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Introduction: The choroid plexus (CP), a critical structure for cerebrospinal 
fluid (CSF) production, has been increasingly recognized for its involvement 
in Alzheimer’s disease (AD). Accurate segmentation of CP from magnetic 
resonance imaging (MRI) remains challenging due to its irregular shape, variable 
MR signal, and proximity to the lateral ventricles. This study aimed to develop 
and evaluate a region-informed Gaussian Mixture Model (One-GMM) for 
automatic CP segmentation using anatomical priors derived from FreeSurfer 
(FS) software and compare it with manual, FS, and one previous GMM-based 
(Two-GMM) methods.

Materials and methods: T1-weighted (T1w) and T2-fluid-attenuated inversion 
recovery (FLAIR) MRI scans were acquired from 38 participants [19 cognitively 
normal (CN)], 11 with mild cognitive impairment (MCI), and 8 with AD. 
Manual segmentations served as ground truth. A GMM was applied within an 
anatomically constrained region combining the lateral ventricles and CP derived 
from FS reconstruction. The segmentation accuracy was assessed using the dice 
similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and 
volume difference percentage (VD%). Results were compared with those from 
FS and one previous GMM method-based segmentations across diagnostic 
groups.

Results: The region-informed One-GMM achieved significantly higher accuracy 
compared to FS and Two-GMM, with a mean DSC of 0.82 ± 0.05 for One-GMM 
versus 0.24 ± 0.11 for FS (p  <  0.001), and 0.66 ± 0.10 for Two-GMM (p < 0.001), 
lower HD95 (One-GMM: 6.06 ± 10.32 mm vs. FS: 26.21 ± 7.32 mm vs. Two-
GMM: 10.58 ± 6.47 mm), and comparable volume difference (One-GMM: 
20.97 ± 9.53% vs. FS: 24.32 ± 28.13% vs. Two-GMM: 24.27 ± 22.10, p = 0.87). 
Segmentation accuracy of our proposed method was consistent across all 
diagnostic groups. Clinical analysis showed that there is no diagnostic group 
difference in CP volume obtained from manual, FS, Two-GMM, and our proposed 
One-GMM methods. In the whole cohort, there are also no age and sex effects 
of CP volume with all methods. Restricting to the CN group, CP volume from 
both manual (p = 0.03), Two-GMM (p < 0.01) and the proposed One-GMM 
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(p = 0.05), methods show an aging effect, but not for the FS segmented CP 
volume (p = 0.22).

Conclusion: A region-informed One-GMM method significantly improved CP 
segmentation accuracy over FS, providing a practical and accessible tool for 
CP quantification in AD and other research studies. Within this small cohort, no 
diagnostic group difference in CP volume was observed. An aging effect of CP 
volume was found within the CN group.

KEYWORDS

choroid plexus, Alzheimer’s disease, cerebrospinal fluid, neurofluids, brain clearance, 
Gaussian mixture model, FreeSurfer

1 Introduction

The choroid plexus (CP), a part of the brain located in the lateral 
ventricles (LV), is responsible for producing cerebrospinal fluid (CSF) 
and maintaining the blood-CSF barrier (BCSFB) (Čarna et al., 2023; 
Cserr, 1971). Beyond these fundamental roles, the CP has garnered 
significant attention in neurodegenerative research due to its 
involvement in immune surveillance (Dumas et al., 2024; Xu et al., 
2024), clearance of metabolic waste (Bergsland et  al., 2024), and 
regulation of neuroinflammation (Althubaity et al., 2022). Emerging 
evidence suggests that alterations in CP structure and function are 
closely linked to the pathophysiology of Alzheimer’s disease (AD), 
highlighting its potential as a biomarker for disease progression and 
severity (Lu et al., 2023; Butler et al., 2023; Althubaity et al., 2022).

