: 
amyloid-associated perivascular dysfunction is associated with asymmetric tau-
driven hippocampal degeneration. This multimodal approach provides clinically 
actionable biomarkers for AD progression monitoring.
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1 Introduction

Mild cognitive impairment (MCI), defined as cognitive decline 
beyond age-related norms in the absence of functional disability (Duff 
et  al., 2010), has emerged as a critical therapeutic window for 
preventing dementia progression. Large-scale epidemiological studies 
reveal a prevalence of 15–20% in adults aged 60 years and older, with 
an annual conversion rate to Alzheimer’s disease (AD) of 8–15% 
(Hansson et al., 2018). This prodromal state underscores the urgency 
to identify clinically actionable biomarkers predicting AD conversion.

Recent advances have delineated two distinct biomarker axes: (1) 
Cerebrospinal fluid (CSF) amyloid-tau profiles demonstrating 85–90% 
diagnostic accuracy in distinguishing MCI-AD converters (Mestre 
et  al., 2018); (2) Diffusion tensor imaging (DTI) revealing 
microstructural white matter disorganization that longitudinally 
correlates with cognitive decline (Hasegawa et al., 2024). Significantly, 
the novel DTI-ALPS (Diffusion Tensor Imaging Along the 
Perivascular Space) method precisely quantifies perivascular fluid 
dynamics (Harrison et al., 2020), providing mechanistic insights into 
glymphatic dysfunction—a well-characterized driver of amyloid 
accumulation in preclinical models (Figure 1; Sperling et al., 2011).

The hippocampus, an affective and unique memory and learning 
structure, plays a pivotal role in Alzheimer’s disease progression. 
Advanced neuroimaging biomarkers, including amyloid and tau 
depositions, hippocampal subfields volumetry, diffusivity, default 
mode network activity, and connectivity, have been extensively 
examined to elucidate hippocampal involvement (Zhou, 2021).

However, three critical knowledge gaps persist: First, 30–40% of 
MCI patients exhibit discordant biomarker-imaging profiles (Iulita 
et al., 2023), compromising current diagnostic frameworks. Second, 
the spatiotemporal relationship between glymphatic impairment 

(ALPS index) and hippocampal neurodegeneration remains poorly 
characterized. Third, no prior study has systematically integrated 
ALPS metrics with CSF biomarkers for AD continuum stratification.

To address these gaps, this study employs a multimodal 
neuroimaging approach combining DTI-ALPS, hippocampal 
diffusivity metrics, and CSF proteomic profiling. We hypothesize that: 
(1) ALPS index reduction specifically marks AD-stage pathology 
(Zhou et al., 2024); (2) Right-lateralized hippocampal mean diffusivity 
(MD) progression reflects tau-mediated asymmetric 
neurodegeneration; (3) Combined ALPS/MD metrics improve 
diagnostic accuracy beyond single-modality biomarkers.

2 Materials and methods

2.1 Subjects

In accordance with the ethical guidelines, this study retrospectively 
enrolled MCI and AD patients who were admitted to The First 
Affiliated Hospital of Nanjing Medical University from February 2023 
to October 2024, All patients underwent standardized neurological, 
neuropsychological, and MRI/CSF assessments (Zhou, 2021). 
Alzheimer’s disease (AD) patients met the 2018 NIA-AA core clinical-
biological criteria for Alzheimer’s dementia (Jack et al., 2018), MCI 
participants fulfilled Petersen’s clinical criteria requiring subjective 
cognitive complaints and objective impairment in 1–2 cognitive 
domains with preserved daily functioning (Petersen, 2016), Healthy 
controls (HC) demonstrated no cognitive complaints [Clinical 
Dementia Rating (CDR) = 0] (Morris, 1993) and education-matched 
normative scores. MMSE/MoCA cutoffs were education-stratified: 
Illiterate: MMSE≤17 (AD), ≥17 (MCI), ≥27 (HC); MoCA≥13 (AD), 

FIGURE 1

Basic concepts of MRI methods for the indirect, non-invasive evaluation of different aspects of the cerebral perivascular structural integrity in healthy 
and pathological conditions. (A) In healthy states, CSF would enter the brain parenchyma interstitial space through the foot processes of microglia 
from the perivascular space along the perivascular spaces (PVS) surrounding the arteries (Pasternak et al., 2009). It would then mix with the interstitial 
fluid and waste products of the brain parenchyma (Zhou et al., 2025). Illustrates the normal flow of CSF through the perivascular spaces and its 
exchange with ISF. This would produce waste products such as t-tau, which would then be excreted from the brain via the peripheral venous drainage 
pathway, assessing perivascular structural integrity (indicated by the DTI-ALPS index). (B) Glymphatic System in Pathological State: Depicts the impaired 
glymphatic clearance and the resulting accumulation of waste products, such as amyloid-β, in Alzheimer’s disease. The DTI-ALPS index showed 
significant reduction (p < 0.001), reflecting perivascular system dysfunction (Table 1).
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≥13 (MCI), ≥26 (HC); Primary education: MMSE≤20 (AD), ≥20 
(MCI), ≥28 (HC); MoCA≥19 (MCI), ≥26 (HC); Secondary/higher: 
MMSE≤24 (AD), ≥24 (MCI), ≥28 (HC); MoCA≥24 (MCI), 
≥27 (HC).

2.2 Technique for examination

We used the GE 3.0 T PET-MR scanner and a 32-channel high-
resolution cranial orthogonal coil. We employ high-resolution DTI 
sequences. The diffusion gradient directions are scanned in 30 
directions. Diffusion-weighted images acquired at a b-value of 
1,000 s/mm2 in each direction.

The specific parameters are as follows: slice thickness is 2.43 mm, 
slice gap is 3 mm; TR is 3,000 ms, TE is 90 ms; matrix is 128 × 128; 
FOV is 200 mm × 231 mm × 119 mm; total scanning time is 
approximately 6 min. The scanning range extends from the base of the 
skull to the top of the skull.

