
Frontiers in Aging Neuroscience 01 frontiersin.org

Association between 
cardiovascular disease risk, 
regional brain age gap, and 
cognition in healthy adults
Sriya Pallapothu 1*, Roger D. Newman-Norlund 1, 
Nicholas Riccardi 2, Raghav Pallapothu 1, 
Pranesh Rajesh Kannan 1, Leonardo Bonilha 3, Julius Fridriksson 2 
and Chris Rorden 1

1 Department of Psychology, McCausland College of Arts and Sciences, University of South Carolina, 
Columbia, SC, United States, 2 Department of Communication Sciences & Disorders, Arnold School of 
Public Health, University of South Carolina, Columbia, SC, United States, 3 Department of Neurology, 
School of Medicine Columbia, Columbia, SC, United States

Background: Cardiovascular disease (CVD) and its associated risk factors 
accelerate neurodegeneration and cognitive decline. This study examined 
relationships between CVD risk, cognition, and Brain Age Gap (BAG)—the 
difference between MRI-predicted brain age and chronological age. While 
prior research has linked CVD risk factors to global (i.e., “whole-brain”) BAG, 
we  extend these findings by examining region-specific associations, offering 
more spatially precise insights into brain aging across the cortex.
Methods: Cross-sectional data from 187 participants in the University of South 
Carolina’s Aging Brain Cohort (ABC) were analyzed. T1-weighted MRI scans were 
processed with volBrain, an automated brain volumetrics pipeline, to calculate 
global and regional BAG. CVD risk was assessed using the QRISK3 calculator, 
which provides a 10-year CVD risk percentage and Heart Age value. The Heart 
Age Gap (HAG) was calculated as Heart Age minus chronological age. Cognitive 
function was assessed using the Montreal Cognitive Assessment (MoCA). Six 
data-driven brain aging factors were identified, and participant-level BAG scores 
for each factor were analyzed. Spearman correlations examined associations 
between CVD risk metrics, regional BAG factors, and cognition, controlling for 
age and sex.
Results: 10-year CVD risk and HAG were significantly correlated with global 
BAG (p < 0.001), even after adjusting for covariates. The BAGs of Factors 
3–6 showed significant positive correlations with 10-year CVD risk and HAG, 
indicating region-specific vulnerability. Total MoCA was negatively associated 
with the BAGs of Factors 4–6. In addition, the Language Index was negatively 
correlated with the BAGs of Factors 1, 4, and 5, while the Executive Index was 
negatively associated with Factor 5’s BAG. No CVD risk—cognition associations 
remained significant after adjusting for age.
Conclusion: CVD risk is associated with global and regional brain aging, with 
specific cortical regions demonstrating greater vulnerability to CVD risk burden 
than others. These findings highlight the added value of regional BAG analyses, 
which reveal heterogeneity in aging patterns not captured by global estimates 
alone and may clarify vascular contributions to brain aging.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death in 
America (Martin et  al., 2025) and in the world (World Health 
Organization, 2024). It is estimated that the burden of CVD in 
America will grow in the next few decades (Kazi et al., 2024), which 
is concerning given that CVD influences not only vascular health 
but also brain health. CVD and its risk factors are associated with 
structural changes in the brain, such as increased white matter 
hyperintensities (WMHs) (Hannan et al., 2025; Jiang et al., 2023; 
Debette et al., 2011; Jeerakathil et al., 2004), reductions in overall 
brain volume (Debette et al., 2011; Beauchet et al., 2013; Zhang 
et al., 2022), and with neurodegenerative conditions like vascular 
dementia and Alzheimer’s Disease (AD) (Justin et al., 2013; Saeed 
et  al., 2023). Cognitive function has also been linked with 
cardiovascular health. Premature CVD has been associated with 
worse cognition in midlife and a greater rate of cognitive decline 
(Jiang et al., 2023), and CVD risk has been negatively associated 
with global cognition, executive function (Dregan et al., 2013), and 
immediate and delayed memory performance (Wei et al., 2023).

As evidence continues to accumulate linking cardiovascular 
health to brain health and cognitive performance, recent advances 
in machine learning have enabled the estimation of ‘brain age’ 
based on T1-weighted structural MRI scans (Franke and Gaser, 
2019). Brain age is a single number reflecting the biological age of 
an individual’s brain, which may differ from their chronological age. 
Underlying the concept of brain age is the idea that structural and 
functional changes accumulate across the lifespan. By modeling 
these age-related trajectories, brain age provides a measure of 
biological brain integrity, allowing researchers to quantify 
deviations that may signal disease processes (Franke and Gaser, 
2019). The Brain Age Gap (BAG), found by subtracting an 
individual’s chronological age from their brain age, can suggest 
rates of brain aging (Franke and Gaser, 2019). A positive BAG is 
indicative of accelerated aging and has been linked with conditions 
like schizophrenia (Ballester et al., 2023), depression (Han et al., 
2021), progressive mild cognitive impairment, AD (Franke and 
Gaser, 2019), and longer post-stroke recovery times (Liew et al., 
2023). Like other measures of brain health, global (i.e., “whole-
brain”) BAG is also heavily influenced by CVD risk factors. Elevated 
systolic blood pressure (Beck et al., 2022), diabetes, pre-diabetes 
(Dove et al., 2024), and smoking (Linli et al., 2022) have all been 
associated with higher global BAG scores. Additionally, in 
populations with mild cognitive impairment and AD, global BAG 
has been associated with poor cognition (Franke and Gaser, 2019).

Recent studies have suggested that cerebrovascular risk factors 
appear to influence BAG in a region-specific manner. Global BAG 
estimates, while useful for summarizing overall brain health, are too 
coarse to capture region-specific patterns of neurodegeneration that 
are critical in aging and disease. A Mendelian randomization study 
found that elevated diastolic blood pressure was selectively 
associated with accelerated white matter aging, with effects varying 
by sex and age (Feng et al., 2023). Another study by Kolbeinsson 

et al. (2020) found that cardiometabolic risk factors were associated 
with global BAG and that a few brain regions (e.g., cerebellum, 
hippocampus, amygdala, and insular cortex) were especially 
predictive of that estimate, but they did not compute region-specific 
BAG values or examine how CVD risk relates to regional variability 
in brain aging. These findings support the idea that certain brain 
areas may be  particularly sensitive to cardiovascular burden. 
However, they also highlight the need for explicitly modeling BAG 
at the regional level, rather than inferring it from global models. 
Prior work on regional vulnerability to aging also supports this 
approach. A review by Pandya and Patani (2021) reported that 
regions that are often implicated in neurodegenerative diseases, 
such as the hippocampus, are more susceptible to accelerated aging 
and neuronal loss compared to other regions of the brain. Although 
the studies detailed in the review primarily inferred regional 
susceptibility to aging by examining gray and white matter volume 
(Pandya and Patani, 2021), regional BAG metrics offer a refined 
approach to evaluating region-specific brain aging and may help 
identify how certain regions are related to peripheral health 
(Riccardi et al., 2025a; Riccardi et al., 2025b). Surprisingly, no study 
has yet explored the relationship between regional BAG and CVD 
risk considering the known connection between CVD risk factors 
and global brain health.

