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Background: Dynamic functional network connectivity (dFNC) assesses

temporal fluctuations in functional connectivity (FC) during magnetic resonance

imaging (MRI), capturing transient changes in neural activity. Investigating

dFNC may provide valuable insights into the complex clinical manifestations of

Alzheimer’s disease (AD). However, research on dynamic FC alterations in AD

remain limited. This study aimed to comprehensively characterize dFNC patterns

in patients with AD.

Methods: A total of 100 patients diagnosed with AD and 69 with healthy

controls (HC) were included. Resting-state functional magnetic resonance

imaging (rs-fMRI) data were analyzed using a sliding-window approach and

k-means clustering based on independent component analysis to examine

dFNC alterations. Correlation analyses were conducted to assess associations

between dFNC variations and clinical scores in individuals with AD. Additionally,

an exploratory multivariate pattern analysis was performed to classify AD across

different dFNC states.

Results: Four recurrent connectivity states were identified. In state III, patients

with AD exhibited a significantly longer mean dwell time and a higher fractional

time compared to the HC group, whereas the opposite trend was observed in

state IV. In state III, both fractional time and mean dwell time were negatively

correlated with cognitive scores. Significant differences in FC strength were

observed between states II and III. The highest classification accuracy for

distinguishing AD was achieved in state II, which was characterized by intra-

and inter-network dysfunction across multiple functional networks.

Conclusion: Distinct alterations in dFNC were identified, with significant

associations observed between connectivity patterns and clinical symptoms.

These findings provide new insights into the pathophysiology of AD.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder predominantly affecting individuals over the age of
65. Globally, an estimated 44 million individuals have been
diagnosed with AD, including 15.07 million individuals over the
age of 60 in China (Ren et al., 2022). The condition imposes
a substantial medical and economic burden on society. AD
is characterized by progressive memory decline, cognitive
impairment, and psychiatric symptoms; however, its underlying
pathophysiological mechanisms remain incompletely understood.
Proposed mechanisms include the accumulation of extracellular
β-amyloid deposition, abnormal intracellular aggregation of
hyperphosphorylated tau proteins, and neuroinflammation
mediated by microglial activation (Terry, 1994; Serrano-Pozo et al.,
2011; Leng and Edison, 2021; Xu et al., 2024).

Current gold-standard diagnostic approaches, such as
cerebrospinal fluid analysis and positron emission tomography,
are invasive and may limit patient adherence. Additionally,
neuropsychiatric scale assessments add complexity and may
prolong the diagnostic process. There is an urgent need for non-
invasive and highly sensitive techniques to facilitate early detection,
with the potential to reduce hospitalization and mortality.

Recent advancements in magnetic resonance imaging (MRI)
technology have significantly improved the study of resting-state
functional MRI (rs-fMRI) in AD. Findings from these studies
indicate that disruptions in functional connectivity (FC) within
specific brain regions and large-scale networks may contribute to
the clinical manifestations of AD. Frequently observed disruptions
include intra-network FC impairments within the default mode
network (DMN) and inter-network FC changes involving the
cognitive executive network (CEN), salience network, and attention
network (Palmqvist et al., 2017; Soman et al., 2020; Brier et al.,
2012; Schultz et al., 2017). Dysfunction in high-level network hubs,
often referred to as “rich hubs,” may be associated with the complex
cognitive and psychiatric symptoms of AD, potentially reflecting
underlying neuropathological mechanisms.

Alterations in FC provide a more comprehensive
understanding of brain dysfunction in AD and may serve as
sensitive imaging biomarkers for early detection. While static
functional network connectivity (FNC) analysis offers valuable
insights into disease characteristics, dynamic functional network
connectivity (dFNC) provides a more refined approach by
considering the brain as a dynamic system. dFNC analysis captures
time-varying data in the FC matrix during scanning, facilitating
the identification of transient connectivity patterns.

