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Background: Alzheimer’s Disease (AD) is heterogeneous and shows complex

interconnected pathways at various biological levels. Risk scores contribute

greatly to disease prognosis and biomarker discovery but typically represent

generic risk factors. However, large-scale multi-omics data can generate

individualized risk factors. Filtering these risk factors with brain-derived

extracellular vesicles (EVs) could yield key pathologic pathways and vesicular

vehicles for treatment delivery.

Methods: A list of 460 EV-related genes was curated from brain tissue

samples in the ExoCarta database. This list was used to select genes from

transcriptomics, proteomics, and DNA methylation data. Significant risk factors

included demographic features (age, sex) and genes significant for progression

in transcriptomics data. These genes were selected using Cox regression, aided

by the Least Absolute Shrinkage and Selection Operator (LASSO), and were used

to construct three risk models at different omics levels. Gene signatures from the

significant risk factors were used as biomarkers for further evaluation, including

gene set enrichment analysis (GSEA) and drug perturbation analysis.

Results: Nine EV-related genes were identified as significant risk factors. All three

risk models predicted high/low risk groups with significant separation in Kaplan-

Meier analysis. Training the transcriptomics risk models on EV-related genes

yielded better AD classification results than using all genes in an independent

dataset. GSEA revealed Mitophagy and several other significant pathways related

to AD. Four drugs showed therapeutic potential to target the identified risk

factors based on Connectivity Map analysis.

Conclusion: The proposed risk score model demonstrates a novel approach

to AD using EV-related large-scale multi-omics data. Potential biomarkers and

pathways related to AD were identified for further investigation. Drug candidates

were identified for further evaluation in biological experiments, potentially

transported to targeted tissues via bioengineered EVs.
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Highlights

• The use of EV-related genetic risk factors for AD prognosis
produced more accurate risk models when compared to using
generic risk factors.
• Evaluation of significant EV-related risk factors revealed

mitophagy as a relevant pathway and penfluridol as a potential
repurposed treatment that can be used to treat AD.
• EV-related multi-omics data integration allows for a more

comprehensive characterization of AD across biological layers.

1 Introduction

Aging is a natural process that affects all living organisms,
but brings increased susceptibility to neurodegenerative disorders,
such as Alzheimer’s Disease (AD). One in 10 people over the age
of 65 is diagnosed with AD (Hou et al., 2019). As the global
elderly population increases—with countries like the United States
projecting an increase in the old-age dependency ratio from 28
(in 2020) to 41 (in 2060)—a significant burden on the healthcare
infrastructure is forthcoming (Vespa et al., 2020). The increased
prevalence of AD will increase financial pressure on the healthcare
system, insurance services, personal care homes, and individual
families (Azam et al., 2021). However, given the widespread impact
of neurodegenerative disorders, targeting AD through treatment
and prevention may offer the most impactful improvements in
quality of life worldwide.

AD is a type of dementia which interferes with cognition and
impacts the quality of life. Different pathological mechanisms have
been proposed to cause AD, but we lack a clear understanding
of the full mechanism. However, a common denominator of
AD is the presence of neuritic plaques, neurofibrillary tangles
(NFTs), and cortical neuronal degeneration (Kumar et al., 2024).
Neuritic plaques are formed by amyloid beta (Aβ) peptides
(Kumar et al., 2024). Neurofibrillary tangles are formed by
tau protein in neurons, which have a higher chance of being
misfolded when in the phosphorylated state (p-tau) (Kumar et al.,
2024). Previous studies have shown that mutations in candidate
genes, mainly APP, PSEN1 & 2, ADAM10, ADAM1J, APOE, are
associated with neurodegeneration (Neuner et al., 2020). Recently,
extracellular vesicles have emerged as significant contributors to
AD pathogenesis and offer a very unique, yet underused, avenue
for improving not only AD treatment, but AD prognosis (Sarko
and McKinney, 2017). In the context of neurodegeneration, small
EVs ranging from 50 to 150 nm that are derived from invagination
of the late endosome, often referred to as “exosomes,” have garnered
attention as of lately. Brain-derived small EVs transport misfolded
proteins like Aβ, p-tau, and alpha-synuclein, contributing to
the spread of pathological processes across brain regions (Sarko
and McKinney, 2017). Furthermore, brain-derived small EVs are
thought to cross the blood-brain barrier, to and from the peripheral
circulation (Li et al., 2019). This enables us to measure small
EVs in peripheral circulation as biomarkers for AD diagnosis
and highlights their therapeutic potential in drug delivery to the
brain to target AD (Fayazi et al., 2021). However, the current
knowledge about EVs provides few methods (e.g., surface markers)