Additionally, although the association between global BAG and 
cognition is well-established in clinical populations (Franke and 
Gaser, 2019), the relationship between BAG and cognition in 
healthy populations is less clear. Some studies report associations 
with cognitive decline and domain-specific deficits (Elliott et al., 
2021; Boyle et al., 2021), while others show no clear relationship 
with global cognition (Wrigglesworth et al., 2022). These mixed 
findings underscore the need to explore how BAG, particularly at 
the regional level, relates to cognition in non-clinical samples. 
Though our group has previously shown a relationship between 
regional BAG and global cognition in a healthy cohort (Riccardi 
et  al., 2025a), domain-specific studies are necessary to further 
elucidate the relationship between brain aging and distinct 
cognitive functions.

We sought to examine the relationship between CVD risk, 
regional BAG, and cognition. Data were obtained from the 
University of South Carolina’s Aging Brain Cohort (ABC), which 
provides data on healthy brain aging in adults in South Carolina. 
The unique dataset includes neuroimaging and lifestyle data, as well 
as survey-based health information and physiological measurements 
(Newman-Norlund et  al., 2021). Based on prior research, 
we  hypothesized that a regional BAG approach would provide 
greater insight than a global measure, with certain brain regions 
being more influenced by CVD risk than others, and that regional 
variations in BAG would differentially relate to cognitive domains 
(Feng et al., 2023; Kolbeinsson et al., 2020; Pandya and Patani, 2021; 
Riccardi et al., 2025a; Riccardi et al., 2025b). Ultimately, findings 
from this study will enhance the current understanding of the 
effects of CVD risk on regional brain health which will benefit 
future clinical applications and therapeutic treatments.

https://doi.org/10.3389/fnagi.2025.1611847
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Pallapothu et al.� 10.3389/fnagi.2025.1611847

Frontiers in Aging Neuroscience 03 frontiersin.org

Methods

Participants

Data were drawn from the University of South Carolina’s Aging 
Brain Cohort Study Repository (ABC@USC), an ongoing cross-
sectional study of aging which started in 2019. Participants were 
neurologically healthy and community-dwelling adults (ages 20–80), 
all of whom were native English speakers. Participants were excluded 
if they had a diagnosed psychiatric condition (ex: schizophrenia), BMI 
greater than 42 kg/m2, diagnosed neurodegenerative disease, previous 
history of stroke, acute or chronic conditions that hindered their 
participation, or any severe illnesses (ex: cancer). Individuals were 
recruited using a stratified sampling strategy to reflect South Carolina’s 
diversity in age, gender, race, and socioeconomic status, with income 
determined by the Hollingshead Index. Recruitment occurred via 
community outreach (e.g., flyers, brochures, local events, media 
releases) and online platforms (study website, social media). Interested 
individuals completed an online eligibility survey, were screened by 
study staff, and provided written informed consent prior to 
participation. The Aging Brain Cohort Study was approved by the 
Institutional Review Board, and full study procedures, including 
recruitment, screening, and consent, are described in Newman-
Norlund et al. (2021).

The QRISK3 calculator was used to calculate CVD risk measures1 
(see QRISK3 section below). Since the QRISK3 calculator is only valid 
for individuals between the ages of 25–84 without a history of 
coronary heart disease, heart attack, angina, stroke, or transient 
ischemic attack (Hippisley-Cox et al., 2017; Cic, 2024), participants 
younger than 25 years of age or participants with a clinical history of 
the above conditions were excluded. Out of a total of 381 available 
participants, 5 participants were excluded because of the presence of 
heart attack, transient ischemic attack, or coronary heart disease, and 
89 individuals were excluded because they were less than 25 years of 
age, reducing the sample size to N = 287.96 participants were excluded 
because they did not have neuroimaging data, and an additional four 
participants who had a global BAG outside of ±20 of their 
chronological age were considered outliers and were excluded from 
all analyses. Ultimately, complete brain imaging (including T1-w MRI 
images) and demographic information required for the QRISK3 
calculator were available for a total of 187 individuals. A total of 169 
participants had sufficient demographic data for calculation of 
QRISK3-based Heart Age (see QRISK3 section below). See Figure 1 
for an illustration chart on study methodology.

MRI data collection

High-resolution T1-weighted structural MRI scans were acquired 
for all participants at the McCausland Center for Brain Imaging 
(Prisma Health Heart Hospital) using a Siemens Prisma Fit 3 T 
scanner equipped with a 20-channel head coil. A 3D MPRAGE 
sequence was used with the following parameters: repetition time 
(TR) = 2,530 ms; echo times (TE) = 1.44, 2.90, 4.36, 5.82, and 7.28 ms; 

1  https://qrisk.org/index.php

inversion time (TI) = 1,100 ms; flip angle (FA) = 8°; voxel 
size = 1.0 × 1.0 × 1.0 mm3; and matrix size = 256 × 256 × 192 voxels. 
Foam padding was used to minimize head motion.

QRISK3

CVD risk metrics were estimated with the QRISK3 model. 
QRISK3 was created by medical professionals at the National Health 
Service in the UK and developed with a cohort of primary care 
patients aged 25–84 years old. QRISK3 predicts an individual’s chance 
of developing cardiovascular disease—which the model defines as 
coronary heart disease (including heart attack), ischemic stroke, and 
transient ischemic attack—within the next decade. The QRISK3 
calculator provides composite scores based on multiple factors, 
including demographics, clinical conditions, and several CVD risk 
factors like blood pressure, BMI, cholesterol, smoking, and diabetes 
(Hippisley-Cox et al., 2017). In fact, in a study of 566 individuals with 
Type 2 diabetes, the QRISK3 model was found to have better 
predictive ability of CVD than the Framingham Risk Score (Mu et al., 
2022), an older model of predicting an individual’s CVD risk in the 
next 10 years (Jahangiry et al., 2017).

