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of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China

Background: Dynamic functional network connectivity (dFNC) assesses

temporal fluctuations in functional connectivity (FC) during magnetic resonance

imaging (MRI), capturing transient changes in neural activity. Investigating

dFNC may provide valuable insights into the complex clinical manifestations of

Alzheimer’s disease (AD). However, research on dynamic FC alterations in AD

remain limited. This study aimed to comprehensively characterize dFNC patterns

in patients with AD.

Methods: A total of 100 patients diagnosed with AD and 69 with healthy

controls (HC) were included. Resting-state functional magnetic resonance

imaging (rs-fMRI) data were analyzed using a sliding-window approach and

k-means clustering based on independent component analysis to examine

dFNC alterations. Correlation analyses were conducted to assess associations

between dFNC variations and clinical scores in individuals with AD. Additionally,

an exploratory multivariate pattern analysis was performed to classify AD across

different dFNC states.

Results: Four recurrent connectivity states were identified. In state III, patients

with AD exhibited a significantly longer mean dwell time and a higher fractional

time compared to the HC group, whereas the opposite trend was observed in

state IV. In state III, both fractional time and mean dwell time were negatively

correlated with cognitive scores. Significant differences in FC strength were

observed between states II and III. The highest classification accuracy for

distinguishing AD was achieved in state II, which was characterized by intra-

and inter-network dysfunction across multiple functional networks.

Conclusion: Distinct alterations in dFNC were identified, with significant

associations observed between connectivity patterns and clinical symptoms.

These findings provide new insights into the pathophysiology of AD.

KEYWORDS
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1 Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder predominantly aecting individuals over the age of 
65. Globally, an estimated 44 million individuals have been 
diagnosed with AD, including 15.07 million individuals over the 
age of 60 in China (Ren et al., 2022). The condition imposes 
a substantial medical and economic burden on society. AD 
is characterized by progressive memory decline, cognitive 
impairment, and psychiatric symptoms; however, its underlying 
pathophysiological mechanisms remain incompletely understood. 
Proposed mechanisms include the accumulation of extracellular 
β-amyloid deposition, abnormal intracellular aggregation of 
hyperphosphorylated tau proteins, and neuroinflammation 
mediated by microglial activation (Terry, 1994; Serrano-Pozo et al., 
2011; Leng and Edison, 2021; Xu et al., 2024). 

Current gold-standard diagnostic approaches, such as 
cerebrospinal fluid analysis and positron emission tomography, 
are invasive and may limit patient adherence. Additionally, 
neuropsychiatric scale assessments add complexity and may 
prolong the diagnostic process. There is an urgent need for non-
invasive and highly sensitive techniques to facilitate early detection, 
with the potential to reduce hospitalization and mortality. 

Recent advancements in magnetic resonance imaging (MRI) 
technology have significantly improved the study of resting-state 
functional MRI (rs-fMRI) in AD. Findings from these studies 
indicate that disruptions in functional connectivity (FC) within 
specific brain regions and large-scale networks may contribute to 
the clinical manifestations of AD. Frequently observed disruptions 
include intra-network FC impairments within the default mode 
network (DMN) and inter-network FC changes involving the 
cognitive executive network (CEN), salience network, and attention 
network (Palmqvist et al., 2017; Soman et al., 2020; Brier et al., 
2012; Schultz et al., 2017). Dysfunction in high-level network hubs, 
often referred to as “rich hubs,” may be associated with the complex 
cognitive and psychiatric symptoms of AD, potentially reflecting 
underlying neuropathological mechanisms. 

Alterations in FC provide a more comprehensive 
understanding of brain dysfunction in AD and may serve as 
sensitive imaging biomarkers for early detection. While static 
functional network connectivity (FNC) analysis oers valuable 
insights into disease characteristics, dynamic functional network 
connectivity (dFNC) provides a more refined approach by 
considering the brain as a dynamic system. dFNC analysis captures 
time-varying data in the FC matrix during scanning, facilitating 
the identification of transient connectivity patterns. 