The DTI-ALPS index quantifies perivascular structural integrity 
by analyzing diffusion anisotropy along the perivascular spaces (PVS) 
at the lateral ventricle level. This method leverages the directional 
dependence of water diffusion in PVS: in healthy states, the X-axis 
(projection fibers) and Z-axis (association fibers) exhibit higher 
diffusivity due to alignment with perivascular flow (Figure 2), the 
5 mm ROIs in the projection and association regions are aligned along 
the x-axis in Figure  3, thereby maintaining consistency in the 
calculation of ALPS values (Figure 3). While the Y-axis (perpendicular 
to PVS) shows restricted diffusion. The ALPS index reflects the ratio 
of parallel-to-perpendicular diffusivity, with lower values indicating 
impaired PVS function (Taoka et al., 2017).

2.3 Cerebrospinal fluid (CSF) biomarker 
analysis

Concentrations of amyloid-β 1–42 (Aβ42), phosphorylated 
tau 181 (p-tau181), and total tau (t-tau) were quantified using 
commercially available enzyme-linked immunosorbent assay 
(ELISA) kits. All samples were analyzed in a single batch to 
minimize variability. To align with recent technological advances 
and improve diagnostic precision, our analytical approach was 

validated against fully automated chemiluminescence enzyme 
immunoassay (CLEIA) platforms, which demonstrate superior 
analytical performance for t-tau and p-tau181 detection (Arcaro 
et al., 2022).

2.4 Definition of biomarker positivity

Positivity thresholds followed established international criteria 
(Wang et al., 2024):

Aβ42: Levels <530 pg./mL indicated amyloid pathology 
(positivity).

p-tau181: Levels >60 pg./mL indicated tau pathology (positivity). 
This marker significantly enhances differential diagnosis accuracy 
when combined with Aβ42, particularly in excluding conditions like 
Creutzfeldt-Jakob disease.

t-tau: Levels >300 pg./mL indicated neurodegeneration 
(positivity). Notably, the ratio of p-tau181/Aβ42 or t-tau/Aβ42 may 
provide higher specificity, though single thresholds were used here per 
consensus guidelines.

2.5 Data processing

In Windows PowerShell, the raw DTI image dicom files collected 
were converted into nii files using the dcm2niix plug-in. Subsequently, 
the nii files were post-processed in the DSI-studio software, as follows: 
(1) First, image quality checks were performed, and a mask was set to 
filter out the background region. This helps improve the reconstruction 
efficiency and facilitates subsequent visualization. (2) ALPS region of 
interest (ROI) selection: A circular ROI with a diameter of 5 mm is 
placed in the projection and association fibers within the lateral ventricle 
body level (Figure 3A). (3) According to the software’s algorithms and 
formulas, the DTI-ALPS index is calculated, the formula being: 

( )
( )

− −
− =

− −

mean Dxx proj,Dxx assoc
DTI ALPS index

mean Dyy proj,Dzz assoc  
Here, Dxx-proj

 
and Dxx-assoc, respectively, represent the diffusion rates of the projection 
and association fibers along the X-axis; Dyy-proj represents the diffusion 
rate of the projection fibers along the Y-axis; and Dzz-assoc represents 
the diffusion rate of the association fibers along the Z-axis. (4) 
Hippocampus volume of interest (VOI): In the DSI-studio software, the 

FIGURE 2

The relationship between perivascular spaces (gray cylinders) and the directions of projection and association fibers.
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left and right hippocampal regions were manually selected, and the 
system automatically outlines these regions and calculates the FA and 
MD values (Figures 3B,C). Hippocampal diffusivity metrics (FA, MD) 
were calculated using a deterministic fiber tracking algorithm with an 
FA threshold of 0.2 and angular threshold of 60o. Manual segmentation 
followed the EADC-ADNI harmonized protocol (Duchesne et al., 2015), 
ensuring anatomical consistency across subjects. To minimize partial 
volume effects from adjacent CSF, voxels with MD > 1.2 × 10−3 mm2/s 
were excluded.

2.6 Statistical analysis

All statistical analyses were conducted using IBM SPSS 26.0 with the 
following protocol.

2.6.1 Descriptive statistics
Continuous variables (age, cognitive scores, CSF biomarkers, MRI 

metrics) are reported as mean ± standard deviation. Categorical variables 
(sex) are expressed as counts and percentages (%), with group differences 
assessed via chi-square tests.

2.6.2 Group comparisons
Prior to performing the one-way ANOVA, we conducted Shapiro–

Wilk normality tests on all continuous variables to verify the assumption 
of normal distribution. The results confirmed that all variables used in 
the ANOVA analysis were normally distributed (p > 0.05 for all tests), 
thus justifying the use of parametric statistics. We then evaluated inter-
group differences (HC vs. MCI vs. AD) for continuous variables using 
one-way ANOVA, followed by post hoc Bonferroni-corrected pairwise 
comparisons to control for Type I  error. Statistical significance was 
defined as a two-tailed p < 0.05.

2.6.3 Correlation analysis
Pearson’s correlation coefficients (r) were calculated to assess linear 

relationships between MRI metrics (ALPS index, hippocampal FA/MD) 

and clinical variables (MMSE, MoCA, CSF biomarkers). Significance 
thresholds were set at two-tailed p < 0.05 without additional multiple 
comparison correction.

2.7 Data visualization

Violin plots (Figure 4), scatterplots (Figure 5), and ROC curves 
(Figure 6) were generated using OriginPro 2024 (OriginLab, USA).

2.8 Diagnostic model construction

Three ROC models were designed: Model 1: Diseased (MCI + AD) 
vs. Non-diseased (HC); Model 2: AD vs. Non-AD (HC + MCI); Model 
3: MCI vs. AD. Input features included right/left hippocampal MD/FA, 
CSF Aβ42/p-tau181/t-tau, and ALPS index. Binary logistic regression 
with leave-one-out cross-validation was applied.