Recent studies have demonstrated that increased CP volume 
correlates with greater cognitive impairment in individuals on the AD 
spectrum (Hidaka et al., 2024; Jeong et al., 2025). For instance, it has 
been demonstrated that patients with AD exhibited significantly larger 
CP volumes compared to healthy controls, with volumes inversely 
related to Mini-Mental State Examination (MMSE) scores (Čarna 
et al., 2023). Similarly, another study found that among patients with 
cognitive symptoms, larger CP volumes were associated with more 
severe cognitive deficits, independent of beta-amyloid (Aβ) pathology 
or neurodegeneration (Jeong et al., 2025; Choi et al., 2022). These 
findings underscore the importance of accurately quantifying CP 
volume to better understand its role in AD progression, to potentially 
serve as an imaging biomarker for cognitive decline, and to facilitate 
accurate regional functional measures like blood flow and permeability 
(Bouzerar et al., 2013; Tadayon et al., 2020).

Despite the recognized significance of CP volume in AD research, 
precise and automated segmentation of the CP remains a formidable 
challenge (Lu et  al., 2023; Li et  al., 2024). The CP’s irregular 
morphology, proximity to the wall of lateral ventricles, and subtle 
contrast differences from surrounding tissues on standard 
T1-weighted (T1w) MRI scans complicate its delineation. Traditional 
neuroimaging tools, such as FreeSurfer (FS) (Fischl, 2012), have been 
employed to segment the CP; however, studies indicate that FS 
automatic segmentations often lack the accuracy and reliability 
required for clinical and research applications (Storelli et al., 2024). 
Manual segmentation, while considered the gold standard, is labor-
intensive, subject to inter-rater variability, and impractical for large-
scale studies (Hidaka et al., 2024; Bannai et al., 2023).

To address these challenges, machine learning (ML) and deep 
learning (DL) based approaches have been explored to enhance CP 
segmentation (Storelli et al., 2024; Tadayon et al., 2020; Zhao et al., 

2020; Eisma et al., 2024). Among these, the Gaussian Mixture Model 
(GMM) has shown promise (Tadayon et  al., 2020). GMM is a 
probabilistic model that assumes all data points are generated from a 
mixture of several Gaussian distributions with unknown parameters. 
In the context of CP segmentation, GMM can effectively model the 
intensity distributions of different tissue types, facilitating the 
differentiation of the CP from adjacent structures and CSF. A study 
demonstrated that two-stage GMM-based segmentation 
outperformed the FS automatic method and showed high similarity 
with manual segmentation, with Dice similarity coefficient (DSC) 
ranging from 0.55 to 0.73 across multiple datasets, providing more 
accurate and reliable CP delineations (Tadayon et al., 2020). However, 
these DSC ranges of currently reported ML and DL-based 
segmentation have yet to reach the levels of accuracy required for 
broad clinical applications.

Incorporating anatomical priors into ML models can further 
enhance segmentation accuracy. By integrating region-specific 
information, such as the combined volume of the lateral ventricles and 
CP obtained from FS reconstruction, the model can be guided to focus 
on areas where the CP is anatomically expected.

In this study, we  propose a region-informed GMM for the 
automatic segmentation of the CP in individuals with Alzheimer’s 
disease. By utilizing the combined LV and CP regions segmented from 
FS reconstruction as anatomical priors, our model aims to enhance 
segmentation accuracy and reliability. We  hypothesize that this 
approach will outperform traditional methods, such as FS-based CP 
segmentation, providing a valuable tool for investigating the role of 
CP volume in AD research, including brain clearance, glymphatic 
function, and neurofluid dynamics (Eide et al., 2020).

2 Materials and methods

2.1 Participants

All participants were recruited between 2018 and 2019 as part of 
the Translational Biomarkers of Aging and Dementia (TRIAD) study 
conducted at McGill University. Subjects consisted of 19 cognitively 
normal (CN) controls, 11 mild cognitive impairment (MCI), and 8 
subjects diagnosed with AD by a physician using accepted criteria. 
MCI and AD subjects had a positive Aβ PET scan and a Cognitive 
Dementia Rating Scale (CDR score between 0.5 and 2). CN subjects 
had no objective cognitive impairment and a CDR score of 0. All 
subjects were free from significant medical or neurologic disease 
(other than AD). The study was approved by the Douglas Mental 
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Health University Institute Research Ethics Board, and written 
informed consent was obtained from all participants.