that can distinguish blood- and brain-derived EVs with moderate
sensitivity and specificity. L1 cell adhesion molecule (L1CAM) is
a common biomarker for identifying brain-derived EVs, but it
is also present in blood-derived EVs (Bravo-Miana et al., 2024).
Alternatives, such as glutamate aspartate transporter (GLAST)
and myelin oligodendrocyte glycoprotein (MOG), provide more
sensitive and specific detection of brain-derived EVs, but only
covers a small range of possible EVs originating from the CNS
(Bravo-Miana et al., 2024).

The advent of high-throughput sequencing (HTS) and
automated processing pipelines allowed large quantities of multi-
omics data to be collected. While human interpretation generally
only looks at one layer of multi-omics data, algorithms can
process multiple layers of omics data to provide a more
comprehensive view of interconnected pathways. Three key
types of data include transcriptomics, DNA methylation, and
proteomics, which help pinpoint several hallmarks of aging.
At the DNA level, DNA methylation data considers effects
of Epigenetic alterations (Azam et al., 2021). At the mRNA
level, transcriptomics profiling reveals Genomic instability and
DNA damage and Telomere attrition (Azam et al., 2021). At
the protein level, proteomics data reveals Loss of proteostasis
(Azam et al., 2021). Thus, EV-related multi-omics information
may prove to be valuable in exploring the various pathologic
mechanisms and potential therapeutic targets of neurodegenerative
disorders. EV-related biomarkers have been successfully used
to construct risk models for triple-negative breast cancer (Qiu
et al., 2021). However, there are no EV-related risk models for
neurodegenerative disorders.

The idea of using risk models has been seen in predicting
complex polygenic chronic diseases such as diabetes mellitus
(Davies et al., 2017) and depression (Pearson-Fuhrhop et al., 2014).
Beyond measuring patient disease risk, significant risk factors
identified may be further investigated as potential biomarkers or
therapeutic targets. This can provide a set of prognostic tools
and therapeutic targets that can help with disease treatment.
More recently, Qiu et al. developed risk models for breast cancer
(BC) using EV-related genomics data. This study revealed the
importance of exosomes and other EVs in contemporary diseases
and reinforces the potential of EVs to influence AD (Garcia-
Contreras and Thakor, 2023).

Often, risk scores are calculated based on generic risk factors,
such as demographics (age, sex, etc.) and basic clinical assessments
(blood pressure, cognitive ability, depression, etc.) (Anstey et al.,
2021). While these are easily collected and readily available, there
lacks an individuality to the resulting risk score. Technological
improvements of the past decade allowed us to gather vast amounts
of personalized data at various levels of biology, such as genetic and
epigenetic, RNA, microRNA, and protein levels (Wang et al., 2024).
Alternatively, risk models that do not focus on generic risk factors
instead utilize survival analysis on diseases with a clear progression
path (often defining the final event as death) or create polygenic risk
scores based on genome-wide association studies (GWAS). This
ends up prioritizing various diseases with high fatality rates through
traditional survival analysis or utilizes too broad of a dataset in
GWAS-based polygenic risk scores.
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Recently, researchers have constructed large perturbational
drug datasets, which we can use to control the expression of
candidate genes that are associated with disease phenotypes.
Drugs identified from a large perturbational dataset, such as
Connectivity Map (CMap), which highly disrupt certain gene
signatures in the identified biomarkers can be further evaluated as
treatments (Subramanian et al., 2017). These drugs can potentially
be bioengineered within EVs to enhance transport across complex
biological barriers, and reduce biphasic release and instability issues
that are common in synthetic nanovesicles and nanoparticles.
The natural occurrence of EVs in our body results in reduced
clearance by our immune system, when compared to other
synthetic molecules. The possible addition of fusion proteins also
allows for highly targeted release at specific binding sites (Nowak
et al., 2023). Similarly, gene set enrichment analysis (GSEA) can
generalize multiple genes into various permutations of unique
biological pathways using a priori gene sets curated by subject-
matter experts. Enrichr is a web interface developed at the Ma’ayan
Laboratory which enables GSEA to be performed on 35 different
gene set libraries (Chen et al., 2013; Kuleshov et al., 2016; Xie
et al., 2021). The use of GSEA for humans rose to prominence
following the completion of the Human Genome Project. Gene
sets, such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG), regularly updated and revised to include new discoveries
(Kanehisa and Goto, 2000).