3 Results

Key findings revealed three progressive patterns: (1) DTI-ALPS 
index significantly declined in AD versus HC/MCI (p  < 0.001); (2) 
Hippocampal FA reduction plateaued at MCI stage while right MD 
showed continued progression to AD; (3) CSF biomarkers exhibited 
hierarchical amyloid depletion (Aβ42↓) and tau accumulation (t-tau↑). 
Multimodal correlations (e.g., Aβ42-ALPS: r = 0.78) and ROC analyses 
further validated clinical utility.

3.1 Statistical results of basic and clinical 
data

The study compares Healthy Controls (HC), Mild Cognitive 
Impairment (MCI), and Alzheimer’s Disease (AD) groups across 

FIGURE 3

MRI image omics diagram. (A) The color-coded FA map illustrates the lateral ventricle body, featuring a 5 mm diameter spherical ROI on both the left 
and right sides. The ROI for the associated fibers is labeled “projection” (Y-axis, green), and the ROI for the projective fibers is labeled “association” 
(Z-axis, blue). (B,C) Using DSI-studio software, we mapped the volume of the hippocampus, our region of interest. Different brain regions exhibit 
varying morphologies of the hippocampus.
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demographic, cognitive, CSF biomarker, and MRI measures. Key 
findings are as follows:

3.1.1 Demographics (sex, age, education)
No significant differences between groups (p > 0.05), ensuring 

observed changes are disease-related.

3.1.2 Cognitive scores (MMSE and MoCA)
Significant decline from HC > MCI > AD (p < 0.001 for all 

comparisons), reflecting progressive cognitive impairment.

3.1.3 CSF biomarkers: Aβ42
Lower in AD vs. HC/MCI (p < 0.001), with marginal HC vs. MCI 

(p = 0.06), suggesting Aβ42 drops markedly in AD. p-tau181 and 
t-tau: Increase from HC < MCI < AD (p < 0.001 for all comparisons 
except HC vs. MCI p-tau181: p = 0.006), indicating tau 
pathology progression.

3.1.4 MRI measurements: ALPS index
Significant reduction in AD vs. HC/MCI (left, right, mean; 

p < 0.001), but no HC vs. MCI difference (p > 0.05). Suggests a 

FIGURE 4

Between-group differences in cognitive scores, CSF biomarkers and MRI measurements. Panels (1A,2A) (MMSE/MoCA Scores): HC showed tightly 
clustered distributions; AD showed severe reduction; MCI demonstrated intermediate values, consistent with global cognitive decline (p < 0.001). Panel 
(1B) (CSF Aβ42): HC (blue): Concentrated distribution at higher values with tight distribution, indicating high intra-group homogeneity. MCI (green): 
Left-shifted distribution with increased dispersion and partial distribution overlap with HC, reflecting Aβ42 levels comparable to HC in some MCI 
individuals. AD (red): Marked leftward shift with narrow density and minimal overlap, demonstrating universal Aβ42 reduction in AD. Extreme 
significance between AD vs. HC/MCI (p < 0.001); borderline significance between HC and MCI (p = 0.06). Panel (1C) (CSF p-tau181): HC (blue): 
Symmetric distribution clustered at low values. MCI (green): Right-shifted distribution with tail extending into AD range. AD (red): Pronounced 
rightward displacement with broad density, indicative of p-tau heterogeneity. Significant progression across groups (AD>MCI > HC; p < 0.001), 
supporting incremental tau pathology. Panel (1D) (CSF t-tau): HC (blue): Narrow low-value distribution. MCI (green): Right-shifted dispersion partially 
overlapping AD. AD (red): Distinct rightward shift with wide density. Hierarchical elevation (AD>MCI > HC; p < 0.001), commensurate with 
neurodegeneration severity. Panel (2B) (Left ALPS Index): HC (blue): Symmetric high-value clustering. MCI (green): Mild leftward shift with HC overlap. 
AD (red): Significant leftward displacement with narrow distribution with reduced density, suggesting functional impairment. Extreme AD vs. HC/MCI 
differences (p < 0.001); HC-MCI equivalence (p = 0.599), confirming ALPS disruption as AD-specific. Panel (2C) (Right ALPS Index): Parallel to left ALPS 
pattern with AD vs. HC. MCI fully overlapped HC. Consistent bilateral impairment (AD vs. HC/MCI p < 0.001; HC-MCI p = 0.722). Panel (2D) (Mean ALPS 
Index): AD (red): Narrow low-value clustering. HC (blue; peak ~1.31) and MCI exhibited overlapping high-value distributions. AD significantly lower than 
HC/MCI (p < 0.001) without HC-MCI difference (p = 0.608), supporting its role as late-stage AD biomarker. Panel (3A) (Left Hippocampal FA): HC (blue): 
High FA with narrow density. MCI/AD (green/red): Complete overlap with left-shifted distributions. MCI/AD vs. HC (p < 0.001); MCI-AD equivalence 
(p = 0.969), indicating stable microstructural damage at MCI stage. Panel (3B) (Right Hippocampal FA): Bilateral symmetry in damage patterns. MCI/AD 
vs. HC (p < 0.001); MCI-AD equivalence (p = 0.903), reinforcing early bilateral involvement. Panel (3C) (Left Hippocampal MD): HC (blue): Low MD with 
tight clustering. MCI (green): Right-shifted approaching AD range. AD (red): Extended rightward displacement with broad dispersion. Progressive 
elevation (AD>MCI > HC; p < 0.001) with non-significant MCI-AD difference (p = 0.067), suggesting slower left-sided deterioration. Panel (3D) (Right 
Hippocampal MD): AD (red): Pronounced right shift with wide dispersion. MCI (green): Intermediate partially overlapping AD. HC (blue): Low baseline. 
Significant MCI-AD progression (p = 0.014), demonstrating continued right hippocampal degeneration.
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novel marker for distinguishing AD from HC/MCI. Hippocampal 
FA: Lower in MCI/AD vs. HC (p < 0.001), but no MCI vs. AD 
difference (p > 0.90), indicating early damage in MCI that plateaus 
in AD. Hippocampal MD- Left MD: Higher in MCI/AD vs. HC 
(p < 0.001), with marginal MCI vs. AD increase (p = 0.067). Right 
MD: Significant MCI vs. AD difference (p = 0.014), suggesting 
asymmetric progression. While FA/MD changes occurred early in 
MCI, they plateaued in AD, except right MD, which progresses 
significantly. The combination of ALPS index and CSF biomarkers 
significantly improved diagnostic accuracy, while hippocampal 
diffusivity reflects early neurodegeneration in MCI.