Abbreviations: AD, Alzheimer’s Disease; HC, Healthy Controls; MRI, 
Magnetic Resonance Imaging; dFNC, Dynamic Functional Network 
Connectivity; FNC, Functional Network Connectivity; FC, Functional 
Connectivity; ICA, Independent Component Analysis; SVM, Support Vector 
Machine; FDR, False Discovery Rate; DMN, Default Mode Network; 
CEN, Cognitive Executive Network; SMN, Sensorimotor Network; VN, 
Visual Network; AUD, Auditory Network; CB, Cerebellar Network; BG, 
Basal Ganglia Network; MMSE, Mini-Mental State Examination; MoCA, 
Montreal Cognitive Assessment; rs-fMRI, Resting-State Functional Magnetic 
Resonance Imaging; NPI-12, Neuropsychiatric Inventory-12; VFT, Verbal 
Fluency Test; CAVLT, Chinese version of the Auditory Verbal Learning Test; 
DS, Digit Span Test; CDT, Clock Drawing Test; AUC, Area Under the Curve; 
LOOCV, Leave-One-Out Cross-Validation. 

Independent component analysis, a data-driven method, 
decomposes rs-fMRI data into functionally distinct regions, 
allowing for whole-brain analysis without reliance on predefined 
regions of interest, which may obscure or misrepresent distinct 
patterns (Hyvärinen and Oja, 2000). This approach has been 
applied to various neurological disorders, including depression 
(Wu et al., 2024; Yao et al., 2019), schizophrenia (Damaraju et al., 
2014), Parkinson’s disease (Kim et al., 2017; Fiorenzato et al., 
2019), and cerebral small-vessel disease (Chen et al., 2024), where 
abnormalities in the temporal properties of dynamic FC have been 
reported. However, research on FC dynamics in AD remain limited 
(Jones et al., 2012; Fu et al., 2019; Schumacher et al., 2019). Jones 
et al. (2012) identified changes in the non-stationary modular 
organization of brain networks in AD, while Fu et al. (2019) and 
Schumacher et al. (2019) compared FC dynamics in AD with those 
observed in other forms of dementia. However, these studies were 
constrained by small sample sizes and lacked a comprehensive 
characterization of dFNC properties. 

This study examined dFNC alterations in individuals with 
AD using independent component analysis (ICA) and k-means 
clustering. The relationship between these alterations and cognitive 
as well as psychiatric symptoms were examined. Additionally, 
support vector machine (SVM) classification was applied to 
evaluate between-group dierences in FC matrices across dierent 
states, providing further insights into the imaging characteristics 
associated with AD. 

2 Materials and methods 

2.1 Participants 

Individuals with AD were recruited from the Neurology 
Outpatient Clinic at the First Aÿliated Hospital of Anhui Medical 
University between March 2017 and July 2024. Age-, sex-, and 
education-matched healthy controls (HC) were selected from the 
local community. The diagnosis of AD was established based on the 
criteria set by the Neurological and Communicative Disorders and 
Stroke and the AD and Related Disorders Association (NINCDS-
ADRDA) for probable AD (McKhann et al., 2011). Disease severity 
was evaluated using the Clinical Dementia Rating, with scores 
ranging from 0.5 to 2. 

To be included in the HC group, participants were required 
to have no cognitive impairment or functional limitations in 
daily living, as indicated by a Mini-Mental State Examination 
(MMSE) score of ≥ 27. The exclusion criteria encompassed the 
following: (1) hearing impairment or uncorrected visual deficits, (2) 
a history of other dementia subtypes, psychiatric disorders, stroke, 
or significant cranial injuries, (3) a history of substance abuse, and 
(4) contraindications to MRI. 

2.2 Neuropsychological and 
neuropsychiatric assessment 

A standardized neuropsychological assessment was 
administered to each participant by two qualified psychologists. 
Cognitive functions were evaluated across five domains: (1) 
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General cognitive performance was assessed using the MMSE 
and the Montreal Cognitive Assessment; (2) Episodic memory 
was measured using the Chinese version of the Auditory Verbal 
Learning Test (CAVLT), including CAVLT-immediate (CAVLT-I), 
CAVLT-delayed (CAVLT-D), and CAVLT-recognition (CAVLT-R); 
(3) Language function was evaluated with the Verbal Fluency Test 
(VFT); (4) Attention performance was assessed using the Digital 
Span Test; and (5) Visuospatial ability was examined with the 
Clock Drawing Test. Neuropsychiatric symptoms were assessed 
using the Neuropsychiatric Inventory-12 (NPI-12). 

2.3 MRI acquisition 

MRI was conducted using a 3.0T GE scanner (GE 
Healthcare, Buckinghamshire, United Kingdom). Functional 
and structural images were acquired from all participants (see 
Supplementary material). 