Abbreviations: AD, Alzheimer’s Disease; HC, Healthy Controls; MRI,
Magnetic Resonance Imaging; dFNC, Dynamic Functional Network
Connectivity; FNC, Functional Network Connectivity; FC, Functional
Connectivity; ICA, Independent Component Analysis; SVM, Support Vector
Machine; FDR, False Discovery Rate; DMN, Default Mode Network;
CEN, Cognitive Executive Network; SMN, Sensorimotor Network; VN,
Visual Network; AUD, Auditory Network; CB, Cerebellar Network; BG,
Basal Ganglia Network; MMSE, Mini-Mental State Examination; MoCA,
Montreal Cognitive Assessment; rs-fMRI, Resting-State Functional Magnetic
Resonance Imaging; NPI-12, Neuropsychiatric Inventory-12; VFT, Verbal
Fluency Test; CAVLT, Chinese version of the Auditory Verbal Learning Test;
DS, Digit Span Test; CDT, Clock Drawing Test; AUC, Area Under the Curve;
LOOCV, Leave-One-Out Cross-Validation.

Independent component analysis, a data-driven method,
decomposes rs-fMRI data into functionally distinct regions,
allowing for whole-brain analysis without reliance on predefined
regions of interest, which may obscure or misrepresent distinct
patterns (Hyvärinen and Oja, 2000). This approach has been
applied to various neurological disorders, including depression
(Wu et al., 2024; Yao et al., 2019), schizophrenia (Damaraju et al.,
2014), Parkinson’s disease (Kim et al., 2017; Fiorenzato et al.,
2019), and cerebral small-vessel disease (Chen et al., 2024), where
abnormalities in the temporal properties of dynamic FC have been
reported. However, research on FC dynamics in AD remain limited
(Jones et al., 2012; Fu et al., 2019; Schumacher et al., 2019). Jones
et al. (2012) identified changes in the non-stationary modular
organization of brain networks in AD, while Fu et al. (2019) and
Schumacher et al. (2019) compared FC dynamics in AD with those
observed in other forms of dementia. However, these studies were
constrained by small sample sizes and lacked a comprehensive
characterization of dFNC properties.

This study examined dFNC alterations in individuals with
AD using independent component analysis (ICA) and k-means
clustering. The relationship between these alterations and cognitive
as well as psychiatric symptoms were examined. Additionally,
support vector machine (SVM) classification was applied to
evaluate between-group differences in FC matrices across different
states, providing further insights into the imaging characteristics
associated with AD.

2 Materials and methods

2.1 Participants

Individuals with AD were recruited from the Neurology
Outpatient Clinic at the First Affiliated Hospital of Anhui Medical
University between March 2017 and July 2024. Age-, sex-, and
education-matched healthy controls (HC) were selected from the
local community. The diagnosis of AD was established based on the
criteria set by the Neurological and Communicative Disorders and
Stroke and the AD and Related Disorders Association (NINCDS-
ADRDA) for probable AD (McKhann et al., 2011). Disease severity
was evaluated using the Clinical Dementia Rating, with scores
ranging from 0.5 to 2.

To be included in the HC group, participants were required
to have no cognitive impairment or functional limitations in
daily living, as indicated by a Mini-Mental State Examination
(MMSE) score of ≥ 27. The exclusion criteria encompassed the
following: (1) hearing impairment or uncorrected visual deficits, (2)
a history of other dementia subtypes, psychiatric disorders, stroke,
or significant cranial injuries, (3) a history of substance abuse, and
(4) contraindications to MRI.

2.2 Neuropsychological and
neuropsychiatric assessment

A standardized neuropsychological assessment was
administered to each participant by two qualified psychologists.
Cognitive functions were evaluated across five domains: (1)
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General cognitive performance was assessed using the MMSE
and the Montreal Cognitive Assessment; (2) Episodic memory
was measured using the Chinese version of the Auditory Verbal
Learning Test (CAVLT), including CAVLT-immediate (CAVLT-I),
CAVLT-delayed (CAVLT-D), and CAVLT-recognition (CAVLT-R);
(3) Language function was evaluated with the Verbal Fluency Test
(VFT); (4) Attention performance was assessed using the Digital
Span Test; and (5) Visuospatial ability was examined with the
Clock Drawing Test. Neuropsychiatric symptoms were assessed
using the Neuropsychiatric Inventory-12 (NPI-12).