3.2 Comprehensive visualization of 
biomarker distributions across HC, MCI, 
and AD groups

Figure 4 presents a comprehensive visualization of biomarker 
distributions across healthy controls (HC), mild cognitive 
impairment (MCI), and Alzheimer’s disease (AD) groups using a 
4 × 3 grid of half violin plots. Each plot displays the distribution 
of key biomarkers, including cognitive scores (MMSE, MOCA), 
cerebrospinal fluid (CSF) biomarkers (Aβ42, p-tau181, t-tau), 
and magnetic resonance imaging (MRI) metrics (ALPS index, 

FIGURE 5

Relationships between biomarkers with ALPS mean and right-hippocampal MD. The scatterplots illustrate the linear associations between four clinical 
biomarkers with ALPS Mean and Right-hippocampal MD, with 95% confidence bands (dark pink) and prediction bands (light pink). Statistical 
significance is marked by p < 0.001.

FIGURE 6

Model 1: ROC curve of key indicators for disease prediction based on grouping of diseased and non-diseased groups. Model 2: ROC curve of key 
biomarkers in the differentiation between AD and Non-AD. Model 3: ROC curve of imaging and protein indicators for the differentiation between MCI 
and AD.
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hippocampal fractional anisotropy (FA), and mean diffusivity 
(MD)). The half violin plots provide a detailed view of the 
median, quartiles, and density estimates, allowing for a nuanced 
comparison of biomarker distributions among the three groups. 
This visualization highlights the distinct biomarker trajectories 
associated with the progression of Alzheimer’s disease, 
emphasizing the utility of multimodal biomarkers in identifying 
and staging AD.

3.3 Correlation analysis

As shown in Figure 5, ALPS mean levels exhibited significant 
correlations with all biomarkers analyzed (p < 0.001). The strongest 
association was observed between Aβ42 and ALPS mean (r = 0.78), 
followed by MMSE (r = 0.709) and MoCA (r = 0.645). In contrast, 
p-tau181 and t-tau demonstrated inverse relationships (r = −0.683 
and r = −0.616, respectively), these findings demonstrate distinct 
pathophysiological roles of amyloid-β and tau proteins in 
neurodegenerative pathology.

The right hippocampal MD demonstrated disease-stage dependent 
associations: strongly correlated with t-tau (r = 0.706, p < 0.001) and 
p-tau181 (r = 0.667, p < 0.001), but inversely associated with Aβ42 
(r = −0.557, p < 0.001). Conversely, strong positive associations were 
found for p-tau (r = 0.667, p < 0.001) and t-tau (r = 0.706, p < 0.001).

3.4 Multiple ROC curves in disease 
diagnosis and differential diagnosis

In the ROC analysis of Model 1, which aims to distinguish 
between the diseased and non - diseased groups, the ROC curves of 
right hippocampal MD (AUC = 0.996), left hippocampal MD 
(AUC = 0.992), T-tau protein (AUC = 0.951), and P-tau protein 
(AUC = 0.930) are prominently located in the upper–left corner of the 
ROC space. This indicates their excellent discriminatory ability, with 
high sensitivity to correctly identify the diseased population and low 
false  - positive rates to minimize misclassification of the non  - 
diseased. In contrast, other variables’ ROC curves in the lower–right 
corner suggest poor performance in differentiating the two groups. 
These findings highlight the potential value of the former biomarkers 
in disease prediction models for this binary classification task 
(Figure 6).

For Model 2, which focuses on differentiating the AD group 
from the non–AD group, the ROC curves of P-tau 
181(AUC = 0.958), T-tau (AUC = 0.904), right hippocampal MD 
(AUC = 0.870), and left hippocampal MD (AUC = 0.840) are 
positioned in the upper–left corner of the ROC space. This 
placement implies their strong diagnostic utility. They are 
characterized by high true  - positive rates, enabling accurate 
detection of AD cases, and low false–positive rates, reducing the 
misdiagnosis of non–AD individuals as AD patients. In contrast, 

TABLE 1 Clinical characteristics of the HC, MCI, and AD groups.