2.4 Data preprocessing 

Rs-fMRI data preprocessing was conducted using the MRI 
preprocessing module within the Graph Theoretical Network 
Analysis toolbox (version 2.0)1 in MATLAB (The MathWorks, 
Inc., Natick, MA, United States) (Wang et al., 2015). The first 
10 volumes were discarded to ensure signal equilibrium. Slice 
acquisition followed an alternating sequence in the positive 
direction, beginning with odd-numbered slices. To correct for head 
motion, images were realigned to the mean volume. 

Sequential preprocessing steps included head motion 
correction, nuisance signal regression (removing white matter 
and cerebrospinal fluid signals, as well as Friston’s 24 head 
motion parameters), spatial normalization to the standard 
Montreal Neurological Institute echo-planar imaging template, 
and resampling to a voxel size of 3 × 3 × 3 mm across 207 time 
points. A 6 mm full-width at half-maximum Gaussian kernel was 
applied for spatial smoothing. 

Realignment parameters identified five participants with a head 
displacement exceeding 3.0 mm or angular rotation exceeding 
3.0◦ , leading to their exclusion from the study. Independent two-
sample t-tests indicated no significant dierence in mean framewise 
displacement (Jenkinson) between the AD and HC groups (AD 
group: 0.066 ± 0.032; HC group: 0.063 ± 0.025; p = 0.456). 

2.5 Group ICA 

Following preprocessing, spatial group ICA was conducted to 
extract functional brain networks using the Infomax algorithm 
within the GIFT 4.0 software package2 . Principal component 
analysis was applied to each participant’s data for dimensionality 
reduction, yielding 120 components. Data from all participants 
were then combined and further reduced using expectation 

1 http://www.nitrc.org/projects/gretna 

2 http://mialab.mrn.org/software/gift/ 

maximization, resulting in 100 independent components (ICs). The 
Infomax algorithm was executed 20 times in ICASSO to enhance 
reliability (Bell and Sejnowski, 1995; Himberg et al., 2004). The 
time series and spatial distribution of ICs for each participant were 
obtained using the group ICA inverse reconstruction algorithm 
(Calhoun et al., 2001). 

Physiological noise, motion artifacts, and imaging irregularities 
were excluded through template recognition, visual inspection, and 
comparison with prior studies. The inclusion criteria for ICs were 
as follows: (1) peak coordinates primarily located in gray matter, 
(2) minimal overlap with blood vessels, white matter, ventricles, 
and limbic regions, (3) time series predominantly composed of 
low-frequency signals, and (4) a high dynamic range in the 
time series, defined as the dierence between minimum and 
maximum frequencies. 

Prior to computing dynamic FC, additional post-processing 
steps were applied (Kim et al., 2017; Allen et al., 2014). (1) 
Detrending was performed to eliminate data drift caused by non-
linear variations during scanning, such as physiological fluctuations 
(e.g., heart rate and respiration); (2) despiking was conducted 
using AFNI’s 3dDespike algorithm to remove outliers resulting 
from artifacts or external interference; and (3) low-pass filtering 
with a fifth-order Butterworth filter was applied to remove high-
frequency noise above 0.15 Hz while preserving low-frequency 
signal components. 

2.6 Dynamic FC calculation 

FC patterns between brain regions were analyzed using a 
sliding time window approach within the Dynamic Functional 
Connectivity toolbox in GIFT software (Preti et al., 2017). 
A Gaussian function (σ = 3 TRs) was used to generate the sliding 
window, segmenting the rs-fMRI time series into 185 rectangular 
windows with a step size of 1 TR and a window length of 22 TRs. 
Previous studies have recommended window sizes ranging from 30 
to 60 s to optimize the resolution of dFNC and improve the quality 
of correlation matrix (Allen et al., 2014). 

For each sliding window, covariance values were computed for 
each IC pair, resulting in a 37 × 37 pairwise covariance matrix. 
L1 regularization was applied to the precision matrix using the 
graphical least absolute shrinkage and selection operator (LASSO) 
framework, with 100 iterations performed to enhance sparsity 
(Friedman et al., 2008; Smith et al., 2011). To stabilize variance 
before further analysis, all FC matrices were converted to z-scores 
using Fisher’s Z-transformation. 