2.2 MRI data acquisition

Three-dimensional volumetric T1-weighted (T1w) MPRAGE 
were acquired using a Siemens Skyra 3 T scanner with acquisition 
parameters: repetition time (TR) = 2,300 ms, echo time 
(TE) = 2.96 ms, flip angle = 9o, and voxel size 1 × 1 × 1 mm3. 
T2-FLAIR images were acquired in the same session with an isotropic 
voxel size of 1 × 1 × 1 mm3 for all participants. Details of the data 
acquisition were documented in the previous literature (Butler et al., 
2024; Pascoal et al., 2021; Macedo et al., 2024).

2.3 Image preprocessing

All MRI scans underwent a standardized preprocessing pipeline 
in FreeSurfer v7.1 using the recon-all command, which processes T1w 
into a FS space with standard regions of interest (ROI) parcellations. 
Specifically, FS output includes the segmentation of lateral ventricles 
(LV) and CP, providing anatomical priors for the subsequent 
segmentation process. The accuracy of the LV mask from FS 
reconstruction was screened by making a snapshot of the LV mask 
overlaying T1w, and necessary manual edits were performed to make 
the LV mask accurate. The FS segmented CP was also used to compare 
with our proposed method. T2-FLAIR is processed with N3 correction 
to remove the regional brightness inhomogeneity (Tustison et al., 
2010), and coregistered to FS T1w space.

2.4 Manual segmentation of CP

The manual segmentation of CP was performed on the T2-FLAIR 
image in the FS T1w space by drawing the bright voxels located in the 
lateral ventricles and verified against the T1w scan for anatomical 
accuracy. This process was conducted by a trained radiologist, Dr. 
Savard, and re-examined by Dr. Lussier to guarantee the accuracy 
and consistency.

2.5 Region-informed Gaussian mixture 
model for CP segmentation

Our proposed segmentation approach utilizes a Gaussian Mixture 
Model (GMM) informed by FS-segmented LV + CP. Specifically, to apply 
GMM, the T2-FLAIR images in the LV + CP region, eroded by one voxel 
using a sphere kernel, were applied a 3D Gaussian filter to smooth the 
intensity of voxels, followed by a normalization step that divided the 
image values by the non-zero voxel mean. A 3-component GMM model 
was applied to the result image with our empirical initial mean values 

0.15,1.5,4µ =    and a corresponding standard deviation (SD) 
σ  =  0.02, 0.1,1.5  with component proportion   0.45,0.5,0.05 . Note 
that these initial means and standard deviations were obtained from 
testing on typical cases, and they are not fixed and can easily be adapted 
for a new dataset by testing on several cases. The GMM assigns each 
voxel a probability of belonging to the CP or the other two components 

based on its intensity and spatial location. The component/group that has 
the highest mean image intensity was assigned as the voxels in CP based 
on the posterior probability calculation and hard clustering rule, that is, 
assigns voxels with the highest posterior probability to the CP region. All 
these processing steps were conducted separately on the left and right 
sides to avoid the effect of the size variation of CP between hemispheres. 
The detailed steps of the processing were shown in the flowchart in 
Figure 1. This region-informed approach guides the GMM to focus on 
the areas where the CP is anatomically expected, enhancing segmentation 
accuracy. The implementation code of our proposed One-GMM 
method, written in MATLAB, will be made available as indicated in the 
“Data Availability” section.

2.6 Accuracy estimation of the choroid 
plexus segmentation using GMM

We compared our region-informed GMM (One-GMM) segmented 
CP to the FS’s automatic CP segmentation and manual segmentation, 
as well as the previously reported two-stage GMM (Two-GMM) 
method (Tadayon et al., 2020), using the following three metrics.

 1. Dice similarity coefficient (DSC) (Zou et  al., 2004), with 
formula DSC = 2TP/(2TP + FP + FN), where TP is the true 
positive, FP the false-positive, and FN the false-negative. DSC 
is to measure the overlap between the automatic and the 
manual CP segmentations, the higher the better.