2.3 MRI acquisition

MRI was conducted using a 3.0T GE scanner (GE
Healthcare, Buckinghamshire, United Kingdom). Functional
and structural images were acquired from all participants (see
Supplementary material).

2.4 Data preprocessing

Rs-fMRI data preprocessing was conducted using the MRI
preprocessing module within the Graph Theoretical Network
Analysis toolbox (version 2.0)1 in MATLAB (The MathWorks,
Inc., Natick, MA, United States) (Wang et al., 2015). The first
10 volumes were discarded to ensure signal equilibrium. Slice
acquisition followed an alternating sequence in the positive
direction, beginning with odd-numbered slices. To correct for head
motion, images were realigned to the mean volume.

Sequential preprocessing steps included head motion
correction, nuisance signal regression (removing white matter
and cerebrospinal fluid signals, as well as Friston’s 24 head
motion parameters), spatial normalization to the standard
Montreal Neurological Institute echo-planar imaging template,
and resampling to a voxel size of 3 × 3 × 3 mm across 207 time
points. A 6 mm full-width at half-maximum Gaussian kernel was
applied for spatial smoothing.

Realignment parameters identified five participants with a head
displacement exceeding 3.0 mm or angular rotation exceeding
3.0◦, leading to their exclusion from the study. Independent two-
sample t-tests indicated no significant difference in mean framewise
displacement (Jenkinson) between the AD and HC groups (AD
group: 0.066± 0.032; HC group: 0.063± 0.025; p = 0.456).

2.5 Group ICA

Following preprocessing, spatial group ICA was conducted to
extract functional brain networks using the Infomax algorithm
within the GIFT 4.0 software package2. Principal component
analysis was applied to each participant’s data for dimensionality
reduction, yielding 120 components. Data from all participants
were then combined and further reduced using expectation

1 http://www.nitrc.org/projects/gretna

2 http://mialab.mrn.org/software/gift/

maximization, resulting in 100 independent components (ICs). The
Infomax algorithm was executed 20 times in ICASSO to enhance
reliability (Bell and Sejnowski, 1995; Himberg et al., 2004). The
time series and spatial distribution of ICs for each participant were
obtained using the group ICA inverse reconstruction algorithm
(Calhoun et al., 2001).

Physiological noise, motion artifacts, and imaging irregularities
were excluded through template recognition, visual inspection, and
comparison with prior studies. The inclusion criteria for ICs were
as follows: (1) peak coordinates primarily located in gray matter,
(2) minimal overlap with blood vessels, white matter, ventricles,
and limbic regions, (3) time series predominantly composed of
low-frequency signals, and (4) a high dynamic range in the
time series, defined as the difference between minimum and
maximum frequencies.

Prior to computing dynamic FC, additional post-processing
steps were applied (Kim et al., 2017; Allen et al., 2014). (1)
Detrending was performed to eliminate data drift caused by non-
linear variations during scanning, such as physiological fluctuations
(e.g., heart rate and respiration); (2) despiking was conducted
using AFNI’s 3dDespike algorithm to remove outliers resulting
from artifacts or external interference; and (3) low-pass filtering
with a fifth-order Butterworth filter was applied to remove high-
frequency noise above 0.15 Hz while preserving low-frequency
signal components.

2.6 Dynamic FC calculation

FC patterns between brain regions were analyzed using a
sliding time window approach within the Dynamic Functional
Connectivity toolbox in GIFT software (Preti et al., 2017).
A Gaussian function (σ = 3 TRs) was used to generate the sliding
window, segmenting the rs-fMRI time series into 185 rectangular
windows with a step size of 1 TR and a window length of 22 TRs.
Previous studies have recommended window sizes ranging from 30
to 60 s to optimize the resolution of dFNC and improve the quality
of correlation matrix (Allen et al., 2014).

For each sliding window, covariance values were computed for
each IC pair, resulting in a 37 × 37 pairwise covariance matrix.
L1 regularization was applied to the precision matrix using the
graphical least absolute shrinkage and selection operator (LASSO)
framework, with 100 iterations performed to enhance sparsity
(Friedman et al., 2008; Smith et al., 2011). To stabilize variance
before further analysis, all FC matrices were converted to z-scores
using Fisher’s Z-transformation.