The proposed EV-related risk model for AD aims to
incorporate the best of technologies used in previous studies and
apply them to neurodegenerative disorders. It improves upon
generic risk factors by using large-scale multi-omics data that is
unique to each individual patient. The broad scope of polygenic
risk scores is also solved by our EV-focused approach to genes
in the selected multi-omics data. Conventional survival analysis
in Cox regression typically applies to disease processes which
have distinct changes in status from a healthy to diseased state.
This is replaced with time-to-event (TTE) analysis based on
progression-free status (PFS), which measures time from initial
suspicion (e.g., undiagnosed symptoms) to disease progression. The
modified approach accommodates lower mortality rates observed
in neurodegenerative disorders. Further analysis of identified
pathways using GSEA and CMap will provide insight into
future directions.

2 Materials and methods

The overall workflow for risk model construction is shown in
Figure 1. A list of EV-related genes derived from brain tissue is
curated. After filtering multi-omics data using the list of EV-related
genes, this downscaled the data to focus on brain-derived EV-
related genes. Risk models were constructed for each type of omics
data using the Cox proportional hazards model. The initial iteration
identified significant covariates, which were then combined with
demographic data to produce a list of significant risk factors. The
second iteration calculated coefficients for each significant risk
factor. These coefficients were used with the respective data type to
calculate risk score. The risk score allowed patients to be classified
as high- or low-risk, and the significant risk factors were further
investigated as potential biomarkers and/or therapeutic targets. The

source code of the workflow is available at https://github.com/
maomao853/AD-Multi-Omics-EV-Risk-Model.

2.1 Data sources

2.1.1 Extracellular vesicles
A list of genes was curated from ExoCarta (Keerthikumar

et al., 2016), derived from small EVs isolated from brain tissue
samples. Data from isolated EVs were obtained from previously
published studies, culminating in the repository hosted on
ExoCarta (Keerthikumar et al., 2016). This yielded 356 unique
brain-derived EV-related genes (Supplementary Data 1) from
small EVs across five cell types: cortical neurons, microglia, Mov
neuroglial cells, neural stem cells, and oligodendrocytes.

2.1.2 Multi-omics
Transcriptomics and DNA methylation data was obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
project (Petersen et al., 2010). Proteomics data were obtained
from UK Biobank (Sudlow et al., 2015). Evaluation data for gene
expression were obtained from the Gene Expression Omnibus
(GEO), specifically study GSE5281 (Liang et al., 2007; Liang et al.,
2008a; Liang et al., 2008b; Readhead et al., 2018). Table 1 shows
the demographics and disease status of the patients included in
this study.

In ADNI data, patient records were converted to TTE data.
The event was measured as the diagnosis of AD, which had a
Boolean value (0 for non-AD, 1 for AD). Time was measured
as the duration from the initial visit to the first occurrence of
the event, or to the last follow-up if the event did not occur. If
the event occurred immediately, then time was zero. Similarly, in
UK Biobank data, patient records were converted to TTE data.
The event was based on ICD-10 classifications (World Health
Organization, 2004), measured as the diagnosis of G30 (AD).
Survival time was measured from the initial diagnosis of G31 or
G32 (other degenerative diseases/disorders of nervous system),
until the event occurs, or until the last follow-up if the event did
not occur.

2.2 Pre-processing

2.2.1 DNA methylation
DNA methylation data were retrieved and pre-processed using

the minfi package in R (Aryee et al., 2014). The raw probe-level
methylation data were converted to gene-level data using the
included annotation information using Supplementary Equation 1.
Duplicated genes were aggregated using the median of their values,
reducing the initial 865,859 probe loci to 66,069 genes. Filtering
brain-derived EV-related genes based on our curated list further
reduced the number of genes from 66,069 to 248. This data was
combined with patient survival and demographics information by
matching their RID (roster ID) and reduced the sample size from
1,905 to 649.