 2. Hausdorff distance with 95 percentiles (HD95) (Huttenlocher 
et al., 1993), to measure the maximum distance between the 
automatic and manual segmentation boundaries, the lower the 
better; and.

 3. Volume difference percentage (VD%) (Taha and Hanbury, 2015), 
with formula VD% = (Vpred-Vtrue)/Vtrue, where Vpred and Vtrue are 
predicted volume and ground truth volume, respectively. VD% is 
to estimate the bias in total volume regardless of shape or location; 
the lower the better. Since the CP is small, irregular, and often 
adjacent to ventricles, the combination of these three metrics 
helps us to evaluate the accuracy of segmentation comprehensively.

2.7 Statistical analysis

All statistical analyses were performed in R v4.4.3 within RStudio 
v2022.07.1. We used the Kruskal–Wallis Rank Sum Test with post hoc 
Dunn’s test of multiple comparisons following a significant Kruskal-
Wallis Test for assessing the diagnostic group differences in segmentation 
accuracy. The impact of diagnosis (CN, MCI, and AD) on model 
performance was also examined using Tukey’s Honestly Significant 
Difference (HSD) test. The paired Wilcoxon Signed Rank Test was used 
to compare the performance of our proposed One-GMM method with 
the FS method, as well as the previous Two-GMM method, and it was 
also used to compare the segmented CP volume using the proposed 
One-GMM, FS, and previous Two-GMM with manual segmentation. 
A clinical analysis was conducted to evaluate the diagnostic group 
difference of segmented CP volume with the Kruskal–Wallis Rank Sum 
Test. The age and sex effects of segmented CP volume were modeled 
using linear regression. Statistical significance was set at p < 0.05, and all 
p-values were adjusted for multiple comparisons when necessary.
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3 Results

3.1 Demographics and measurements

Among the total of 40 participants, there were 19 CN, 11 MCI, 
and 8 AD. Their age, sex, and CP segmentation-related measurements 

are listed in Table 1. No group differences were found for age, sex, or 
CP volume from all methods. All methods show no performance 
difference across diagnostic groups. We observed that the proposed 
region-informed GMM model outperformed the other methods in all 
three metrics—DSC, HD95, and VD%—among all diagnostic groups 
compared with the FS and Two-GMM methods.

FIGURE 1

Flowchart of the choroid plexus segmentation using Gaussian Mixture Model with FreeSurfer processed lateral ventricles and choroid plexus priors. 
T1w, T1-weighted image; T2FLAIR, T2-weighted fluid attenuation image recovery; FS, FreeSurfer; LV, lateral ventricle; CP, choroid plexus; Recon, 
reconstruction; Coreg, coregistration.
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3.2 Choroid plexus segmentations—visual 
comparison

Figure 2 shows the examples of three participants (S1, S2, and S3) 
with varying CP volumes in both axial and coronal views. Figures 2A,C 
has small (S1), medium (S2), and high (S3) CP volume, respectively. 
We see that our proposed region-informed One-GMM method gives 
CP segmentation highly agrees with manually drawn ROIs and 
outperforms FS and previous Two-GMM methods, whose quantitative 
comparisons are discussed in the following two subsections.

3.3 Choroid plexus segmented volume 
comparison

The paired Wilcoxon Signed Rank Test showed that our proposed 
region-informed One-GMM method gave consistently slight 
underestimation of CP volume (V = 11, p < 0.001) compared with 
manual ground truth, while FS and Two-GMM methods show no 
over- or under-estimation of CP volume (FS: V = 315, p = 0.21; 
Two-GMM: V = 456, p = 0.22), as presented in Figure  3A. These 
findings have no change after accounting for the intracranial volume 
(ICV), the proposed One-GMM method (V = 14, p < 0.001), FS 
method (V = 324, p = 0.25), and the previous Two-GMM method 
(V = 458, p = 0.21), as presented in Figure  3B. Note that the 
segmentation of CP volume agreement between FS/Two-GMM and 
manual methods does not mean that the FS/Two-GMM segmentations 
are accurate. On the contrary, we can see in Figure 3 that CP volumes 
from FS/Two-GMM methods have both severely underestimation and 
overestimation, showing their inconsistent performance across 

participants. The error of CP segmentation from FS/Two-GMM 
methods is also seen in the second and third columns of Figure 2.