2.7 Dynamic FC state analysis

Clustering analysis was performed on the FC matrices derived
from the time windows of all participants. The k-means clustering
algorithm was repeated 100 times to minimize the influence
of random initial cluster selections and enhance result stability.
Similarities between functional connection matrices were measured
using the Euclidean distance metric, and the optimal number
of clusters was determined based on the elbow criterion (see
Supplementary Figure S8; Damaraju et al., 2014).
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The temporal properties of the four dFNC states were
quantified using three metrics within the state transition vector:
(1) Mean dwell time, representing the number of consecutive
windows spent in a specific state; (2) Fractional windows, indicating
the proportion of time spent in each state; and (3) Transition
count, reflecting the frequency and reliability of state transitions.
Validation analyses were conducted using window lengths of
15, 20, 25, and 30 TRs (see Supplementary Tables S2, S3 and
Supplementary Figures S9–S12).

Comparisons of FC strength between the AD and HC
groups were performed across all identified states. Two-sample
independent t-tests were used to assess differences in FC strength
at 666 regional pairings, with false discovery rate (FDR) correction
applied (p < 0.05) to account for multiple comparisons.

2.8 Statistical methods

Clinical data analyses were performed using SPSS software
(version 26.0; Chicago, IL, United States). The Kolmogorov-
Smirnov test was used to assess data normality. Between-group
differences in age, education, and neuropsychiatric scores were
evaluated using independent two-sample t-tests (two-tailed), while
differences in sex distribution and state proportions were analyzed
using chi-square tests. Comparisons of temporal properties
across states between groups were conducted using Mann-
Whitney U tests.

Partial correlation analyses were used to estimate
associations between clinical scores and temporal properties
in individuals with AD, with FDR adjustment applied to adjust for
multiple comparisons.

2.9 Exploratory multivariate pattern
analysis

Exploratory multivariate pattern analysis, as applied in
previous studies, was used to evaluate the potential of dFNC in
detecting AD at the individual level (Wu et al., 2024; Liu et al., 2015;
see Supplementary material).

3 Results

3.1 General and clinical data

A total of 100 individuals with AD and 69 HC were included
in this study. No significant differences were observed between
the groups in terms of age, sex, or education level (p > 0.05).
Detailed demographic and clinical characteristics of both groups
are presented in Table 1.

3.2 Resting state networks

A total of 37 ICs were selected for analysis. These components
were classified into seven resting-state networks, as depicted in

TABLE 1 Demographic and clinical data.

Variables AD
patients
(n = 100)

Healthy
controls
(n = 69)

Statistics p

Demographic factors

Age (years) 65.37± 9.56 63.45± 7.33 t = 1.48 0.142

Gender
(male/female)

48/28 28/41 x2 = 0.91 0.341

Education
(years)

7.98± 4.78 8.42± 4.47 t =−0.60 0.550

Psychiatric symptom

NPI-12 8.02± 11.45 1.96± 5.14 t = 4.60 0.000**

General cognitive performance

MMSE 19.20± 4.97 28.50± 1.60 t =−14.99 0.000**

MoCA 13.32± 5.60 24.26± 3.93 t =−14.93 0.000**

Memory performance

CAVLT-
immediate

3.42± 2.04 8.49± 1.92 t = 16.01 0.000**

CAVLT-delay 1.33± 2.50 9.30± 2.82 t = 18.59 0.000**

CAVLT-
recognition

10.70± 4.14 14.15± 1.06 t =−6.73 0.000**

Language performance

VFT 9.66± 4.10 17.46± 4.03 t =−12.18 0.000**

Attention performance

DS-forward 5.79± 1.41 6.86± 1.42 t =−4.83 0.000**

DS-backward 3.24± 1.20 4.07± 1.13 t =−4.54 0.000**

Visual-spatial performance

CDT 1.73± 1.25 3.38± 1.00 t =−9.47 0.000**

AD, Alzheimer’s disease; NPI-12, Neuropsychiatric Inventory-12; MMSE, Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; CAVLT, Chinese version of the
Auditory Verbal Learning Test; VFT, Verbal Fluency Test; DS, Digit Span Test; CDT, Clock
Drawing Test. **p < 0.01.