2.7 Dynamic FC state analysis 

Clustering analysis was performed on the FC matrices derived 
from the time windows of all participants. The k-means clustering 
algorithm was repeated 100 times to minimize the influence 
of random initial cluster selections and enhance result stability. 
Similarities between functional connection matrices were measured 
using the Euclidean distance metric, and the optimal number 
of clusters was determined based on the elbow criterion (see 
Supplementary Figure S8; Damaraju et al., 2014). 
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The temporal properties of the four dFNC states were 
quantified using three metrics within the state transition vector: 
(1) Mean dwell time, representing the number of consecutive 
windows spent in a specific state; (2) Fractional windows, indicating 
the proportion of time spent in each state; and (3) Transition 
count, reflecting the frequency and reliability of state transitions. 
Validation analyses were conducted using window lengths of 
15, 20, 25, and 30 TRs (see Supplementary Tables S2, S3 and 
Supplementary Figures S9–S12). 

Comparisons of FC strength between the AD and HC 
groups were performed across all identified states. Two-sample 
independent t-tests were used to assess dierences in FC strength 
at 666 regional pairings, with false discovery rate (FDR) correction 
applied (p < 0.05) to account for multiple comparisons. 

2.8 Statistical methods 

Clinical data analyses were performed using SPSS software 
(version 26.0; Chicago, IL, United States). The Kolmogorov-
Smirnov test was used to assess data normality. Between-group 
dierences in age, education, and neuropsychiatric scores were 
evaluated using independent two-sample t-tests (two-tailed), while 
dierences in sex distribution and state proportions were analyzed 
using chi-square tests. Comparisons of temporal properties 
across states between groups were conducted using Mann-
Whitney U tests. 

Partial correlation analyses were used to estimate 
associations between clinical scores and temporal properties 
in individuals with AD, with FDR adjustment applied to adjust for 
multiple comparisons. 

2.9 Exploratory multivariate pattern 
analysis 

Exploratory multivariate pattern analysis, as applied in 
previous studies, was used to evaluate the potential of dFNC in 
detecting AD at the individual level (Wu et al., 2024; Liu et al., 2015; 
see Supplementary material). 

3 Results 

3.1 General and clinical data 

A total of 100 individuals with AD and 69 HC were included 
in this study. No significant dierences were observed between 
the groups in terms of age, sex, or education level (p > 0.05). 
Detailed demographic and clinical characteristics of both groups 
are presented in Table 1. 

3.2 Resting state networks 

A total of 37 ICs were selected for analysis. These components 
were classified into seven resting-state networks, as depicted in 

TABLE 1 Demographic and clinical data. 

Variables AD 
patients 
(n = 100) 

Healthy 
controls 
(n = 69) 

Statistics p 

Demographic factors 

Age (years) 65.37 ± 9.56 63.45 ± 7.33 t = 1.48 0.142 

Gender 

(male/female) 
48/52 28/41 x2 = 0.91 0.341 

Education 

(years) 
7.98 ± 4.78 8.42 ± 4.47 t = −0.60 0.550 

Psychiatric symptom 

NPI-12 8.02 ± 11.45 1.96 ± 5.14 t = 4.60 0.000** 

General cognitive performance 

MMSE 19.20 ± 4.97 28.50 ± 1.60 t = −14.99 0.000** 

MoCA 13.32 ± 5.60 24.26 ± 3.93 t = −14.93 0.000** 

Memory performance 

CAVLT-
immediate 

3.42 ± 2.04 8.49 ± 1.92 t = 16.01 0.000** 

CAVLT-delay 1.33 ± 2.50 9.30 ± 2.82 t = 18.59 0.000** 

CAVLT-
recognition 

10.70 ± 4.14 14.15 ± 1.06 t = −6.73 0.000** 

Language performance 

VFT 9.66 ± 4.10 17.46 ± 4.03 t = −12.18 0.000** 

Attention performance 

DS-forward 5.79 ± 1.41 6.86 ± 1.42 t = −4.83 0.000** 

DS-backward 3.24 ± 1.20 4.07 ± 1.13 t = −4.54 0.000** 

Visual-spatial performance 

CDT 1.73 ± 1.25 3.38 ± 1.00 t = −9.47 0.000** 

AD, Alzheimer’s disease; NPI-12, Neuropsychiatric Inventory-12; MMSE, Mini-Mental State 
Examination; MoCA, Montreal Cognitive Assessment; CAVLT, Chinese version of the 
Auditory Verbal Learning Test; VFT, Verbal Fluency Test; DS, Digit Span Test; CDT, Clock 
Drawing Test. **p < 0.01. 