To calculate CVD metrics for each participant, we entered relevant 
details into the online QRISK3 calculator (see text footnote 1). This 
included demographic data like age, sex, and ethnicity, as well as 
physiological measurements like height, weight, systolic blood 
pressure, and the standard deviation of the 2 most recent systolic 
blood pressure readings. Other variables included clinical conditions 
like chronic kidney disease, atrial fibrillation, migraines, diabetes 
(type 1, type 2, or none) and smoking status (non-smoker, former 
smoker, and light, moderate, or heavy smoker), and medications like 
atypical antipsychotics, regular corticosteroid tablets, and blood 
pressure treatments. The calculator provided the following 
information for each participant: (1) 10-year CVD risk score, which 
is an individual’s risk of developing a stroke or heart attack in the next 
decade, (2) the 10-year CVD risk score of a healthy individual without 
any clinical risk markers and the same ethnicity, sex, and age as the 
participant. The healthy individual is assumed to have a cholesterol 
ratio of 4.0, BMI of 25, and systolic blood pressure of 125 (Cic, 2024). 
(3) Relative Risk, which is a participant’s 10-year CVD risk score 
divided by the 10-year score of a healthy individual, and (4) Healthy 
Heart Age, which is the age at which the participant’s 10-year CVD 
risk score is achieved by a healthy individual of the same sex and 
ethnicity (Cic, 2024). Since heart age is a measure of the biological age 
of an individual’s heart (Lindow et  al., 2023), the Heart Age Gap 
(HAG) was calculated for participants by subtracting their 
chronological age from their Healthy Heart Age. Previous studies have 
found that HAG was associated with an increased risk of heart failure, 
ischemic heart disease, diabetes, and hypertension (Lindow 
et al., 2023).

When completing the initial ABC demographics questionnaire, 
participants self-identified as White, Black/African American, Asian, 
Native Hawaiian/Pacific Islander, American Indian/Alaska Native, and 
Other. To calculate QRISK3 metrics, individuals must be classified as 
one of the following ethnicities specified by the calculator: White, 
Black African, Black Caribbean, Indian, Pakistani, Chinese, 
Bangladeshi, Other Asian, or Other Ethnic Group. All participants 
who had identified as Black/African American in the ABC 

https://doi.org/10.3389/fnagi.2025.1611847
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://qrisk.org/index.php


Pallapothu et al.� 10.3389/fnagi.2025.1611847

Frontiers in Aging Neuroscience 04 frontiersin.org

questionnaire were classified as Black African for the QRISK3 
calculator, as opposed to Black Caribbean. By examining the languages 
participants spoke in addition to English, individuals who had self-
identified as Asian in the questionnaire were further classified as 
Indian, Pakistani, Chinese, Bangladeshi, or Other Asian for the 
QRISK3 calculator. If a participant did not speak another language in 
addition to English, they were classified as Other Asian. All 
participants who had identified as Native Hawaiian/Pacific Islander or 
American Indian/Alaska Native in the questionnaire were classified as 
Other Ethnic Group for the QRISK3 calculation. Additionally, biracial 
participants had their QRISK3 scores calculated separately for each 
identified ethnicity. Then, their two QRISK3 scores were averaged to 
produce a composite score.

For smoking status, participants who had smoked fewer than 5 
packs of cigarettes in their lifetime were classified as non-smokers. 
Participants who had smoked at least 5 packs in their lifetime but were 

no longer currently smoking were considered former smokers. 
Participants who had smoked at least 5 packs in their lifetime and 
were still smoking were current smokers. Since we did not have data 
on how many cigarettes each participant was smoking per day, all 
current smokers were classified as light smokers.

The QRISK3 calculator considers whether an individual has atrial 
fibrillation, which includes atrial flutter, paroxysmal atrial fibrillation, 
and atrial fibrillation for the purpose of the calculation (Hippisley-Cox 
et al., 2017). Although the ABC study did not have data on atrial 
fibrillation specifically, participants in the study indicated whether 
they had an irregular heart rhythm. An irregular heart rhythm can 
include conditions like atrial fibrillation, ventricular fibrillation, atrial 
flutter, paroxysmal supraventricular tachycardia, and ventricular 
tachycardia, though atrial fibrillation is the most common cause of 
irregular heart rhythms (National Heart, Lung, and Blood Institute, 
2022). To accurately reflect participants’ clinical risk factors, 

FIGURE 1

Study methodology overview. Participants were recruited from the Aging Brain Cohort and underwent MRI scans and clinical assessments. Brain age 
was estimated via volBrain; CVD risk was calculated using QRISK3; and cognitive function was measured via the MoCA. Spearman correlations were 
performed to assess associations between CVD risk, global and regional BAG, and cognition.
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individuals were only classified with atrial fibrillation if they (1) 
indicated an irregular heart rhythm, and (2) were taking medications 
commonly used to treat atrial fibrillation, atrial flutter, or paroxysmal 
atrial fibrillation.

We assessed whether participants were receiving blood pressure 
treatment based on their medication lists. If a participant self-reported 
elevated blood pressure and their medication list included a common 
antihypertensive drug, the participant was classified as taking blood 
pressure treatment. If a participant was taking a common blood 
pressure medication for other conditions (ex: tachycardia) and did not 
indicate elevated blood pressure, the individual was not labeled as 
taking blood pressure treatment. However, if a participant did not 
self-report high blood pressure but was taking a common blood 
pressure medication without specifying the reason, the participant was 
classified as receiving blood pressure treatment.

Because certain data were not collected as part of the ABC study, 
we were unable to submit the following variables to the calculator: the 
participant’s cholesterol/HDL ratio, a United  Kingdom postcode, 
knowledge of a diagnosis of or treatment for erectile dysfunction, and 
the presence of rheumatoid arthritis, systemic lupus erythematosus, 
angina or heart attack in a first degree relative less than 60 years of age, 
and severe mental illness (includes schizophrenia, bipolar disorder, 
moderate to severe depression, and psychosis) (Hippisley-Cox et al., 
2017; Cic, 2024).

Brain age calculation

Brain age estimation was performed using the BrainStructureAges 
pipeline of volBrain, an online, validated, and fully automated brain 
MRI analysis platform designed to extract quantitative features from 
T1-weighted MRI scans (Manjón and Coupé, 2016; Nguyen et al., 
2024; Coupé et al., 2020; de Senneville et al., 2020). The volBrain 
framework combines multi-atlas segmentation with advanced deep 
learning–based pipelines to achieve accurate structural parcellation 
and age prediction (Manjón and Coupé, 2016). The BrainStructureAges 
module specifically estimates both global and regional brain ages 
using T1-weighted MRI data as input.