Figure 1 based on previous studies: the visual network (VN): ICs
7, 19, 21, 23, 36, 44, 47, 69, 81, the sensorimotor network (SMN):
ICs 6, 9, 12, 17, 20, the auditory network (AUD): ICs 28, 57, the
default mode network (DMN): ICs 35, 45, 50, 65, 82, 86, 93, 95, the
cognitive executive network (CEN): ICs 32, 37, 46, 51, 55, 60, 76,
91, the cerebellar network (CB): ICs 8, 18, 22, and the basal ganglia
network (BG): ICs 34, 59 (Preti et al., 2017). Detailed information
and spatial maps of the ICs are provided in Supplementary Table S1
and Supplementary Figures S1–S7.

3.3 Dynamic FC state analysis

Four distinct dFNC states were identified across all participants,
with the 5% strongest connections in the FC matrix for each state
highlighted in Figure 2.

State I accounted for 15% of the windows and exhibited
moderately positive intra-network FC within the VN, SMN, AUD,
DMN, CEN, CB, and BG networks. Additionally, moderately
negative inter-network FC was observed between the VN, SMN,
AUD, and other networks, including the DMN, CEN, CB, and BG.
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FIGURE 1

Thirty-seven ICs identified through group-independent component analysis. (A) Spatial maps of ICs categorized into seven functional brain
networks based on anatomical and functional properties. (B) Group-averaged static functional connectivity between IC pairs derived from
resting-state data. VN, visual network; SMN, sensorimotor network; AUD, auditory network; DMN, default mode network; CEN, cognitive executive
network; CB, cerebellar network; BG, basal ganglia network.

FIGURE 2

Cluster centroids and characteristics of dynamic functional network connectivity states for all participants (window length = 22 TRs). (A) Cluster
centroids for each state, including the total number and percentage of occurrences (indicated in the top right of the centroid matrix). (B) Circular
plots depicting the top 5% strongest connections (absolute value of the maximum correlation coefficient) in the FC matrix for each state. Each color
represents one of the seven networks.

State II comprised 18% of the windows and represented a highly
connected state, characterized by strong intra-network and inter-
network coupling across nearly the entire brain.

State III, the most frequently occurring state at 55% of the
windows, was characterized by sparse intra- and inter-network
connections across most brain regions.

State IV, the least frequent state at 13% of the windows,
exhibited high intra-network FC within the SMN and VN, strong
inter-network FC between the SMN and VN, and notable negative
correlations between the BG, VN, and SMN.

The centroid matrices for the four functional connectivity states
in the AD and HC groups are presented in Figures 3A,B. Chi-square
tests revealed a significant difference in the percentage of each state
between the two groups (χ2 = 13.803, p = 0.003). The AD group
demonstrated higher frequencies of states I and III (state I: 16.21%
vs. 13.45%; state III: 59.16% vs. 48.70%), whereas states II and IV
were less frequent in the AD group (state II: 16.75% vs. 19.03%;
state IV: 7.88% vs. 18.82%).

Differences in the temporal properties between the two groups
are depicted in Figures 4A–C. In state III, the AD group exhibited
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FIGURE 3

Dynamic functional connectivity patterns in the AD and HC groups. (A) Centroid matrices for the (HC) group. (B) Centroid matrices for the (AD)
group. AD, Alzheimer’s disease; HC, healthy controls.

FIGURE 4

Group comparisons of temporal properties in dynamic functional connectivity states. (A) Mean dwell time in each state. (B) Fractional windows in
each state. (C) Number of state transitions. Temporal properties are displayed as violin plots for the AD group (purple) and HC group (blue).
Horizontal solid lines indicate the group median, while dashed lines represent the upper and lower quartiles. *p < 0.05.

a significantly higher mean dwell time (z = −3.331, p = 0.001) and
a greater proportion of fractional windows (z = −3.572, p = 0.000)
compared to the HC group. Conversely, in state IV, the AD group
had a significantly lower mean dwell time (z = −3.910, p = 0.000)
and fewer fractional windows (z = −3.515, p = 0.000) than the HC
group. No significant differences were observed between the groups
in fractional windows for states I and II or in the number of state
transitions (z =−1.626, p = 0.104).