HC N = 18 MCI N = 20 AD N = 22 p value

HC vs MCI 
vs AD

HC vs MCI HC vs AD MCI vs AD

Sex (Male/Female) 7/11 13/7 11/11 0.279 0.253 0.766 0.6

Age (y) 69.33 ± 12.69 66.9 ± 13.4 68.77 ± 9.9 0.803 0.807 0.988 0.869

Education (y) 10.28 ± 2.85 11.6 ± 3.22 11.32 ± 2.51 0.336 0.337 0.492 0.946

Cognition

MMSE (N) 28.28 ± 1.13 21.5 ± 3.5 10.1 ± 3.87 <0.001 <0.001 <0.001 <0.001

MOCA (N) 28.17 ± 1.3 18.05 ± 4.27 10.55 ± 3.6 <0.001 <0.001 <0.001 <0.001

CSF

Aβ42 (pg/mL) 910.8 ± 191.46 792.9 ± 129.4 370.7 ± 145.87 <0.001 0.06 <0.001 <0.001

p-tau181 (pg/mL) 31.0 ± 8.18 48.8 ± 13.0 86.6 ± 24.0 <0.001 0.006 <0.001 <0.001

t-tau (pg/mL) 258.73 ± 82.5 411.7 ± 78.18 539.08 ± 102.95 <0.001 <0.001 <0.001 <0.001

MRI

Left-ALPS 1.3 ± 0.14 1.24 ± 0.11 0.89 ± 0.21 <0.001 0.599 <0.001 <0.001

Right-ALPS 1.32 ± 0.14 1.3 ± 0.1 0.86 ± 0.2 <0.001 0.722 <0.001 <0.001

ALPS mean 1.31 ± 0.12 1.26 ± 0.09 0.87 ± 0.19 <0.001 0.608 <0.001 <0.001

L-hippo FA 0.82 ± 0.07 0.57 ± 0.11 0.57 ± 0.13 <0.001 <0.001 <0.001 0.969

R-hippo FA 0.80 ± 0.07 0.57 ± 0.11 0.58 ± 0.13 <0.001 <0.001 <0.001 0.903

L-hippo MD 0.53 ± 0.07 0.74 ± 0.07 0.784 ± 0.07 <0.001 <0.001 <0.001 0.067

R-hippo MD 0.51 ± 0.06 0.71 ± 0.06 0.77 ± 0.07 <0.001 <0.001 <0.001 0.014

Continuous variables are presented as mean ± SD; categorical variables as count (%), unless stated otherwise. Data were compared using ANOVA. Bold values indicate statistically significant 
differences (p < 0.05) among HC, MCI, and AD groups, highlighting the robustness of findings related to Alzheimer’s disease progression. HC, Healthy control group; MCI, Mild Cognitive 
Impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; CSF, Cerebrospinal fluid; Aβ42, amyloid β peptide 1–42; t-tau, Total 
tau; p-tau181, Phosphorylated tau181; ALPS, Analysis along the perivascular space; FA, Fractional anisotropy; MD, Mean diffusivity; VOI, Volume of interest.
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other curves in the ROC plot show relatively poor performance 
in this AD-non-AD discrimination. Overall, these four factors 
emerge as crucial indicators for accurate AD diagnosis within 
this model.

In Model 3 for differentiating between MCI and AD, several 
metrics, including p – tau (AUC = 0.920), T-tau (AUC = 0.830), 
right hippocampal MD (AUC = 0.756), left hippocampal MD 
(AUC = 0.700) and right hippocampal FA (AUC = 0.509), are 
predominantly located towards the upper  - left region of the 
ROC space. This distribution indicates their overall good 
discriminatory power in distinguishing MCI from AD. These 
metrics generally exhibit relatively high true positive rates 
(sensitivity), which means they can effectively identify a 
significant proportion of AD cases. Meanwhile, they maintain 
relatively low false positive rates (100%- specificity%), reducing 
the misclassification of MCI patients as AD patients. However, 
not all values are perfectly positioned in the extreme upper–left 
corner. There are some deviations, suggesting that while these 
metrics are useful, there is still room for improvement in their 
diagnostic accuracy. Overall, these metrics, on the whole, show 
promise in differentiating between MCI and AD, and further 
exploration of their combined application may lead to more 
accurate diagnostic models.

4 Discussion

This multimodal study elucidates the spatiotemporal 
dynamics of Alzheimer’s continuum through integrated 
assessment of perivascular structural integrity (via DTI-ALPS 
index), hippocampal microstructure, and CSF biomarkers. Three 
principal discoveries emerge: (1) DTI-ALPS index effectively 
discriminates AD from preclinical stages, while bilateral 
hippocampal fractional anisotropy (FA) reduction identifies early 
microstructural damage in MCI; (2) Right-dominant 
hippocampal mean diffusivity (MD) elevation reflects 
asymmetric neurodegeneration; (3) Multimodal biomarker 
correlations (Aβ42-ALPS: r = 0.78; t-tau-MD: r = 0.706) establish 
complementary roles of perivascular clearance and axonal 
degeneration in disease stratification. The strong inverse 
correlation between ALPS index and CSF p-tau181 (r = −0.683, 
p < 0.001) suggests impaired perivascular clearance potentiates 
tau accumulation. This aligns with glymphatic dysfunction 
models wherein AQP4 depolarization reduces tau efflux along 
perivascular channels. Notably, right-lateralized hippocampal 
MD progression (ΔMCI→AD = +0.06 × 10−3 mm2/s, p = 0.014) 
may reflect asymmetric default mode network (DMN) 
vulnerability (Li et  al., 2013). Tau-PET studies indicate right 
precuneus/posterior cingulate hypometabolism precedes left 
hemisphere involvement in amnestic MCI (Ossenkoppele et al., 
2016), potentially explaining the right > left MD trajectory 
observed here (Lavrova et al., 2025).