For each participant, volBrain utilized T1-weighted structural 
MRI data to estimate regional brain age. Preprocessing steps, including 
denoising, inhomogeneity correction, affine registration to the 
MNI152 space, intensity standardization, and intracranial cavity 
extraction were applied to each T1w image. Next, the preprocessed 
images were downscaled by a factor of 2, from the MNI space of 181 
× 217 × 181 voxels at 1 mm3 to 91 × 109 × 91 voxels (Nguyen et al., 
2024). Overlapping 3D subvolumes of the same size (32 × 48 × 32 
voxels) were extracted from the images. U-Nets were used to predict 
the age of each voxel within these subvolumes, and a 3D voxel-wise 
brain age map (size of 91 × 109 × 91 voxels) was created based on the 
outputs for each voxel. For voxels included in multiple overlapping 
subvolumes, predictions were averaged to generate a single brain age 
value per voxel. Before calculating regional brain ages, the 3D age map 
was upscaled back to the size of the original image. Then, a 
segmentation mask created by AssemblyNet was used to parcellate the 
brain into 132 anatomical regions, including both cortical and 
subcortical structures. The mean age of the voxels in each region was 
computed and became that region’s brain age. Additionally, regional 
age-bias correction was applied via linear regression following the 

method described in Smith et al. (2019) and Nguyen et al. (2024). To 
estimate chronological age, a feature vector of the 132 regional brain 
ages was input into a support vector regression (SVR) model. SVRs 
were trained using a 10-fold cross-validation approach on 
2,887 T1-weighted scans across 8 publicly available datasets. Each 
SVR fold predicted chronological age, and the outputs from the 10 
SVR models were averaged to generate a final chronological age 
prediction per participant. Model performance was tested using 
29,831 scans from the ABIDE II dataset (younger adults) and UK 
Biobank (older adults). For the younger population, volBrain’s method 
had a mean absolute error (MAE) of 1.88 years and R2 of 0.91, while 
the older population had a MAE of 3.83 years and R2 of 0.62. 
Importantly, volBrain’s method provided lower MAE values and 
higher R2 values compared to other state-of-the-art methods for brain 
age estimation in younger and older populations (Nguyen et al., 2024).

During U-Net training, all voxels within the intracranial cavity 
were assigned the subject’s chronological age, while non-brain voxels 
were set to zero. The training set was split 80%/20% for training and 
validation. Training was optimized using MAE as the loss function 
and stochastic gradient descent (SGD) with a batch size of 8. Early 
stopping was applied after 20 epochs without improvement in 
validation loss (Nguyen et al., 2024). The first U-Net was trained from 
scratch, while subsequent U-Nets used neighbor transfer learning and 
were initialized by using the weights of the preceding U-Net. 
Additionally, the training and validation data were recombined and 
re-split to train each new U-Net (Nguyen et al., 2024; Coupé et al., 
2020). AssemblyNet is the segmentation engine underpinning the 
regional labeling, utilizing a framework of 3D convolutional neural 
networks (CNNs) to achieve 3D whole brain segmentation from MRI 
data. It consists of two assemblies, each containing 125 3D U-Nets that 
each process a different subvolume. The first assembly provides coarse 
segmentation at 2 × 2 × 2 mm3 resolution, while the second refines 
this to 1 × 1 × 1 mm3. Final predictions from each assembly are 
generated by majority voting across all 125 U-Nets (Coupé 
et al., 2020).

For each participant, global and regional BAG values were 
computed by subtracting chronological age from the estimated brain 
age (Franke and Gaser, 2019). A positive BAG indicates accelerated 
brain aging relative to chronological age, while a negative BAG 
suggests decelerated aging. This metric provides insight into structural 
brain health and has been linked to neurodegenerative diseases, 
cognitive performance, and overall neurological resilience (Franke 
and Gaser, 2019).

MoCA scores

Participants in the study were administered the Montreal 
Cognitive Assessment (MoCA) to serve as a measure of cognition 
function. The MoCA is a 10-min test utilizing a battery of easily 
administered cognitive tasks, such as memory recall, drawing, fluency, 
attention, sequencing, verbal, and number-based tasks (Nasreddine 
et al., 2005). A participant’s level of functioning is measured in six 
cognitive domains, including memory, executive function, attention, 
language, visuospatial, and orientation (Wood et al., 2020). The MoCA 
is scored out of 30 points, and participants with a MoCA score greater 
than or equal to 26 are considered normal (Nasreddine et al., 2005). 
Additionally, domain-specific index scores can be calculated for each 
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of the cognitive domains for a more specific analysis of cognition 
subscores (Wood et al., 2020).

Statistical analyses

A total of 187 participants were included in the final analysis, 
and the demographic and clinical characteristics of the sample are 
presented in Table 1. To evaluate the performance of the volBrain 
model in our dataset, we calculated the coefficient of determination 
(R2) and MAE between chronological age and predicted global 
brain age. These metrics were computed for the full sample and 
separately for a healthy subsample. The healthy subsample was 
limited to participants with 10-year CVD risk scores below the 
sample median (≤5.90%) and excluded individuals with a history 
of diabetes, smoking, atrial fibrillation, chronic kidney disease, 
migraines, and antihypertensive or atypical antipsychotic 
medication use.

To evaluate the relationship between CVD risk and global 
brain aging, we  performed positive one-tailed Spearman 
correlations between CVD 10-year risk, Relative Risk, Heart Age 
Gap (HAG), and global Brain Age Gap (BAG) (Table 2), based on 
the a priori hypothesis that increased CVD risk would 

be associated with accelerated brain aging, which is supported by 
prior research (Beck et al., 2022; Dove et al., 2024; Linli et al., 
2022). To examine associations between CVD risk and regional 
brain aging patterns, we leveraged a six-factor parcellation of the 
brain previously defined by Riccardi et al. (2025a). This study 
applied an exploratory factor analysis to 104 regional brain age 
estimates derived from volBrain. The factor analysis identified six 
distinct spatial patterns of coordinated brain aging that reflect 
underlying neurobiological hierarchies, and the observed factors 
replicated in independent datasets. We  chose to use these 
predefined factors to increase the biological interpretability and 
reproducibility of our analyses, as well as to ensure consistency 
with prior work. For regional analyses, we used participant-level 
scores on these six factors, which were calculated in the same way 
as the earlier study by our group (Riccardi et al., 2025a). These 
scores reflect the degree to which each participant expresses the 
spatial brain aging pattern defined by each factor. Positive 
one-tailed tests of Spearman’s rank correlations were then 
performed between 10-year CVD risk, HAG, and the six regional 
BAG values (Table 3). The relationships between 10-year CVD 
risk, HAG, regional BAG, and MoCA scores were also assessed 
with Spearman’s correlations (Tables 4, 5). Negative one-tailed 
tests were performed because we  hypothesized that increased 

TABLE 1  Summary of participant risk profiles and clinical data.