2.2.2 Transcriptomics
Transcriptomics data were filtered based on brain-derived EV-

related genes and aggregated using the average of their values. This
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FIGURE 1

Risk model construction workflow. A list of EV-related genes derived from brain tissue samples is used to filter DNA methylation, transcriptomics,
and proteomics datasets. Significant gene signatures are selected using multivariable Cox regression with LASSO regularization and combined with
demographic data to identify significant risk factors. Scaling coefficients for these risk factors are then calculated using multivariable Cox regression.

TABLE 1 Clinical and demographic characteristics of patients in studies used.

Dataset Age Sex Disease status

Median SD Male Female Unknown CN MCI AD

UK Biobank 72.46 8.12 228,990 273,177 0 494,389 3,273 4,476

ADNI 72.65 8.05 1,489 1,429 21 952 1,288 480

GSE5281 78.83 10.07 103 57 0 74 0 87

Disease status measures three major stages of AD progression: cognitively normal (CN), mild cognitive impairment (MCI), and AD.
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resulted in a gene set size reduction from 48,157 to 313 and sample
size reduction from 744 to 142.

2.2.3 Proteomics
Proteomics data was selected and exported manually from

UK Biobank using the Research Analysis Platform (RAP). Only
brain-derived EV-related genes were selected and filtered based
on neurodegenerative diseases defined by ICD-10 (World Health
Organization, 2004). After filtering, the gene set size was reduced
from 1,463 to 91 and sample size was reduced from 54,306
to 39. Missing values were imputed using the KNNImputer
(k = 2, uniform weights) from scikit-learn (Pedregosa et al., 2011).
KNN imputation estimates missing values based on the k-nearest
neighbors in the training set, which provides easy implementation
and high accuracy, just behind lowest of detection (LOD) and
random drawing from a left-censored normal distribution (ND)
(Jin et al., 2021). The parameter k indicates the number of neighbors
to consider and uniform weights assigns all neighborhood points
equal weights.

2.3 Risk score

The risk score for each dataset is modeled using Equation
1. This linear function provides a transparent view of how each
significant risk factor impacts the risk score.

y =
p∑

i = 1

βixi (1)

Where y is the risk score, x represents the gene/protein/methylation
expression level, and β represents the scaling coefficient
associated with x.

A subset of gene expression data, filtered using the curated list
of EV-related genes localized in brain tissue, was used to train the
transcriptomics risk model (Equation 2).

λ (t | xi) = λ0(t) × exT
i β (2)

Where t represents time, xi represents the covariate matrix for
the subject i, and β represents the scaling coefficients for the
covariate matrix. The baseline hazard λ0(t) remains constant
between different subjects.

The Cox model associates covariates with TTE information.
The Least Absolute Shrinkage and Selection Operator (LASSO)
regularization filters out insignificant covariates by optimizing
the model coefficients and maximizing sparsity. We minimize
the log-partial likelihood subject to an L1 regularization λ(||β||).
This constraint shrinks coefficients (β) toward zero, resulting
in some coefficients being exactly zero. This approach yields
a more interpretable final model. We used five-fold cross-
validation and measured concordance index (C-index), outlined in
Supplementary Equation 2, to select the best λ value, which yielded
the best model performance.

Significant genes (p < 0.05) identified from a multivariable
Cox regression model with LASSO, based on transcriptomics
data, were combined with patient demographics (age and
sex) to establish the key covariates in the transcriptomics risk
model. This model was then used in a second multivariable Cox

model (without LASSO) to refine the significant covariates and
construct the final transcriptomics risk model. These significant
covariates were subsequently evaluated using DNA methylation
and proteomics data. Gene signatures and demographic
data were filtered based on these significant covariates in
the transcriptomics risk model, and scaling coefficients were
determined using multivariable Cox regression (without LASSO).
This resulted in two additional risk models, one each for DNA
methylation and proteomics.