3.4 FC strength in dynamics states

FC strength was compared between individuals with AD and
HC within each state, using only the participant-specific matrix
for each state, as not all participants had a corresponding window
matrix for every state.

In state II, 10 stronger functional connections were observed
in the AD group compared to the HC group, all of which
involved inter-network connectivity, including VN-DMN, SMN-
DMN, DMN-CEN, DMN-CB, CEN-CB, VN-BG, DMN-BG, and
CB-BG. Additionally, one within-network connection and two

between-network connections (VN, DMN-CEN, and VN-SMN)
were found to be stronger in the HC group than in the AD group.

In state III, one within-network connection and two between-
network connections (BG, DMN-CEN, and CB-BG) exhibited
greater strength in the AD group than in the HC group.
Conversely, one within-network connection and two between-
network functional connections (SMN, VN-SMN, and DMN-CEN)
were weaker in the AD group compared to the HC group (p< 0.05,
FDR correction) (Figure 5).

3.5 Correlation between dFNC properties
and clinical scores

Partial correlation analysis between temporal properties and
clinical variables in patients with AD identified a significant
negative correlation between the fractional windows in state III
and the CAVLT-D (r = −0.280, p = 0.012) as well as the VFT
(r = −0.248, p = 0.026). Additionally, the mean dwell time in state
III demonstrated a negative correlation with the VFT (r = −0.247,
p = 0.027). No significant correlations were observed between the
temporal properties of state IV and clinical scores, nor between
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FIGURE 5

Differences in functional connectivity patterns between (AD) and (HC) groups, highlighting regions with stronger and weaker connectivity in the (AD)
group (p < 0.05, FDR correction).

NPI-12 scores and any temporal properties. Detailed results are
presented in Table 2.

3.6 Single-subject classification of individuals
with AD and HC

Using a leave-one-out cross-validation approach, the
linear SVM classifier achieved an accuracy of 70.37%
(sensitivity = 81.54%, specificity = 53.49%, p = 0.005). Receiver

operating characteristic (ROC) curve analysis yielded an area
under the curve (AUC) of 0.68 when using the top 605 functional
connections in state I to differentiate individuals with AD from HC.

For state II, classification based on the 15 highest-ranked
functional connections resulted in an accuracy of 71.31%
(sensitivity = 78.13%, specificity = 63.79%, p = 0.004), with an
AUC of 0.77 on the ROC curve. In state III, the classifier achieved
an accuracy of 73.17% (sensitivity = 86.87%, specificity = 52.31%,

TABLE 2 Significant correlations between dynamic functional connectivity temporal properties and clinical variables.

MMSE MoCA NPI-12 Cognitive domains

CAVLT-I CAVLT-D CAVLT-R VFT DS-F DS-B CDT

FW in state 3 r 0.046 0.011 −0.202 0.173 −0.280 −0.094 −0.248 −0.043 −0.020 −0.084

P 0.682 0.924 0.073 0.125 0.012* 0.405 0.026* 0.706 0.860 0.459

MDT in state 3 r 0.032 −0.026 −0.202 0.151 −0.133 −0.188 −0.247 −0.078 0.033 −0.055

P 0.778 0.822 0.073 0.182 0.238 0.095 0.027* 0.490 0.769 0.624

A partial correlation test was also performed. Significant results are reported in bold font. *p < 0.05.
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p = 0.001) using the 100 highest-ranked functional connections,
yielding an AUC of 0.78. For state IV, classification based on the 345
highest-ranked functional connections resulted in an accuracy of
80.33% (sensitivity = 52.38%, specificity = 95.00%, p = 0.002), with
an AUC of 0.76. Results are presented in Figure 6, Supplementary
Table S4, and Supplementary Figure S13.