Category N Mean (SD) Min Max Range

10-year CVD risk (%) 187 8.25 (8.37) 0.10 36.40 36.30

Relative risk 187 1.36 (0.63) 0.40 4.60 4.20

Healthy heart age 169 59.87 (15.17) 30.00 84.00 54.00

HAG 169 3.62 (4.10) −4.00 17.00 21.00

BAG 187 −1.85 (5.47) −18.71 16.16 34.87

Age 187 53.63 (15.71) 25.00 79.00 54.00

Height (cm) 186 168.73 (9.67) 147.32 198.12 50.80

Weight (kg) 186 78.24 (16.85) 45.36 144.70 99.34

Systolic BP (mmHg) 183 125.43 (16.77) 92.00 191.00 99.00

Category N Details

Sex 187 Female (134), Male (53)

Ethnicity 187 W (155), BA (22), Other (10)

Highest level of education completed 186 HS (15), S (5), C (76), GS (87), Other (3)

Economic status 181 High (73), Medium (93), Low (15)

Smoker 187 NS (135), FS (41), LS (11)

Diabetes 187 Type 1 (1), Type 2 (14), None (172)

CKD 187 Yes (1), No (186)

AF 187 Yes (9), No (178)

BPT 187 Yes (41), No (146)

Migraine 187 Yes (39), No (148)

AAP 187 Yes (3), No (184)

RCT 187 Yes (0), No (187)

Ethnicity: W, Caucasian; BA, Black African; Other, Includes all other ethnicities. Other Ethnicity makeup: 3 Indian, 1 Chinese, 1 Bangladeshi, 2 Other Asian, 3 Biracial. Level of Education 
Completed: HS, High School; S, at least 1 year of college/specialized training; C, College/University; GS, Graduate School. Smoker: NS, Nonsmoker; FS, Former Smoker; LS, Light Smoker. 
Diabetes: None, No diabetes; Type 1, Type 1 diabetes; Type 2, Type 2 diabetes. Additional Conditions: CKD, Chronic Kidney Disease; AF, Atrial Fibrillation; BPT, Blood Pressure Treatment; 
AAP, Atypical Antipsychotics; RCT, Regular Corticosteroid Tablets.
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BAG would be associated with worse cognitive function based on 
earlier studies (Elliott et  al., 2021; Wrigglesworth et al., 2022; 
Boyle et al., 2021; Franke and Gaser, 2019).

All statistical analyses were conducted using version 0.19.1 of JASP, 
an open-source statistical platform built on the R programming 
language (JASP Team, 2024). For our analyses in Tables 2–5 

TABLE 2  Relationships between CVD risk metrics and global BAG.

Variable Statistic 10-year CVD risk Relative risk HAG

Relative risk n 187 —

Spearman’s rho 0.687*** —

pFDR 3.69 × 10−27

p-value 1.846 × 10−27 —

HAG

n 169 169 —

Spearman’s rho 0.767*** 0.97*** —

pFDR 2.12 × 10−33 4.56 × 10−103

p-value 7.072 × 10−34 7.602 × 10−104 —

BAG n 187 187 169

Spearman’s rho 0.285*** 0.206** 0.267***

pFDR 6.47 × 10−5 0.002 2.91×10−4

p-value 4.313 × 10−5 0.002 2.429 × 10−4

All tests were one-tailed for positive correlations and conditioned on sex and age. Significant correlations that survived omnibus FDR corrections are bolded. *p < 0.05, **p < 0.01, 
***p < 0.001 (based on unadjusted p-values).

TABLE 3  Relationships between CVD risk metrics and regional BAGs.

Variable Statistic 10-year CVD risk HAG

Factor 1 n 187 169

Spearman’s rho 0.112 0.016

pFDR 0.110 0.505

p-value 0.064 0.421

Factor 2 n 187 169

Spearman’s rho 0.021 0.039

pFDR 0.505 0.461

p-value 0.388 0.307

Factor 3 n 187 169

Spearman’s rho 0.204** 0.238***

pFDR 0.007 0.003

p-value 0.003 9.670 × 10−4

Factor 4 n 187 169

Spearman’s rho 0.163* 0.251***

pFDR 0.026 0.003

p-value 0.013 5.274 × 10−4

Factor 5 n 187 169

Spearman’s rho 0.233*** 0.31***

pFDR 0.003 2.70 × 10−4

p-value 7.197 × 10−4 2.246 × 10−5

Factor 6 n 187 169

Spearman’s rho −0.144 −0.031

pFDR 0.975 0.711

p-value 0.975 0.652

All tests were one-tailed for positive correlations and conditioned on sex and age. Significant correlations that survived omnibus FDR corrections are bolded. *p < 0.05, **p < 0.01, 
***p < 0.001 (based on unadjusted p-values).
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we controlled for sex and age, and false discovery rate (FDR) correction 
was applied using the Benjamini–Hochberg procedure. For Table 5, 
FDR corrections were conducted within each MoCA subdomain 
individually, as the subdomains are related but represent distinct 
cognitive domains. For the other analyses, an omnibus FDR correction 
was applied across all comparisons. Spatial distributions of the 6 factors 
(Figure 2) were created in MRIcroGL, a free neuroimaging visualization 
software (Rorden and Brett, 2000). Additionally, we  conducted a 
supplementary exploratory analysis assessing correlations between 
CVD risk metrics and the original 104 cortical regional brain age values 
from volBrain (Supplementary Table 1). Given the large number of 
comparisons in this table, two-tailed tests were utilized to minimize the 
risk of inflated false positives. These were uncorrected and exploratory 
supplementary findings that were not conditioned on sex or age, and 
should therefore be interpreted with caution.

Results

The average age of participants in the study was 53.63 ± 15.71 years. 
The average Healthy Heart Age was slightly higher, at 
59.87 ± 15.17 years. 72% of the participants were female, and 83% of 
participants identified as white, 12% identified as black, and 5% 
identified as other ethnic groups. The average 10-year CVD risk score 
for participants was 8.25 ± 8.37%, while the average Relative Risk was 
1.36 ± 0.63. The average BAG was −1.85 ± 5.47, and the average HAG 
was 3.62 ± 4.10 (Table 1).

For the full sample (N = 187), the correlation between 
chronological age and predicted global brain age provided a R2 of 0.898 
and MAE of 4.41 years. These metrics indicate that volBrain predictions 
closely track chronological age in our dataset, supporting the validity 
of using BAG as a biologically meaningful marker of individual 
differences in brain aging. Additionally, in our healthy subsample 
(N = 50), the MAE was 5.34 years and the R2 was 0.818, supporting the 
reliability of volBrain predictions in generally healthy adults.

Global BAG had a significant and positive relationship with 
10-year CVD risk [Spearman: r (187) = 0.285, pFDR < 0.001], Relative 
Risk [Spearman: r (187) = 0.206, pFDR = 0.002], and HAG [Spearman: 
r (169) = 0.267, pFDR < 0.001]. Additionally, 10-year CVD risk, Relative 
Risk, and HAG were all significantly positively correlated with each 
other. Notably, Relative Risk and HAG showed very high collinearity 
[Spearman: r (169) = 0.97, pFDR < 0.001], suggesting possible overlap 
in the information they convey. Given this redundancy, and the 
stronger association between HAG and global BAG, we chose to retain 
only 10-year CVD risk and HAG for further analyses (Table 2).

As shown in Figure 2, Factor 1 primarily includes frontal regions. 
Factor 2 encompasses dorsal areas; Factor 3 covers ventral regions; 
Factor 4 is lateralized to the left hemisphere and spans the left 
frontotemporal cortex; Factor 5 is lateralized to the right hemisphere and 
involves the right temporoparietal cortex; and Factor 6 reflects bilateral 
lateral occipital and parietal regions. HAG was significantly positively 
correlated with Factors 3–5 (r range = 0.238–0.31, all pFDR’s < 0.01), and 
10-year CVD risk was also significantly positively correlated with Factors 
3–5 (r range = 0.163–0.233, all pFDR’s < 0.05) (Table 3).