Our DTI-ALPS findings extend prior reports on perivascular 
structural alterations in AD (Taoka et al., 2017), demonstrating 
its specificity for distinguishing AD from MCI (p < 0.001). The 
preserved perivascular integrity in MCI (ALPS 
index = 1.26 ± 0.09 vs. AD = 0.87 ± 0.19) contrasts with early 

hippocampal FA reduction (0.57 ± 0.11 vs. HC = 0.82 ± 0.07), 
suggesting temporal decoupling between hippocampal 
degeneration and perivascular impairment. This supports a 
sequential model: initial hippocampal microstructural 
disruption (FA/MD changes) may prime Aβ deposition 
(Harrison et al., 2020), while subsequent perivascular clearance 
failure (ALPS decline) accelerates tau-mediated network 
collapse (Nedergaard and Goldman, 2020). The right 
hippocampal MD predominance (p = 0.014,) aligns with 
tau-PET documented hemispheric vulnerability gradients 
(Ossenkoppele et al., 2016), possibly mediated by default mode 
network metabolic asymmetry (Li et al., 2017). The Aβ42-ALPS 
correlation (r = 0.78, p < 0.001) mechanistically links amyloid 
accumulation to perivascular drainage dysfunction. Preclinical 
studies confirm that perivascular basement membrane 
thickening impedes Aβ clearance through intramural periarterial 
pathways (Zhang et al., 2021). Furthermore, the strong inverse 
relationship between t-tau and p-tau181 with ALPS (r = −0.616 
and r  = −0.683, respectively) suggests that as tau pathology 
progresses, perivascular clearance mechanisms decline, 
potentially contributing to the accumulation of tau proteins 
within the brain. This finding is consistent with the proposed 
role of perivascular drainage in the clearance of tau from the 
brain (Wu et  al., 2021). The observed temporal decoupling 
between hippocampal degeneration and perivascular 
impairment provides insights into the potential mechanisms 
underlying the progression of Alzheimer’s disease. The early 
involvement of the hippocampus, as evidenced by FA reduction, 
may represent an initial step in the disease process, with 
subsequent perivascular clearance failure accelerating the 
neurodegenerative cascade (Liu et  al., 2021). This sequential 
model highlights the importance of considering both 
hippocampal microstructural changes and perivascular 
alterations in the understanding and treatment of 
Alzheimer’s disease.

Diffusion tensor imaging (DTI) is conventionally applied to 
white matter analysis, our detection of hippocampal fractional 
anisotropy (FA) and mean diffusivity (MD) alterations aligns 
with evidence that DTI sensitively captures gray matter 
microstructural changes in neurodegeneration (Zhang et  al., 
2014). Specifically, hippocampal MD elevation reflects neuronal 
loss and expansion of extracellular space (Li et al., 2013), while 
reduced FA correlates with underlying neuropathology (Snow 
et  al., 2017). Future studies should integrate advanced gray 
matter-specific metrics (e.g., neurite orientation dispersion via 
NODDI) with tau-PET imaging to enhance the quantification of 
hippocampal dysfunction (Lavrova et al., 2025).

While this study presents promising advancements, it is 
essential to acknowledge its limitations. The relatively small 
sample size and lack of longitudinal follow-up may restrict the 
generalizability of the findings. While cross-sectional design 
limits causal inference, our proposed “FA → MD → ALPS” 
progression sequence warrants longitudinal verification. Single-
center sampling (N = 60) necessitates validation in multiethnic 
cohorts, particularly given ethnic variability in perivascular 
anatomy. Future research should aim to address these limitations 
by incorporating larger, multi-center studies with extended 
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follow-up periods. Manual ALPS quantification introduces 
measurement bias; emerging deep learning pipelines could 
enhance reproducibility. The DTI-ALPS index, though sensitive 
to perivascular changes, may conflate PVS enlargement with 
adjacent white matter lesions. Future studies could combine 
ALPS with dynamic contrast-enhanced MRI to directly measure 
glymphatic flow.

In conclusion, our multimodal study demonstrates the 
complementary roles of perivascular clearance and axonal 
degeneration in Alzheimer’s disease stratification. DTI-ALPS 
quantifies advanced-stage perivascular integrity loss, whereas 
right hippocampal MD tracks asymmetric neurodegeneration. 
The temporal dissociation between early hippocampal changes 
(MCI-specific) and late perivascular decline (AD-specific) 
suggests stage-dependent biomarker utility: FA/MD for early 
detection, ALPS for therapeutic monitoring, provides a 
comprehensive view of the spatiotemporal dynamics of 
Alzheimer’s continuum. The ROC curve analysis (Model 2  in 
Figure 6) highlights the superior diagnostic performance of right 
hippocampal MD and CSF t-tau in differentiating AD from 
non-AD groups, while the combination of hippocampal 
diffusivity metrics (FA/MD) and CSF p-tau181 provides 
enhanced accuracy in distinguishing MCI from AD. These 
findings have important implications for the development of 
targeted therapies and the improvement of diagnostic accuracy 
in Alzheimer’s disease.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the First 
Affiliated Hospital of Nanjing Medical University (No. 2024-SR-
936). The studies were conducted in accordance with the local 
legislation and institutional requirements. Written informed 
consent for participation in this study was provided by the 
participants’ legal guardians/next of kin. The manuscript 
presents research on animals that do not require ethical approval 
for their study. Written informed consent was not obtained from 
the individual(s) for the publication of any potentially 
identifiable images or data included in this article because this 
study exclusively utilized fully anonymized neuroimaging 
biomarkers (DTI-ALPS indices, hippocampal FA/MD) and CSF 
profiles that are intrinsically non-identifiable. The institutional 
review board at the First Affiliated Hospital of Nanjing Medical 
University (No. 2024-SR-936) specifically approved this 
retrospective analysis of pre-existing de-identified clinical data, 
waiving additional publication consent requirements under 
Chinese human subjects research regulations (National Health 
Commission Order No. 11) and the Helsinki Declaration’s 
anonymized data provisions. No facial features, personal 

narratives, or unique biological identifiers were recorded in any 
study materials.

Author contributions

PY: Visualization, Data curation, Project administration, Software, 
Methodology, Writing  – original draft, Conceptualization, Funding 
acquisition. LS: Data curation, Formal analysis, Resources, Validation, 
Investigation, Software, Methodology, Conceptualization, Writing  – 
original draft. LT: Supervision, Writing – review & editing, Validation, 
Conceptualization, Resources, Formal analysis, Project administration.