3.4 Choroid plexus segmentation accuracy

Our region-informed Gaussian Mixture Model (One-GMM) 
achieved a mean Dice similarity coefficient (DSC) of 0.82 ± 0.04, 
significantly outperforming (p < 0.001) FS’s automatic CP segmentation 
with a mean DSC of 0.24 ± 0.11 and the previous Two-GMM method 
with DSC of 0.66 ± 0.10, as shown in Figure 4A. These results suggest 
that approximately 82% segmented voxels overlay with manually drawn 
ROI using our proposed One-GMM method. Additionally, our model 
demonstrated lower Hausdorff distances (Figure  4B, One-GMM: 
6.06 ± 10.32 mm, FS: 26.21 ± 7.32 mm, Two-GMM: 10.58 ± 10.32 mm, 
all p < 0.001), indicating that our proposed method has better 
segmentation boundary consistency with the manual method. 
Moreover, our proposed method has a similar volume difference error 
(Figure 4C, One-GMM: 20.97 ± 9.53, FS: 24.32 ± 28.13, Two-GMM: 
24.27 ± 22.10, all p > 0.05). In summary, all three typical measures for 
segmentation accuracy showed that our proposed method agrees with 
manual segmentation well and has superior performance than the FS/
Two-GMM methods in the whole cohort and across diagnostic groups.

3.5 Clinical results

The Kruskal–Wallis rank sum test showed that in this small cohort 
there is no diagnostic group difference of CP volume from all four 
methods (p > 0.05) including manual, FS, the previous Two-GMM, 
and the proposed One-GMM methods, as shown in Figures 5C–E,G, 

TABLE 1 Demographics and measurements.

Items CN MCI AD p-value

Subjects number (n) 19 11 8

Age: Years [mean (SD)] 72.70 (4.77) 71.63 (6.17) 70.99 (7.80) 0.57

Sex: M (%) 5 (26.3) 8 (72.7) 3 (37.5) 0.07

CP volume manual [ml, mean (SD)] 1.77 (0.85) 1.94 (0.35) 2.06 (0.91) 0.55

CP volume proposed One-GMM [ml, mean (SD)] 1.39 (0.67) 1.53 (0.41) 1.79 (0.82) 0.40