Figure 1 based on previous studies: the visual network (VN): ICs 
7, 19, 21, 23, 36, 44, 47, 69, 81, the sensorimotor network (SMN): 
ICs 6, 9, 12, 17, 20, the auditory network (AUD): ICs 28, 57, the 
default mode network (DMN): ICs 35, 45, 50, 65, 82, 86, 93, 95, the 
cognitive executive network (CEN): ICs 32, 37, 46, 51, 55, 60, 76, 
91, the cerebellar network (CB): ICs 8, 18, 22, and the basal ganglia 
network (BG): ICs 34, 59 (Preti et al., 2017). Detailed information 
and spatial maps of the ICs are provided in Supplementary Table S1 
and Supplementary Figures S1–S7. 

3.3 Dynamic FC state analysis 

Four distinct dFNC states were identified across all participants, 
with the 5% strongest connections in the FC matrix for each state 
highlighted in Figure 2. 

State I accounted for 15% of the windows and exhibited 
moderately positive intra-network FC within the VN, SMN, AUD, 
DMN, CEN, CB, and BG networks. Additionally, moderately 
negative inter-network FC was observed between the VN, SMN, 
AUD, and other networks, including the DMN, CEN, CB, and BG. 
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FIGURE 1 

Thirty-seven ICs identified through group-independent component analysis. (A) Spatial maps of ICs categorized into seven functional brain 
networks based on anatomical and functional properties. (B) Group-averaged static functional connectivity between IC pairs derived from 
resting-state data. VN, visual network; SMN, sensorimotor network; AUD, auditory network; DMN, default mode network; CEN, cognitive executive 
network; CB, cerebellar network; BG, basal ganglia network. 

FIGURE 2 

Cluster centroids and characteristics of dynamic functional network connectivity states for all participants (window length = 22 TRs). (A) Cluster 
centroids for each state, including the total number and percentage of occurrences (indicated in the top right of the centroid matrix). (B) Circular 
plots depicting the top 5% strongest connections (absolute value of the maximum correlation coefficient) in the FC matrix for each state. Each color 
represents one of the seven networks. 

State II comprised 18% of the windows and represented a highly 
connected state, characterized by strong intra-network and inter-
network coupling across nearly the entire brain. 

State III, the most frequently occurring state at 55% of the 
windows, was characterized by sparse intra- and inter-network 
connections across most brain regions. 

State IV, the least frequent state at 13% of the windows, 
exhibited high intra-network FC within the SMN and VN, strong 
inter-network FC between the SMN and VN, and notable negative 
correlations between the BG, VN, and SMN. 

The centroid matrices for the four functional connectivity states 
in the AD and HC groups are presented in Figures 3A,B. Chi-square 
tests revealed a significant dierence in the percentage of each state 
between the two groups (χ2 = 13.803, p = 0.003). The AD group 
demonstrated higher frequencies of states I and III (state I: 16.21% 
vs. 13.45%; state III: 59.16% vs. 48.70%), whereas states II and IV 
were less frequent in the AD group (state II: 16.75% vs. 19.03%; 
state IV: 7.88% vs. 18.82%). 

Dierences in the temporal properties between the two groups 
are depicted in Figures 4A–C. In state III, the AD group exhibited 
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FIGURE 3 

Dynamic functional connectivity patterns in the AD and HC groups. (A) Centroid matrices for the (HC) group. (B) Centroid matrices for the (AD) 
group. AD, Alzheimer’s disease; HC, healthy controls. 

FIGURE 4 

Group comparisons of temporal properties in dynamic functional connectivity states. (A) Mean dwell time in each state. (B) Fractional windows in 
each state. (C) Number of state transitions. Temporal properties are displayed as violin plots for the AD group (purple) and HC group (blue). 
Horizontal solid lines indicate the group median, while dashed lines represent the upper and lower quartiles. *p < 0.05. 

a significantly higher mean dwell time (z = −3.331, p = 0.001) and 
a greater proportion of fractional windows (z = −3.572, p = 0.000) 
compared to the HC group. Conversely, in state IV, the AD group 
had a significantly lower mean dwell time (z = −3.910, p = 0.000) 
and fewer fractional windows (z = −3.515, p = 0.000) than the HC 
group. No significant dierences were observed between the groups 
in fractional windows for states I and II or in the number of state 
transitions (z = −1.626, p = 0.104). 