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported by the Jiangsu Science and Technology Association 
(Grant No. JSTJ-2024-615) and the Xuzhou Medical University 
Outstanding Talents Fund Project (Grant No. XYFY202421). 
The Jiangsu Science and Technology Association provided 
financial support through the 2024 Jiangsu Youth Science and 
Technology Talent Support Program. This grant enabled the 
research team to conduct comprehensive analyses and gather 
essential data, facilitating the investigation into the 
spatiotemporal dynamics of Alzheimer’s disease progression. 
Additionally, the Xuzhou Medical University Outstanding 
Talents Fund Project played a crucial role by offering resources 
to foster innovative research and support the professional 
development of young scientists. This funding was instrumental 
in advancing the study’s objectives and ensuring the successful 
completion of the research.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

https://doi.org/10.3389/fnagi.2025.1609793
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yu et al. 10.3389/fnagi.2025.1609793

Frontiers in Aging Neuroscience 10 frontiersin.org

References
Arcaro, M., Fenoglio, C., Serpente, M., Arighi, A., Fumagalli, G. G., Sacchi, L., et al. 

(2022). A novel automated chemiluminescence method for detecting cerebrospinal fluid 
amyloid-beta 1-42 and 1-40, total tau and phosphorylated-tau: implications for 
improving diagnostic performance in Alzheimer’s disease. Biomedicines 10:2667. doi: 
10.3390/biomedicines10102667

Duchesne, S., Valdivia, F., Robitaille, N., Mouiha, A., Valdivia, F. A., Bocchetta, M., 
et al. (2015). Manual segmentation qualification platform for the EADC-ADNI 
harmonized protocol for hippocampal segmentation project. Alzheimer’s Dement. 11, 
161–174. doi: 10.1016/j.jalz.2015.01.002

Duff, K., Paulsen, J., Mills, J., Beglinger, L. J., Moser, D. J., Smith, M. M., et al. (2010). 
Mild cognitive impairment in prediagnosed Huntington disease. Neurology 75, 500–507. 
doi: 10.1212/WNL.0b013e3181eccfa2

Hansson, O., Seibyl, J., Stomrud, E., Zetterberg, H., Trojanowski, J. Q., Bittner, T., 
et al. (2018). CSF biomarkers of alzheimer’s disease concord with amyloid-β PET 
and predict clinical progression: a study of fully automated immunoassays in 
BioFINDER and ADNI cohorts. Alzheimer’s Dement. 14, 1470–1481. doi: 
10.1016/j.jalz.2018.01.010

Harrison, I. F., Ismail, O., Machhada, A., Colgan, N., Ohene, Y., Nahavandi, P., et al. 
(2020). Impaired glymphatic function and clearance of tau in an Alzheimer’s disease 
model. Brain 143, 2576–2593. doi: 10.1093/brain/awaa179

Hasegawa, S., Yoshimaru, D., Hayashi, N., Shibukawa, S., Takagi, M., and Murai, H. 
(2024). Analyzing the relationship between specific brain structural changes and the 
diffusion tensor image analysis along the perivascular space index in idiopathic normal 
pressure hydrocephalus. J. Neurol. 272:56. doi: 10.1007/s00415-024-12850-y

Iulita, M. F., Bejanin, A., Vilaplana, E., Carmona-Iragui, M., Benejam, B., Videla, L., 
et al. (2023). Association of biological sex with clinical outcomes and biomarkers of 
Alzheimer’s disease in adults with down syndrome. Brain Commun. 5:fcad074. doi: 
10.1093/braincomms/fcad074

Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., 
et al. (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s 
disease. Alzheimer’s Dement. 14, 535–562. doi: 10.1016/j.jalz.2018.02.018

Lavrova, A., Pham, N. T. T., Reid, R. I., Boeve, B. F., Knopman, D. S., Petersen, R. C., 
et al. (2025). Relation of Alzheimer’s disease-related TDP-43 proteinopathy to metrics 
from diffusion tensor imaging (DTI) and neurite orientation dispersion and density 
imaging (NODDI). Neurobiol. Aging 150, 97–108. doi: 10.1016/j.neurobiolaging. 
2025.03.001

Li, Y., He, H., Dong, H., Feng, X., Xie, G., and Zhang, L. (2013). Discriminative 
analysis of early-stage Alzheimer’s disease and normal aging with automatic 
segmentation technique in subcortical gray matter structures: a multicenter in vivo MRI 
volumetric and DTI study. Acta Radiol. 54, 1191–1200. doi: 10.1177/0284185113492971

Li, X., Westman, E., Thordardottir, S., Ståhlbom, A. K., Almkvist, O., Blennow, K., et al. 
(2017). The effects of gene mutations on default mode network in familial Alzheimer’s 
disease. J. Alzheimer’s Dis. 56, 327–334. doi: 10.3233/JAD-160730

Liu, W., Vetreno, R. P., and Crews, F. T. (2021). Hippocampal TNF-death receptors, 
caspase cell death cascades, and IL-8  in alcohol use disorder. Mol. Psychiatry 26, 
2254–2262. doi: 10.1038/s41380-020-0698-4

Mestre, H., Hablitz, L. M., Xavier, A. L., Feng, W., Zou, W., Pu, T., et al. (2018). 
Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070. 
doi: 10.7554/eLife.40070

Morris, J. C. (1993). The clinical dementia rating (CDR): current version and scoring 
rules. Neurology 43, 2412–2414. doi: 10.1212/wnl.43.11.2412-a

Nedergaard, M., and Goldman, S. A. (2020). Glymphatic failure as a final common 
pathway to dementia. Science 370, 50–56. doi: 10.1126/science.abb8739

Ossenkoppele, R., Schonhaut, D. R., Schöll, M., Lockhart, S. N., Ayakta, N., 
Baker, S. L., et al. (2016). Tau PET patterns mirror clinical and neuroanatomical 
variability in Alzheimer’s disease. Brain 139, 1551–1567. doi: 10.1093/brain/aww027