CP volume Two-GMM [ml, mean (SD)] 1.76 (0.72) 2.41 (1.47) 2.38 (0.87) 0.28

CP volume FS [mean (SD)] 1.61 (0.51) 1.83 (0.54) 2.06 (0.60) 0.16

DSC proposed One-GMM [mean (SD)] 0.83 (0.04) 0.81 (0.05) 0.82 (0.06) 0.70

DSC FS [mean (SD)] 0.20 (0.08) 0.25 (0.12) 0.31 (0.11) 0.06

DSC Two-GMM [mean (SD)] 0.67 (0.10) 0.65 (0.11) 0.67 (0.10) 0.91

HD95 proposed One-GMM [mean (SD)] 3.46 (8.40) 7.72 (11.34) 9.95 (12.58) 0.26

HD95 FS [mean (SD)] 26.56 (5.03) 23.17 (7.64) 29.58 (10.36) 0.16

HD95 Two-GMM [mean (SD)] 9.20 (5.51) 11.11 (7.10) 13.16 (7.61) 0.32

VD% proposed One-GMM [mean (SD)] 21.25 (7.56) 20.82 (11.83) 19.47 (10.97) 0.92

VD% FS [mean (SD)] 25.98 (30.85) 23.40 (21.78) 28.96 (37.86) 0.90

VD% Two-GMM [mean (SD)] 20.40 (16.90) 24.22 (24.87) 33.51 (28.73) 0.36

GMM, Gaussian mixture model; CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; CP, choroid plexus; FS, FreeSurfer; SD, standard deviation; DSC, dice 
similarity coefficient; HD95, Hausdorff distance at 95 percentiles; VD%, volume difference percentage; M, male. Bold style numbers indicate the best performance compared with other two 
methods.
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respectively. In the whole cohort, the linear regression analysis with 
CP volume as output and age and sex as independent factors showed 
that the CP volume has no age or sex effect. Restricting to CN group, 
we  observed a normal aging effect of CP volume from manual 
(t = 2.41, p = 0.02, R2 = 0.18; Figure  5B), the previous Two-GMM 
(t = 4.63, p < 0.01; Figure 5F), and the proposed method (t = 2.05, 
p = 0.05, R2 = 0.12; Figure 5H) show CP volume increases with normal 
aging, but not saw the same results from FS method-based CP volume 
(t = 1.29, p = 0.22, R2 = 0.01; Figure 5D). No sex effect of CP volume 
was observed from all methods.

4 Discussion

This study presents a novel region-informed Gaussian Mixture 
Model for choroid plexus segmentation, which gives more accurate 
CP segmentation than previous studies and offers a promising 
approach for brain clearance studies in Alzheimer’s disease research. 
Our findings demonstrate that incorporating anatomical priors 
(lateral ventricles + choroid plexus) into the GMM framework 
substantially enhances segmentation accuracy, regardless of diagnostic 
groups. Clinical analysis within the cohort showed that CP volume, as 

FIGURE 2

Examples of choroid plexus segmentations using manual (first column), FS reconstruction (second column), previous Two-GMM (third column), and 
our proposed region-informed One-GMM (fourth column) methods. (A) A subject S1 with low CP volume; (B) A subject S2 with medium CP volume; 
(C) A subject S3 with high CP volume. We can see that the proposed One-GMM method aligns well with manual segmentation and outperforms both 
FS and previous Two-GMM methods across subjects with different CP volumes. CP, choroid plexus; FS, FreeSurfer; GMM, Gaussian Mixture Model.
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determined by our proposed method, increased with normal aging 
and showed no group difference between the diagnostic groups of CN, 
MCI, and AD.

4.1 Clinical and research implications

Accurate segmentation of the CP is critical for volumetric/
structural and functional analyses and understanding its role in 
neurodegeneration (Bergsland et  al., 2024; Lu et  al., 2023; Butler 
et al., 2023; Hidaka et al., 2024). Our data showed that the CP volume 
from the manual and proposed methods has a normal aging effect, 
which is consistent with previous studies (Eisma et al., 2024; Sun 
et  al., 2024), while the FS-based CP volume has no such effect. 
Although we did not observe the diagnostic group difference in CP 
volume, which has been reported before (Choi et al., 2022; Jiang et al., 
2024), we think this might be due to the small sample size. Another 
reason for these negative findings here probably arises from the fact 
that the anatomic change of CP might be later than its functional 
change (Gião et al., 2022; Delvenne et al., 2024). For instance, a recent 
study demonstrated that there is no group difference in CP volume 
between amyloid-positive and negative groups, but there is a group 
difference in their diffusion tensor imaging-based free water fraction 
(DTI-FWf) (Xu et  al., 2025). Given that our proposed method 
produces more accurate CP segmentation with a DSC score of 
approximately 0.82, the group difference might be  observed in a 
larger cohort using our proposed method. The improved precision 
offered by our model facilitates more reliable investigations into 
CP-related biomarkers, such as CP volume relative to intracranial 
volume or other function-related CP inflammation signals 
(Althubaity et  al., 2022; Butler et  al., 2023). This is particularly 
relevant in AD, where subtle changes in CP volume and structure 
may reflect disease progression or therapeutic response, and its 
volume alterations in might implicate mechanistic and functional 

impairment (Cserr, 1971; Althubaity et al., 2022; Choi et al., 2022; 
Bouhrara et al., 2024; Bouhrara et al., 2024; Rmeily-Haddad et al., 
2011). CP is the key region that produces CSF in the brain, which 
plays crucial roles in protecting the central nervous system (CNS) 
and is widely considered as the neurofluid in the glymphatic system 
that works to remove metabolic wastes, including Aβ and tau proteins 
in AD (Zhou et  al., 2024; Agarwal et  al., 2024; Iliff et  al., 2012; 
Ozsahin et al., 2025). CP volume changes may be associated with 
functional alterations, including decreased CSF production and/or 
brain clearance (Li et al., 2022; Zhou et al., 2024). Accurate assessment 
of CP volume will facilitate improved understanding of the role of CP 
in brain fluid clearance and other key functions, such as regulation 
of neuroinflammation, critical to the pathophysiology of 
neurodegenerative diseases like AD.