Performance analysis of the machine learning classifier revealed
substantial differences in sensitivity and specificity among states
I, III, and IV. In contrast, state II exhibited a more balanced
sensitivity-specificity profile. After permutation testing, state II,
which demonstrated higher AUC value, was identified as the most
reliable and well-trained model. This model included 13 consensus
features, primarily inter-network connections, with a few intra-
network connections (Supplementary Figure S14).

4 Discussion

This study examined dynamic FC in individuals with AD
and examined the association between dFNC properties and
neuropsychological performance. The findings highlight several
key observations: (1) Four distinct dFNC states were identified
across all participants, with state III, characterized by sparse
connectivity, occurring most frequently; (2) Temporal properties,

including mean dwell time and the fractional rate of occurrence,
were significantly altered in patients with AD; (3) In state III,
temporal properties exhibited a significant negative correlation
with cognitive performance; (4) Significant differences in FC
strength between the AD and HC groups were observed in states
II and III; and (5) Among all states, FC in state II demonstrated the
highest classification performance for AD using the SVM classifier.
These findings provide insights into the neurophysiological
changes associated with AD by identifying dFNC disruptions and
providing a novel perspective on its pathophysiology.

Among the four recurring dFNC states, state III was the
most prevalent in the analyzed time windows, with a 10.46%
higher frequency in the AD group compared to the HC group.
Previous studies have indicated that this sparsely connected
state represents baseline connectivity, potentially related to self-
referential processing (Marusak et al., 2017). Conversely, state IV
was 10.94% less frequent in the AD group than in the HC group.
Unlike the sparsely connected state III, state IV exhibited strong
intra-network FC within sensory networks, including the SMN and
VN, alongside pronounced negative inter-network connectivity in
BG-VN and BG-SMN connections.

Temporal dFNC properties differed significantly between the
AD and HC groups. Individuals with AD exhibited a significantly
higher proportion of fractional windows and prolonged mean dwell

FIGURE 6

ROC curve of the classifier, depicting classification performance based on FC patterns.
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times in the weakly connected state III, whereas fewer fractional
windows and shorter mean dwell times were observed in the highly
connected state IV. These findings are consistent with previous
research indicating that AD is associated with prolonged residence
in weakly connected states and reduced durations in strongly
connected states (Fu et al., 2019; Schumacher et al., 2019).

Recent rs-fMRI studies have linked cognitive impairment to
significant changes in brain connectivity, both within localized
regions and across large-scale networks. One study reported non-
normal elevated FC within the CEN (Dai et al., 2019). Conversely,
studies using graph theory analysis have identified both increased
and decreased connectivity within networks such as the CEN
and DMN, as well as disruptions or reductions in functional
connections across large-scale brain networks (Zhao et al., 2019;
Zhao et al., 2022).

Efficient neural communication relies on an optimal balance
between local and long-distance connections. A reduction in
network wiring restricts connectivity to local and long-range
interactions, leading to delays in information transfer and
increased metabolic energy demands. To compensate, the brain
adopts a small-world topology, characterized by long-range
connections that enhance network efficiency while minimizing
energy expenditure (Bassett and Bullmore, 2017). In individuals
with AD, resting-state networks exhibit increased vulnerability,
with reduced inter-network communication and greater functional
dissociation, indicating impairments in flexible brain interactions.

The relationship between dFNC temporal properties and
cognitive performance was assessed, indicating a significant
negative correlation between the fractional windows in state III
and scores on the CAVLT-D and the VFT. A decline in CAVLT-
D performance has been identified as a sensitive biomarker of
memory impairment (Guo et al., 2009; Tetreault et al., 2020).
Findings from previous dFNC studies in individuals with dementia
and Parkinson’s disease support this association, demonstrating
that a prolonged mean dwell time or an increased fractional time
in sparsely connected within-network states correlates with lower
cognitive scores in memory, visuospatial processing, and attention
(Fiorenzato et al., 2019).