3.4 FC strength in dynamics states 

FC strength was compared between individuals with AD and 
HC within each state, using only the participant-specific matrix 
for each state, as not all participants had a corresponding window 
matrix for every state. 

In state II, 10 stronger functional connections were observed 
in the AD group compared to the HC group, all of which 
involved inter-network connectivity, including VN-DMN, SMN-
DMN, DMN-CEN, DMN-CB, CEN-CB, VN-BG, DMN-BG, and 
CB-BG. Additionally, one within-network connection and two 

between-network connections (VN, DMN-CEN, and VN-SMN) 
were found to be stronger in the HC group than in the AD group. 

In state III, one within-network connection and two between-
network connections (BG, DMN-CEN, and CB-BG) exhibited 
greater strength in the AD group than in the HC group. 
Conversely, one within-network connection and two between-
network functional connections (SMN, VN-SMN, and DMN-CEN) 
were weaker in the AD group compared to the HC group (p < 0.05, 
FDR correction) (Figure 5). 

3.5 Correlation between dFNC properties 
and clinical scores 

Partial correlation analysis between temporal properties and 
clinical variables in patients with AD identified a significant 
negative correlation between the fractional windows in state III 
and the CAVLT-D (r = −0.280, p = 0.012) as well as the VFT 
(r = −0.248, p = 0.026). Additionally, the mean dwell time in state 
III demonstrated a negative correlation with the VFT (r = −0.247, 
p = 0.027). No significant correlations were observed between the 
temporal properties of state IV and clinical scores, nor between 
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FIGURE 5 

Differences in functional connectivity patterns between (AD) and (HC) groups, highlighting regions with stronger and weaker connectivity in the (AD) 
group (p < 0.05, FDR correction). 

NPI-12 scores and any temporal properties. Detailed results are 
presented in Table 2. 

3.6 Single-subject classification of individuals 
with AD and HC 

Using a leave-one-out cross-validation approach, the 
linear SVM classifier achieved an accuracy of 70.37% 
(sensitivity = 81.54%, specificity = 53.49%, p = 0.005). Receiver 

operating characteristic (ROC) curve analysis yielded an area 

under the curve (AUC) of 0.68 when using the top 605 functional 
connections in state I to dierentiate individuals with AD from HC. 

For state II, classification based on the 15 highest-ranked 

functional connections resulted in an accuracy of 71.31% 

(sensitivity = 78.13%, specificity = 63.79%, p = 0.004), with an 

AUC of 0.77 on the ROC curve. In state III, the classifier achieved 

an accuracy of 73.17% (sensitivity = 86.87%, specificity = 52.31%, 

TABLE 2 Significant correlations between dynamic functional connectivity temporal properties and clinical variables. 

MMSE MoCA NPI-12 Cognitive domains 

CAVLT-I CAVLT-D CAVLT-R VFT DS-F DS-B CDT

FW in state 3 r 0.046 0.011 −0.202 0.173 −0.280 −0.094 −0.248 −0.043 −0.020 −0.084 

P 0.682 0.924 0.073 0.125 0.012* 0.405 0.026* 0.706 0.860 0.459 

MDT in state 3 r 0.032 −0.026 −0.202 0.151 −0.133 −0.188 −0.247 −0.078 0.033 −0.055 

P 0.778 0.822 0.073 0.182 0.238 0.095 0.027* 0.490 0.769 0.624 

A partial correlation test was also performed. Significant results are reported in bold font. *p < 0.05. 
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p = 0.001) using the 100 highest-ranked functional connections, 
yielding an AUC of 0.78. For state IV, classification based on the 345 
highest-ranked functional connections resulted in an accuracy of 
80.33% (sensitivity = 52.38%, specificity = 95.00%, p = 0.002), with 
an AUC of 0.76. Results are presented in Figure 6, Supplementary 
Table S4, and Supplementary Figure S13. 

Performance analysis of the machine learning classifier revealed 
substantial dierences in sensitivity and specificity among states 
I, III, and IV. In contrast, state II exhibited a more balanced 
sensitivity-specificity profile. After permutation testing, state II, 
which demonstrated higher AUC value, was identified as the most 
reliable and well-trained model. This model included 13 consensus 
features, primarily inter-network connections, with a few intra-
network connections (Supplementary Figure S14). 