Pasternak, O., Sochen, N., Gur, Y., Intrator, N., and Assaf, Y. (2009). Free water 
elimination and mapping from diffusion MRI. Magn. Reson. Med. 62, 717–730. doi: 
10.1002/mrm.22055

Petersen, R. C. (2016). Mild cognitive impairment. Continuum 22, 404–418. doi: 
10.1212/CON.0000000000000313

Snow, W. M., Dale, R., O’Brien-Moran, Z., Buist, R., Peirson, D., Martin, M., et al. 
(2017). In vivo detection of gray matter neuropathology in the 3xTg mouse model of 
Alzheimer’s disease with diffusion tensor imaging. J Alzheimer's Dis 58, 841–853. doi: 
10.3233/JAD-170136

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. 
(2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations 
from the national institute on aging-Alzheimer’s association workgroups on diagnostic 
guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 280–292. doi: 10.1016/j.jalz. 
2011.03.003

Taoka, T., Masutani, Y., Kawai, H., Nakane, T., Matsuoka, K., Yasuno, F., et al. (2017). 
Evaluation of glymphatic system activity with the diffusion MR technique: diffusion 
tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease 
cases. Jpn. J. Radiol. 35, 172–178. doi: 10.1007/s11604-017-0617-z

Wang, Z., Lewis, V., Stehmann, C., Varghese, S., Senesi, M., McGlade, A., et al. (2024). 
Alzheimer’s disease biomarker utilization at first referral enhances differential diagnostic 
precision with simultaneous exclusion of Creutzfeldt-Jakob disease. Alzheimer’s Dement. 
16:e12548. doi: 10.1002/dad2.12548

Wu, J., Carlock, C., Shim, J., Moreno-Gonzalez, I., Glass, W., Ross, A., et al. (2021). 
Requirement of brain interleukin33 for aquaporin4 expression in astrocytes and 
glymphatic drainage of abnormal tau. Mol. Psychiatry 26, 5912–5924. doi: 
10.1038/s41380-020-00992-0

Zhang, X., O’Callaghan, P., Li, H., Tan, Y., Zhang, G., Barash, U., et al. (2021). 
Heparanase overexpression impedes perivascular clearance of amyloid-β from murine 
brain: relevance to Alzheimer’s disease. Acta Neuropathol. Commun. 9:84. doi: 
10.1186/s40478-021-01182-x

Zhang, B., Xu, Y., Zhu, B., and Kantarci, K. (2014). The role of diffusion tensor imaging 
in detecting microstructural changes in prodromal Alzheimer’s disease. CNS Neurosci. 
Ther. 20, 3–9. doi: 10.1111/cns.12166

Zhou, Y. (2021). Imaging and multiomic biomarker applications. New York: Nova 
Science Publishers, Incorporated.

Zhou, L., Butler, T. A., Wang, X. H., Xi, K., Tanzi, E. B., Glodzik, L., et al. (2024). 
Multimodal assessment of brain fluid clearance is associated with amyloid-beta 
deposition in humans. J. Neuroradiol. 51:101164. doi: 10.1016/j.neurad.2023.10.009

Zhou, L., Nguyen, T. D., Chiang, G. C., Keil, S. A., Wang, X. H., Hu, T.-W., et al. (2025). 
Brain glymphatic fluid mapping in Alzheimer’s disease: a human MRI and PET study. 
Brain Commun. 7:fcaf200. doi: 10.1093/braincomms/fcaf200

https://doi.org/10.3389/fnagi.2025.1609793
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.3390/biomedicines10102667
https://doi.org/10.1016/j.jalz.2015.01.002
https://doi.org/10.1212/WNL.0b013e3181eccfa2
https://doi.org/10.1016/j.jalz.2018.01.010
https://doi.org/10.1093/brain/awaa179
https://doi.org/10.1007/s00415-024-12850-y
https://doi.org/10.1093/braincomms/fcad074
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.neurobiolaging.2025.03.001
https://doi.org/10.1016/j.neurobiolaging.2025.03.001
https://doi.org/10.1177/0284185113492971
https://doi.org/10.3233/JAD-160730
https://doi.org/10.1038/s41380-020-0698-4
https://doi.org/10.7554/eLife.40070
https://doi.org/10.1212/wnl.43.11.2412-a
https://doi.org/10.1126/science.abb8739
https://doi.org/10.1093/brain/aww027
https://doi.org/10.1002/mrm.22055
https://doi.org/10.1212/CON.0000000000000313
https://doi.org/10.3233/JAD-170136
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1007/s11604-017-0617-z
https://doi.org/10.1002/dad2.12548
https://doi.org/10.1038/s41380-020-00992-0
https://doi.org/10.1186/s40478-021-01182-x
https://doi.org/10.1111/cns.12166
https://doi.org/10.1016/j.neurad.2023.10.009
https://doi.org/10.1093/braincomms/fcaf200

	Multimodal DTI-ALPS and hippocampal microstructural signatures unveil stage-specific pathways in Alzheimer’s disease progression
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Technique for examination
	2.3 Cerebrospinal fluid (CSF) biomarker analysis
	2.4 Definition of biomarker positivity
	2.5 Data processing
	2.6 Statistical analysis
	2.6.1 Descriptive statistics
	2.6.2 Group comparisons
	2.6.3 Correlation analysis
	2.7 Data visualization
	2.8 Diagnostic model construction

	3 Results
	3.1 Statistical results of basic and clinical data
	3.1.1 Demographics (sex, age, education)
	3.1.2 Cognitive scores (MMSE and MoCA)
	3.1.3 CSF biomarkers: Aβ42
	3.1.4 MRI measurements: ALPS index
	3.2 Comprehensive visualization of biomarker distributions across HC, MCI, and AD groups
	3.3 Correlation analysis
	3.4 Multiple ROC curves in disease diagnosis and differential diagnosis

	4 Discussion

	References