TABLE 4  Relationships between CVD risk metrics and MoCA scores.

Variable Statistic 10-year CVD risk HAG

Total MoCA n 187 169

Spearman’s rho −0.024 −0.082

p-value 0.375 0.147

Memory index n 187 169

Spearman’s rho 0.017 −0.075

p-value 0.589 0.166

Executive index

n 187 169

Spearman’s rho −0.021 −0.068

p-value 0.386 0.19

Attention and concentration index n 187 169

Spearman’s rho −0.05 −0.082

p-value 0.249 0.145

Language index n 187 169

Spearman’s rho −0.011 −0.038

p-value 0.441 0.314

Visuospatial index n 187 169

Spearman’s rho −0.053 −0.117

p-value 0.236 0.067

Orientation index n 187 169

Spearman’s rho 0.003 0.04

p-value 0.515 0.698

All tests were one-tailed for negative correlations and conditioned on sex and age. No correlations reached nominal significance, so multiple comparison correction was not applied.
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The relationship between CVD risk metrics, regional BAG, 
and cognition was also assessed. Initial analyses revealed 
significant negative correlations between HAG and the Memory 
Index, as well as between 10-year CVD risk and cognitive 
outcomes (total MoCA as well as the Memory and Visuospatial 
indices), after correcting for multiple comparisons; however, these 
associations did not remain significant after controlling for age 
and sex (Table  4), suggesting that the observed effects were 
primarily driven by age-related variance rather than CVD risk. 
Additionally, significant relationships were found between our 
regional BAG factors and cognitive subscores. The BAGs of 
Factors 4–6 were significantly negatively associated with total 
MoCA score (pFDR < 0.05), with Factor 5’s BAG also showing a 
negative correlation with the Executive Index (pFDR = 0.012). In 
addition, the BAGs of Factors 1, 4, and 5 were negatively associated 
with the Language Index (pFDR < 0.05), while the correlation 
between Factor 6’s BAG and the Orientation Index approached 
significance (pFDR = 0.054) (Table 5).

Discussion

Overview of study findings

This study examined the relationship between CVD risk (QRISK3 
10-year risk and HAG), cognition (MoCA total and MoCA subscores), 
and regional BAG in six previously identified networks. 
We hypothesized that CVD risk metrics, previously found to be related 
to global BAG, would disproportionately affect the BAG of some 
regions, and that regional BAG measures would show distinct 
associations with different cognitive domains. Our results were 
generally consistent with these hypotheses. Specifically, regional BAG 
was significantly positively correlated with 10-year CVD risk and 
HAG for Factors 3, 4, and 5, but not for Factors 1, 2, or 6. These 
findings suggest that while CVD risk influences brain aging, its effects 
are not uniform across the entire brain; instead, certain regions may 
be  more vulnerable to cardiovascular related aging than others. 
Additionally, our regional BAG metrics were associated with specific 

TABLE 5  Relationships between regional BAGs and MoCA scores.

Variable Statistic Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Total MoCA n 187 187 187 187 187 187

Spearman’s rho −5.062 × 10−4 −0.053 −0.074 −0.149* −0.157* −0.153*

pFDR 0.497 0.284 0.237 0.044 0.044 0.044

p-value 0.497 0.237 0.158 0.022 0.016 0.019

Memory index n 187 187 187 187 187 187

Spearman’s rho 0.133 −0.033 −0.037 −0.075 −0.058 −0.136*

pFDR 0.965 0.396 0.396 0.396 0.396 0.192

p-value 0.965 0.33 0.307 0.157 0.217 0.032

Executive index n 187 187 187 187 187 187

Spearman’s rho −0.05 −0.013 −0.095 −0.093 −0.21** −0.026

pFDR 0.375 0.430 0.206 0.206 0.012 0.430

p-value 0.250 0.430 0.099 0.103 0.002 0.362

Attention and 

concentration index

n 187 187 187 187 187 187

Spearman’s rho −0.038 −0.005 −0.065 −0.051 −0.141* −0.077

pFDR 0.365 0.475 0.365 0.365 0.168 0.365

p-value 0.304 0.475 0.190 0.244 0.028 0.149

Language index n 187 187 187 187 187 187

Spearman’s rho −0.169* 0.052 −0.022 −0.202** −0.168* −0.055

pFDR 0.022 0.758 0.458 0.018 0.022 0.341

p-value 0.011 0.758 0.382 0.003 0.011 0.227

Visuospatial index n 187 187 187 187 187 187

Spearman’s rho −0.052 −0.007 −0.107 −0.054 −0.104 −0.058

pFDR 0.288 0.460 0.237 0.288 0.237 0.288

p-value 0.240 0.460 0.073 0.234 0.079 0.217

Orientation index n 187 187 187 187 187 187

Spearman’s rho 0.034 −0.034 0.032 0.011 0.05 −0.175**

pFDR 0.748 0.748 0.748 0.748 0.748 0.054

p-value 0.676 0.321 0.67 0.559 0.748 0.009

All tests were one-tailed for negative correlations and conditioned on sex and age. FDR correction was applied within each MoCA subdomain individually. Significant correlations that 
survived corrections are bolded. *p < 0.05, **p < 0.01, ***p < 0.001 (based on unadjusted p-values).

https://doi.org/10.3389/fnagi.2025.1611847
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Pallapothu et al.� 10.3389/fnagi.2025.1611847

Frontiers in Aging Neuroscience 10 frontiersin.org

MoCA subdomains, supporting the idea that region-specific patterns 
of brain aging may relate to distinct cognitive functions. These results 
support the utility of a regional BAG approach over a global one when 
investigating the relationship between CVD risk, brain health, and 
cognition. However, contrary to our expectations, 10-year CVD risk 
and HAG were not significantly associated with cognitive performance.

Our study confirmed that global BAG was significantly positively 
correlated with 10-year CVD risk and HAG (Table 2), which is consistent 
with prior literature examining CVD risk factors and brain health (Beck 
et al., 2022; Dove et al., 2024; Linli et al., 2022). Additionally, our factor-
specific analysis revealed regional variations in brain aging in relation to 
10-year CVD risk and HAG (Table 3). Notably, all analyses with BAG 
were conditioned on age and sex, suggesting that CVD risk is associated 
with global and regional brain aging beyond the effects of age and sex 
alone. Importantly, the brain structure age estimates were corrected for 
age bias using the method of Smith et al. (2019), as implemented in the 
volBrain pipeline (Nguyen et  al., 2024), reducing the influence of 
regression-to-the-mean artifacts in BAG.