4 Discussion 

This study examined dynamic FC in individuals with AD 
and examined the association between dFNC properties and 
neuropsychological performance. The findings highlight several 
key observations: (1) Four distinct dFNC states were identified 
across all participants, with state III, characterized by sparse 
connectivity, occurring most frequently; (2) Temporal properties, 

including mean dwell time and the fractional rate of occurrence, 
were significantly altered in patients with AD; (3) In state III, 
temporal properties exhibited a significant negative correlation 
with cognitive performance; (4) Significant dierences in FC 
strength between the AD and HC groups were observed in states 
II and III; and (5) Among all states, FC in state II demonstrated the 
highest classification performance for AD using the SVM classifier. 
These findings provide insights into the neurophysiological 
changes associated with AD by identifying dFNC disruptions and 
providing a novel perspective on its pathophysiology. 

Among the four recurring dFNC states, state III was the 
most prevalent in the analyzed time windows, with a 10.46% 
higher frequency in the AD group compared to the HC group. 
Previous studies have indicated that this sparsely connected 
state represents baseline connectivity, potentially related to self-
referential processing (Marusak et al., 2017). Conversely, state IV 
was 10.94% less frequent in the AD group than in the HC group. 
Unlike the sparsely connected state III, state IV exhibited strong 
intra-network FC within sensory networks, including the SMN and 
VN, alongside pronounced negative inter-network connectivity in 
BG-VN and BG-SMN connections. 

Temporal dFNC properties diered significantly between the 
AD and HC groups. Individuals with AD exhibited a significantly 
higher proportion of fractional windows and prolonged mean dwell 

FIGURE 6 

ROC curve of the classifier, depicting classification performance based on FC patterns. 

Frontiers in Aging Neuroscience 08 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1617191
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1617191 September 25, 2025 Time: 12:12 # 9

Pang et al. 10.3389/fnagi.2025.1617191 

times in the weakly connected state III, whereas fewer fractional 
windows and shorter mean dwell times were observed in the highly 
connected state IV. These findings are consistent with previous 
research indicating that AD is associated with prolonged residence 
in weakly connected states and reduced durations in strongly 
connected states (Fu et al., 2019; Schumacher et al., 2019). 

Recent rs-fMRI studies have linked cognitive impairment to 
significant changes in brain connectivity, both within localized 
regions and across large-scale networks. One study reported non-
normal elevated FC within the CEN (Dai et al., 2019). Conversely, 
studies using graph theory analysis have identified both increased 
and decreased connectivity within networks such as the CEN 
and DMN, as well as disruptions or reductions in functional 
connections across large-scale brain networks (Zhao et al., 2019; 
Zhao et al., 2022). 

Eÿcient neural communication relies on an optimal balance 
between local and long-distance connections. A reduction in 
network wiring restricts connectivity to local and long-range 
interactions, leading to delays in information transfer and 
increased metabolic energy demands. To compensate, the brain 
adopts a small-world topology, characterized by long-range 
connections that enhance network eÿciency while minimizing 
energy expenditure (Bassett and Bullmore, 2017). In individuals 
with AD, resting-state networks exhibit increased vulnerability, 
with reduced inter-network communication and greater functional 
dissociation, indicating impairments in flexible brain interactions. 

The relationship between dFNC temporal properties and 
cognitive performance was assessed, indicating a significant 
negative correlation between the fractional windows in state III 
and scores on the CAVLT-D and the VFT. A decline in CAVLT-
D performance has been identified as a sensitive biomarker of 
memory impairment (Guo et al., 2009; Tetreault et al., 2020). 
Findings from previous dFNC studies in individuals with dementia 
and Parkinson’s disease support this association, demonstrating 
that a prolonged mean dwell time or an increased fractional time 
in sparsely connected within-network states correlates with lower 
cognitive scores in memory, visuospatial processing, and attention 
(Fiorenzato et al., 2019). 