4.2 Lateral ventricle segmentation from 
FreeSurfer

Our proposed CP segmentation method depends on the LV mask 
from FS reconstruction. While it has been reported that FS v4.5-based 
LV segmentation for elder and Alzheimer’s disease subjects has an 
11% failure rate (Kempton et al., 2011), due to significantly enlarged 
LV size. In this study, we used FS v7.1, which performs better than its 
previous versions. In an elderly cohort of 623 participants at the Brain 
Health Imaging Institute of Weill Cornell Medicine, we found that 
there are 35 (35/623 = 5.6%) participants whose FS reconstruction has 
errors in LV segmentation. However, we found none of those 35 failed 
LV segmentations affects the CP segmentation using our proposed 
One-GMM method, since the failure of LV segmentation generally 
underestimates the volume of CP, and the missing parts are usually 
superior slices of LV and sometimes small regions in inferior LV that 
are away from CP. Even though we still recommend carefully checking 
LV segmentation accuracy by taking snapshots of the LV mask overlay 

FIGURE 3

Segmented choroid plexus volume comparison across methods. (A) Choroid plexus volume comparison; (B) percentage of choroid plexus volume 
normalized by intracranial volume. The data showed that the CP segmentation by FS and Two-GMM methods was much deviated from the manual for 
many participants. Our proposed One-GMM method has a slight underestimation of CP volume, which might be due to the erosion process for 
removing the boundary voxels. Since the boundary voxels are prone to have partial volume effects, our erosion process is beneficial to exclude false-
positive candidates. CP, Choroid plexus; ICV, intracranial volume. CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; n.s., 
non-significant; ***p < 0.001.
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on T1w or T2w images. The FS segmented LV and CP masks are 
adjacent to each other, after merging them there is no gap in between 
and the erosion steps in our method will only remove voxels at the 

outer boundary of the merged mask and will not generate gaps 
between CP and LV, facilitating an accurate segmentation of CP in the 
following steps.

FIGURE 4

Accuracy of choroid plexus segmentation using FS, previous Two-GMM, and our proposed region-informed One-GMM methods. (A) Dice similarity 
coefficient; (B) Hausdorff distance at 95 percentiles; (C) Volume difference percentage. The results show that our proposed method has better DSC 
and HD95, while VD% is similar for all methods. Note that each dot and line in the boxplots represents a participant. DSC, Dice similarity coefficient; 
HD95, Hausdorff distance at 95 percentiles; VD%, volume difference percentage. FS, FreeSurferr; n.s., non-significant; ***p < 0.001.
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4.3 Comparison to existing methods

Our model outperforms FreeSurfer and previous Two-GMM 
approaches in DSC by integrating regional information that directs 
the model’s focus to anatomically plausible regions (Storelli et al., 
2024; Tadayon et al., 2020; Zhao et al., 2020; Eisma et al., 2024). Our 
data showed that the proposed One-GMM method yielded to DSC 
of 0.82 compared with an FS of 0.25 and the previous Two-GMM 
of 0.66. Although we have not done a comparison with other more 

sophisticated deep learning-based methods, one previous study has 
reported DSC 0.72 in a cohort of 98 participants aged between 21 
and 89 years (Eisma et al., 2024) using fully connected U-Net and 
T1w, T2w, and TFLAIR images; another study reported DSC 0.72 in 
multiple sclerosis patients (Yazdan Panah et  al., 2023) using a 
two-step 3D U-Net and T1w. Our proposed One-GMM method is 
lightweight and highly adaptive to larger datasets across vendors 
and study sites. This is especially valuable in AD patients, where 
ventricular enlargement can mislead models that rely solely on 