Association between CVD risk metrics and 
regional BAG factors

The six BAG factors used in our analyses were derived from a 
prior study that found distinct patterns of regional brain aging which 

reflected underlying neurobiological hierarchies with heterogeneous 
spatial distributions. These factors were aligned with established 
neuroanatomical gradients, including aerobic glycolysis, gene 
expression, and anatomical hierarchy, and have been shown to map 
onto established cortical organization principles such as the sensory–
association (S-A) axis (Riccardi et al., 2025a; Sydnor et al., 2021). 
These spatial patterns replicated across independent cohorts and 
explained cognitive and sensorimotor performance better than global 
brain age, underscoring their biological and behavioral relevance 
(Riccardi et al., 2025a).

Our analyses showed that the BAGs of Factors 3–5 were positively 
associated with both 10-year CVD risk and HAG, implying these 
factors’ unique spatial patterns may better capture vascularly sensitive 
aging processes. For instance, Factor 3 is composed of ventral and 
inferior regions, such as the posterior occipital-temporal regions, 
hippocampus, and fusiform gyrus. These regions can be sensitive to 
vascular health, hypoperfusion (Gonzalez et al., 2015; Beason-Held 
et al., 2007), and metabolic stress (Tomasi et al., 2013; Palombit et al., 
2022; Zhao and Flavin, 2000), perhaps contributing to higher regional 
BAG values. Cardiovascular metrics like elevated diastolic blood 
pressure have been shown to predict thinning in areas like the occipital 
pole (Gonzalez et  al., 2015), while longitudinal data suggests that 
hypertensive individuals have greater decreases in cerebral blood flow 
in posterior occipital regions and occipitotemporal regions as 
compared to healthy controls (Beason-Held et  al., 2007). These 

FIGURE 2

Spatial distributions of the six factors. 3D surface renderings of the six factors are displayed in lateral and medial views for each hemisphere. Dark red 
indicates regions with higher factor loadings, while dark blue indicates regions with lower factor loadings.
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findings align with our observation that regions within Factor 3 may 
be especially susceptible to vascular changes associated with CVD risk.

Mechanistically, chronic hypoperfusion can deplete the brain of 
glucose and lead to oxidative stress and inflammation (Rajeev et al., 
2023; Park et al., 2019), which may ultimately result in cell death, the 
development of white matter lesions, and the breakdown of the blood–
brain barrier (Rajeev et al., 2023). Cerebral hypoperfusion is associated 
with several CVD risk factors (Meyer et  al., 2000), making this a 
plausible mechanism behind our results. Furthermore, certain areas 
in Factor 3 like the medial occipital regions and hippocampus have a 
high metabolic demand (Tomasi et al., 2013; Palombit et al., 2022) and 
display increased sensitivity to oxygen and glucose deprivation (Zhao 
and Flavin, 2000), potentially making them especially vulnerable in 
the context of vascular compromise. Individuals with suboptimal 
metabolic status have been shown to display greater brain aging in the 
parahippocampal gyri and left hippocampus and fusiform (Haas et al., 
2024), further supporting the idea that ventral and posterior brain 
regions in our study may be  vulnerable to accelerated aging via 
multiple systemic pathways. Our findings link this vulnerability to 
CVD risk—an aggregate measure of vascular and select metabolic 
factors—whereas Haas et al. (2024) report similar effects in relation to 
metabolic status alone, suggesting that vascular and metabolic 
processes may independently or jointly contribute to aging in 
these areas.

The positive association of the BAGs of Factors 4 and 5 with 
10-year CVD risk and HAG may reflect similar mechanisms. Factor 4 
is lateralized to the left hemisphere, while Factor 5 is lateralized to the 
right hemisphere. However, both factors encompass areas traditionally 
supplied by the middle cerebral artery (MCA), which is the most 
common major cerebral artery affected by acute stroke (Nogles and 
Galuska, 2023; Ng et  al., 2007) and large artery atherosclerosis 
(Balambighai et al., 2025). Notably, the MCA also displays a less robust 
system of collateral circulation. Primary collateral circulation is 
supplied by the Circle of Willis, while secondary collateral circulation 
is supplied by leptomeningeal vessels—pre-existing vessels that 
connect the distal branches of the major cerebral arteries and are 
activated during chronic hypoperfusion (Liebeskind, 2003; Tariq and 
Khatri, 2008). Critically, the MCA is relatively under-supplied by the 
Circle of Willis compared to other major arteries (Zhao et al., 2024), 
increasing its reliance on secondary collaterals such as leptomeningeal 
vessels (Zhao et al., 2024; Akamatsu et al., 2015). Risk factors like 
diabetes (Akamatsu et al., 2015; Li et al., 2024), metabolic syndrome 
(Menon et al., 2013), hypertension (Li et al., 2024), and age (Menon 
et al., 2013; Li et al., 2024) may contribute to poor secondary collateral 
circulation, suggesting that individuals with higher CVD risk may 
have reduced capacity for compensatory blood flow in the MCA 
arterial territory. Higher CVD risk scores have also been associated 
with lower blood velocity (Perdomo et al., 2019) and higher pulsatility 
(Pase et al., 2012) in the MCA, further supporting a potential vascular 
mechanism behind the observed associations with Factors 4 and 5.

Furthermore, the proximity of regions in Factors 4 and 5 to the 
watershed zone between the middle and posterior cerebral artery 
(PCA) territories may also be related to the observed accelerated brain 
aging in these areas. Watershed zones lie at the distal margins of 
arterial territories and are especially susceptible to ischemia due to low 
perfusion pressure and long, branching arterial supply (Mangla et al., 
2011; Dogariu et al., 2023). Infarcts in cortical watersheds are often 
due to microemboli from atheromatous plaque (Mangla et al., 2011; 
Dogariu et al., 2023), suggesting these areas are sensitive to the effects 

of vascular factors and atherosclerosis. Thus, the spatial overlap of 
Factors 4 and 5 with vulnerable vascular territories provides a 
biologically plausible explanation for their association with CVD risk.

Although Factors 1 and 2 also capture a few regions that are 
relatively metabolically active (Tomasi et al., 2013; Palombit et al., 
2022), BAG in neither of these factors was significantly associated with 
10-year CVD risk or HAG. This may reflect greater vascular resilience 
in these regions. Factor 1 primarily encompasses medial frontal and 
subcortical areas supplied by the anterior cerebral artery (ACA), 
which benefits from robust primary collateral support via the anterior 
communicating artery (Liebeskind, 2003). This well-developed 
collateral system may help preserve perfusion and protect against 
vascular insufficiency, potentially explaining the lack of association 
with 10-year CVD risk and HAG. Factor 2, while including some 
regions supplied by the middle cerebral artery (MCA), is situated 
closer to the ACA–MCA watershed zone. Notably, the ACA–MCA 
watershed region has a higher density of leptomeningeal vessels than 
the MCA–PCA watershed zone (Liebeskind, 2003), suggesting that 
Factor 2 may receive more redundant or mixed vascular supply. This 
may account for the presence of cardiovascular-related effects in 
Factors 4 and 5 but absence of cardiovascular-related effects in Factor 
2. Additionally, although we focused primarily on hypoperfusion as a 
candidate mechanism for regional brain aging, other 
pathophysiological factors may contribute. These include blood–brain 
barrier dysfunction (Knox et al., 2022), altered cellular composition 
and gene expression (Wang et  al., 2025), and mitochondrial 
dysfunction (Bartman et al., 2024). Future studies could integrate 
vascular imaging, transcriptomics, or metabolic profiling to further 
explore these contributors.