Additionally, the VFT score exhibited a negative correlation 
with the mean dwell time in state III. A previous study investigating 
AD and subcortical vascular ischemic disease reported a negative 
association between language function and disrupted connectivity 
in the parietal cortex, particularly in sparsely connected states 
(Fu et al., 2019). Previous research has indicated that prolonged 
occupancy in weakly connected states is associated with reduced 
cognitive reserve and decreased network eÿciency (Dautricourt 
et al., 2022). State III was characterized by prolonged weak 
connectivity both within and between networks, which may 
contribute to slowed or uncoordinated information processing. 
Future studies should investigate if functional segregation, in 
combination with prolonged mean dwell time or increased 
fractional time, could serve as an early biomarker of cognitive 
decline in AD. 

Although no significant correlation was identified between 
the temporal properties of state IV and cognitive function in 
this study, previous research on AD has indicated that strongly 
connected states may play a role in attentional processes, potentially 
facilitating information exchange between the DMN and sensory 
regions (Fu et al., 2019). The precuneus, a key component of the 

DMN, has been shown to exhibit both functional and structural 
impairments in patients with AD (Karas et al., 2007; Zhang et al., 
2009). It is speculated that a shorter duration in this state may 
interfere with information exchange between the precuneus and 
sensory regions, potentially contributing to attentional deficits 
(Kim et al., 2013). 

Significant dierences in FC strength between states II and 
III were observed, involving primary sensory networks (VN, 
SMN, BG) and higher-order cognitive control networks (DMN, 
CEN, CB). These findings are consistent with previous studies 
indicating that resting-state FC impairments in AD predominantly 
aect the DMN and CEN, which are key for executive control, 
working memory, and attention (Brier et al., 2012; Schultz et al., 
2017). Dysfunction within both primary sensory and higher-order 
cognitive networks is likely to contribute to cognitive decline in AD, 
impacting visuospatial processing, perception, and memory. 

The present findings highlight disruptions in FC within 
and between networks across distinct states, underscoring the 
advantages of dFNC analysis over traditional resting-state FC 
approaches in capturing the temporal dynamics of connectivity 
(Calhoun et al., 2014). Notably, in state II, several FC dierences 
between the AD and HC groups overlapped with consensus 
functional connections identified by the SVM classifier. These 
abnormal changes may serve as a basis for the diagnosis of 
AD. Furthermore, researchers often choose the unilateral or 
bilateral dorsolateral prefrontal cortex (DLPFC) within the CEN 
or the precuneus located in the DMN as therapeutic targets for 
transcranial magnetic stimulation (TMS) in AD patients (Saitoh 
et al., 2022; Cotelli et al., 2011; Koch et al., 2022). In longitudinal 
studies, the cross-sectional findings of this study can be used as the 
reference to compare dFNC changes, intra- and inter-network FC 
changes, and their associations with cognitive improvements after 
treatment. 

Additionally, while a previous study using a predefined brain 
network template (AAL 90) reported an association between FC 
strength and NPI scores, no such correlation was identified in 
the present study (Zhao et al., 2022). This discrepancy may 
be attributable to dierences in sample size, methodological 
approaches, or limitations inherent to predefined templates, which 
may not comprehensively capture all brain networks. The distinct 
connectivity patterns observed between the AD and HC groups 
indicate that dFNC analysis has the potential to identify functional 
states reflecting underlying neuropathological changes (Viviano 
et al., 2017). 

This study has several limitations. First, the analysis did not 
include individuals with AD at varying disease stages, limiting the 
ability to examine connectivity changes associated with disease 
progression. Second, some participants were undergoing treatment 
with cholinesterase inhibitors, which may have influenced FC 
patterns. Third, the relatively small sample size may have reduced 
statistical power. Additionally, although 10 min of resting-state 
fMRI data is generally recommended for dFNC analysis, the present 
study utilized 8-min recordings. Future research with larger sample 
sizes, incorporating biological and genetic data, would facilitate 
a more comprehensive investigation of disease pathophysiology 
across dierent stages of AD. 

Frontiers in Aging Neuroscience 09 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1617191
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1617191 September 25, 2025 Time: 12:12 # 10

Pang et al. 10.3389/fnagi.2025.1617191 

5 Conclusion 

This study identified abnormal dFNC patterns in individuals 
with AD, indicating four distinct functional connectivity states. 
The findings indicate that sparsely connected states are negatively 
correlated with cognitive function, whereas stronger connectivity 
states may serve as potential classifiers for distinguishing 
individuals with AD. These dFNC alterations provide new insights 
into the pathophysiology of AD and contribute to the development 
of improved diagnostic and prognostic approaches. 
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