FIGURE 5

The clinical results of segmented CP volume using three methods. (A,C,E,G), are the diagnostic group differences of CP volume from manual, FS, 
previous Two-GMM, and the proposed One-GMM methods, respectively. No diagnostic group difference of CP volume was observed from all these 
methods. (B,D,F,H), are the age effects of CP volume from the three methods. In the whole cohort, no age effect of CP volume was observed for all 
methods. Restricting to the CN group, a positive association between age and CP volume from manual, previous Two-GMM, and the proposed One-
GMM methods was observed, but not in the FS segmented CP volume.
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intensity gradients. We compared our method with the previous 
Two-GMM model mainly because both of them are GMM based 
and easy and fast to implement for wide clinical applications. It 
might be  ideal to compare the proposed method with more 
advanced deep learning-based methods. We did not compare our 
results using deep learning methods, either because the model has 
no open-source code (Yazdan Panah et al., 2023) or because the 
model used different data, such as all of T1w, T2w, and T2-FLAIR 
(Eisma et  al., 2024), as we  do not have T2w in our dataset. By 
guiding the model with spatial priors, we reduce false-positives and 
improve boundary delineation as estimated by DSC, HD95, and 
VD%. Our results indicate that the performance of our proposed 
method has no diagnostic group differences within the AD 
continuum. In contrast, FS segmentation has a higher DSC in AD 
than the CN group, which is not ideal in clinical applications, as it 
introduces diagnostic group bias and might introduce bias to the 
follow-up analysis. In terms of the computational burden, the 
proposed method is fully automatic and utilizes the outputs of the 
standard FreeSurfer reconstruction, which is a typical step in 
current medical imaging research, followed by a light-weight 
subject-specific GMM processing. With the proposed region-
informed segmentation, the One-GMM method takes less than 10 s 
per subject. Additionally, while our approach utilized FS 
reconstruction for LV + CP priors, any other image processing 
pipeline with accurate LV + CP segmentation could also be used 
with the proposed method.

5 Limitations

While our model demonstrates robust performance, this study has 
several limitations. First, the sample size in this study is relatively small, 
and the number of subjects in each diagnostic group is not balanced. 
This might be the reason for the lack of diagnostic difference in Cp 
volume in our results. Future work should validate the proposed model 
on a larger cohort and perform a comprehensive clinical analysis using 
segmented CP volume. Second, the model may introduce bias or limit 
generalizability to scans with atypical anatomy. We have noticed that 
for subjects with huge LV, the FS reconstruction of LV can be inaccurate, 
which might lead to an error in the CP segmentation using the 
proposed model. This limitation can be overcome by carefully checking 
the quality of FS reconstruction and editing the FS mask appropriately, 
or using robust LV segmentation methods. Third, the proposed 
One-GMM method uses initialization of the mean and standard 
deviation of the data, which were generated empirically. Although the 
mean and standard deviation are only initial guesses for those two 
parameters to fit into the GMM model, they might affect the 
segmentation results for general datasets. For each case in our dataset, 
the final value for each Gaussian component after segmentation is not 
the same as the given initial guesses. We have successfully applied these 
parameters to our other datasets acquired at different scanners from 
different vendors with the same initial guesses. We recommend that the 
user of the proposed method test several cases to adapt the initial mean 
and standard deviation parameters before applying it to larger datasets. 
Moreover, a soft clustering cut might be used in GMM to assign voxels 
to CP in future work to potentially improve the current method. In the 
future, a multisite data cross-validation using the proposed method 

and a longitudinal study of CP volume change, as well as clinical 
implications, might help to validate the model in clinical settings.

6 Conclusion

Incorporating region-based anatomical priors into a Gaussian 
Mixture Model significantly improves choroid plexus segmentation 
accuracy in healthy and Alzheimer’s disease populations. Our data show 
that CP volume increases with age within the CN group, but not for CP 
volume from the FS-based method. Our region-informed approach 
offers a practical and scalable solution for large-scale neuroimaging 
studies seeking to evaluate the role of CP in disease pathophysiology and 
to utilize CP structure as a biomarker of disease activity and progression.
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