Additionally, the VFT score exhibited a negative correlation
with the mean dwell time in state III. A previous study investigating
AD and subcortical vascular ischemic disease reported a negative
association between language function and disrupted connectivity
in the parietal cortex, particularly in sparsely connected states
(Fu et al., 2019). Previous research has indicated that prolonged
occupancy in weakly connected states is associated with reduced
cognitive reserve and decreased network efficiency (Dautricourt
et al., 2022). State III was characterized by prolonged weak
connectivity both within and between networks, which may
contribute to slowed or uncoordinated information processing.
Future studies should investigate if functional segregation, in
combination with prolonged mean dwell time or increased
fractional time, could serve as an early biomarker of cognitive
decline in AD.

Although no significant correlation was identified between
the temporal properties of state IV and cognitive function in
this study, previous research on AD has indicated that strongly
connected states may play a role in attentional processes, potentially
facilitating information exchange between the DMN and sensory
regions (Fu et al., 2019). The precuneus, a key component of the

DMN, has been shown to exhibit both functional and structural
impairments in patients with AD (Karas et al., 2007; Zhang et al.,
2009). It is speculated that a shorter duration in this state may
interfere with information exchange between the precuneus and
sensory regions, potentially contributing to attentional deficits
(Kim et al., 2013).

Significant differences in FC strength between states II and
III were observed, involving primary sensory networks (VN,
SMN, BG) and higher-order cognitive control networks (DMN,
CEN, CB). These findings are consistent with previous studies
indicating that resting-state FC impairments in AD predominantly
affect the DMN and CEN, which are key for executive control,
working memory, and attention (Brier et al., 2012; Schultz et al.,
2017). Dysfunction within both primary sensory and higher-order
cognitive networks is likely to contribute to cognitive decline in AD,
impacting visuospatial processing, perception, and memory.

The present findings highlight disruptions in FC within
and between networks across distinct states, underscoring the
advantages of dFNC analysis over traditional resting-state FC
approaches in capturing the temporal dynamics of connectivity
(Calhoun et al., 2014). Notably, in state II, several FC differences
between the AD and HC groups overlapped with consensus
functional connections identified by the SVM classifier. These
abnormal changes may serve as a basis for the diagnosis of
AD. Furthermore, researchers often choose the unilateral or
bilateral dorsolateral prefrontal cortex (DLPFC) within the CEN
or the precuneus located in the DMN as therapeutic targets for
transcranial magnetic stimulation (TMS) in AD patients (Saitoh
et al., 2022; Cotelli et al., 2011; Koch et al., 2022). In longitudinal
studies, the cross-sectional findings of this study can be used as the
reference to compare dFNC changes, intra- and inter-network FC
changes, and their associations with cognitive improvements after
treatment.

Additionally, while a previous study using a predefined brain
network template (AAL 90) reported an association between FC
strength and NPI scores, no such correlation was identified in
the present study (Zhao et al., 2022). This discrepancy may
be attributable to differences in sample size, methodological
approaches, or limitations inherent to predefined templates, which
may not comprehensively capture all brain networks. The distinct
connectivity patterns observed between the AD and HC groups
indicate that dFNC analysis has the potential to identify functional
states reflecting underlying neuropathological changes (Viviano
et al., 2017).

This study has several limitations. First, the analysis did not
include individuals with AD at varying disease stages, limiting the
ability to examine connectivity changes associated with disease
progression. Second, some participants were undergoing treatment
with cholinesterase inhibitors, which may have influenced FC
patterns. Third, the relatively small sample size may have reduced
statistical power. Additionally, although 10 min of resting-state
fMRI data is generally recommended for dFNC analysis, the present
study utilized 8-min recordings. Future research with larger sample
sizes, incorporating biological and genetic data, would facilitate
a more comprehensive investigation of disease pathophysiology
across different stages of AD.
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5 Conclusion

This study identified abnormal dFNC patterns in individuals
with AD, indicating four distinct functional connectivity states.
The findings indicate that sparsely connected states are negatively
correlated with cognitive function, whereas stronger connectivity
states may serve as potential classifiers for distinguishing
individuals with AD. These dFNC alterations provide new insights
into the pathophysiology of AD and contribute to the development
of improved diagnostic and prognostic approaches.
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