Association between cognitive subscores, 
CVD risk, and regional BAG factors

Unadjusted analyses revealed that 10-year CVD risk was 
negatively correlated with total MoCA as well as the Memory and 
Visuospatial Indices, while HAG was significantly correlated with the 
Memory Index. The significant relationship between 10-year CVD 
risk and total MoCA and the Memory Index is consistent with prior 
research supporting the idea that CVD risk significantly influences 
global cognition and memory (Song et al., 2020). However, in our 
sample, this association did not hold when controlling for age 
(Table  4). This suggests that the relationship between CVD risk 
metrics and cognition may have been primarily driven by age rather 
than CVD risk factors in our sample. It is also possible that our limited 
sample size impaired our ability to detect subtle effects of CVD risk 
on cognition after adjusting for age.

Interestingly, our analyses did reveal that regional BAG factors 
were significantly negatively associated with select MoCA subdomains 
(Table 5). While prior studies have linked higher global BAG to poor 
general cognition in healthy populations (Elliott et al., 2021; Boyle 
et al., 2021), our findings extend this work by identifying specific 
regional brain aging patterns related to both global and domain-
specific cognition. The BAGs of Factors 4–6 were significantly 
negatively associated with total MoCA scores (Table 5), in line with an 
earlier study showing similar associations for these factors (Riccardi 
et  al., 2025a). In domain-specific analyses, Factor 5’s BAG was 
negatively associated with the Executive Index, while the BAGs of 
Factors 1, 4, and 5 were negatively linked to the Language Index 
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(Table 5). These results partially align with Tan et al. (2025), who 
reported that BAG mediated the relationship between cognitive 
impairment risk factors and global cognition, executive function, and 
language in individuals with high cerebrovascular disease burden. 
Notably, Tan et al. examined global BAG, whereas our study focuses 
on regional patterns of brain aging, which may reveal associations 
obscured at the global level.

The utility of a regional approach is supported by prior work. For 
example, a recent study found that, in participants with cerebral small 
vessel disease, regional BAG was a stronger mediator of cognitive 
outcomes than global BAG (Lee et al., 2022). Similarly, in patients with 
left-hemisphere stroke, higher BAG in nonlesioned left domain-
general regions predicted greater aphasia severity (Busby et al., 2024), 
underscoring the clinical utility of targeted regional measures. This 
latter finding may help explain our observed association between 
Factor 4’s BAG and the Language Index, as Factor 4 is highly 
lateralized to the left hemisphere (Figure  2). Collectively, these 
patterns suggest that specific brain networks underlie distinct 
cognitive domains and that their vulnerability to accelerated aging can 
be missed when examining global BAG alone. Our findings, though 
preliminary, highlight the potential biological relevance of these 
relationships and the need for future studies with larger samples and 
hypothesis-driven designs to clarify the links between regional brain 
aging and cognitive performance.

Limitations

Our data were cross-sectional, but longitudinal analyses could 
allow for stronger causal claims about the relationship between 
CVD risk and brain structure. Though participant-level factor 
scores in our sample were calculated using the same approach as the 
original study that derived the factors (Riccardi et al., 2025a), our 
sample included 20 more ABC participants. This modest increase 
in sample size may contribute to minor variations in results. While 
we lacked access to all the information requested by the QRISK3 
calculator — which could have affected the 10-year CVD risk, 
Relative Risk, and HAG scores calculated for each participant — 
inclusion of these additional variables would likely have had 
minimal effects, as the primary drivers of the calculation were 
included (see QRISK3 section of the Methods). Furthermore, 
although the QRISK3 calculator is used internationally and has 
been verified in international groups (Hippisley-Cox et al., 2017), 
it was originally designed specifically for use in the UK population 
(Cic, 2024). It is possible that differences in healthcare access, diet, 
genetics, and lifestyle could have impacted the accuracy scores 
generated by the QRISK3 calculator for our South Carolina sample. 
Additionally, the QRISK3 calculator did not account for female-
specific risk factors, such as gestational diabetes, preeclampsia, or 
early menopause, that increase a woman’s risk for CVD (Appelman 
et  al., 2015); thus, the calculator may not have fully captured 
women’s risk of cardiovascular events, which could have affected the 
observed relationships with regional BAG. Finally, factors beyond 
CVD risk likely influence brain structure across the adult lifespan 
(Busby et al., 2022; Vidal-Pineiro et al., 2021; de Lange et al., 2021). 
Since we did not analyze the role of other potential risk factors on 
regional brain aging, our findings may not fully capture the complex 
interplay of factors affecting regional brain health.

Future directions

To our knowledge, the relationship between CVD risk and 
regional BAG has not been previously studied. While the current 
investigations provide some insights into this relationship, future 
larger scale studies are necessary to evaluate and validate some of 
the less robust findings reported here. Additionally, future studies 
should analyze the role of the vasculature in relation to regional 
BAG and CVD risk. Vascular factors are implicated in both 
cardiovascular aging and cognitive decline (King et al., 2023), and 
they may explain the link between CVD risk and BAG. Analysis of 
regional BAG using arterial atlases, such as those produced by Liu 
et al. (2023) could shed light on the mechanisms connecting CVD 
risk to brain health, which could inform future therapeutic 
treatments. Studies examining the impact of other risk factors, 
such as inflammation, small vessel disease, or female-specific risk 
factors, may also provide a more comprehensive understanding of 
regional brain aging. Finally, future research should investigate 
whether metrics that integrate both CVD risk and brain health 
measures are superior for predicting mortality when compared to 
measures that focus solely on CVD risk or brain health. 
Cardiovascular health and brain aging are likely influenced by 
similar risk factors and may share an underlying etiology, so 
considering both may provide a more holistic assessment of an 
individual’s health.

Final conclusion

CVD risk influences brain aging in a heterogenous matter with 
certain networks being disproportionately affected by CVD risk 
burden. Importantly, we demonstrate, for the first time, the added 
value of using a regional BAG approach in studying the relationship 
between brain health and CVD risk. Future studies might examine 
regional BAGs of areas/networks defined by vascular parcellations of 
the brain to further elucidate the relationship between cardiovascular 
health and brain health.
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