2.4 Evaluation

Three risk models (transcriptomics, methylation, and
proteomics) were used to calculate individual risk scores for
their respective cohort in the ADNI or UK Biobank studies.
Each cohort was divided into high- and low-risk groups based
on the median risk score. Difference in PFS was visualized using
Kaplan-Meier (KM) plots and quantified using log-rank tests. Gene
expression data from GEO were also used as external datasets to
evaluate the potential biomarkers.

Comparison risk models were constructed through a similar
process, but using the entire cohort’s gene set instead of the EV-
related gene list. Before entering the previously described LASSO
Cox regression, the gene list underwent preliminary filtering:
variance thresholding and univariate Cox regression. Variance
filtering, using VarianceThreshold in scikit-learn (Pedregosa et al.,
2011), removed genes with values of one or zero in more than
70% of samples. Each remaining gene underwent univariate Cox
regression; significant genes (p < 0.05) were combined with
demographics data (age and sex) to create the final list of
risk factors. This list was then used in the original risk model
construction pipeline for transcriptomics data. Kaplan-Meier (KM)
plots were compared for all three data types, and classification
accuracy was measured using external GEO datasets.

GSEA was performed on the set of genetic risk factors
using Enrichr (Chen et al., 2013; Kuleshov et al., 2016; Xie
et al., 2021), providing insights into pathways implicated in AD.
These genes were also evaluated in the CMap perturbational
dataset (Subramanian et al., 2017). The CMap dataset contains
Connectivity Scores, which compares effects of query and
reference molecules on specific genes. This score combines
the nominal p-value, false discovery rate (FDR), and Tau
(τ), a metric comparing an observed enrichment score to
all others in the database. This score ranges from -100
(representing opposing effects) to +100 (representing similar
effects) (Subramanian et al., 2017). Potential therapeutic agents
were identified by selecting perturbagens/drugs with < -90
or > 90 connectivity score for the significant genes and evaluating
their z-scores for disruption of regular gene functions (>1.96
or<−1.96).

3 Results

An EV-focused approach to estimating AD progression
produced three key equations (Equations 3–5) to calculate
individual risk scores. Missing features in Equations 4, 5 resulted
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from differences in datasets and zero coefficients when isolating for
significant risk factors.

Risk Scoretranscriptomics = (−0.20 × CCT8)+

(3.41 × HIST1H3A) + (0.76 × HIST1H4F)

+ (0.66 × HTRA1) + (−3.42 × KRT14)

+ (−0.99 × KRT5) + (−2.03 × NARS)+

(2.09 × RAB5C) + (−0.71 × UBB) + (0.37 × Sex) (3)

Risk Scoreproteomics = (1.80 × KRT14)+

(0.42 × KRT5) + (−0.01 × Sex) + (0.05 × Age) (4)

Risk Scoremethylation = (34.18 × CCT8) + (1.93 × HIST1H3A)

+ (−15.35 × HIST1H4F) + (−26.56 × HTRA1)+

(15.63 × KRT14) + (−2.48 × KRT5) + (−3.38 × NARS)+

(−1.92 × UBB) + (0.37 × Sex) (5)

Forest plots (Figure 2) visualized the effect of each gene and
its associated scaling coefficient. Genes exhibited higher variance
than demographic features across all three risk models. Age had
a zero coefficient in transcriptomics and methylation risk models
(both from the ADNI dataset), but a non-zero coefficient in the
proteomics risk model (from the UK Biobank dataset). Overall,
demographic features had less impact than the gene signatures
identified by TTE analysis. At the DNA level, our methylation risk
score showed CCT8 had the largest association with AD prognosis,
based on the DNA methylation risk score. At the mRNA level,
HIST1H3A had the largest association with AD prognosis, based
on the transcriptomics risk score. At the protein level, KRT14 had
the largest association with AD prognosis, based on the proteomics
risk score.

Three risk models—derived from transcriptomics, proteomics,
and methylation data—significantly separated high- and low-risk
groups within their respective cohorts (ADNI and UK Biobank).
KM curves of TTE analyses showed that the low-risk group had
a significantly higher probability of PFS than the high-risk group
(Figure 3). Log-rank tests confirmed significant separation for all
models, with the transcriptomics model demonstrating the greatest
separation of high- and low-risk groups, followed by the proteomics
and methylation models.

Figure 3 shows that the low-risk group consistently yields
better PFS than the high-risk group. The separation between the
curves and the low p-values confirms this statistical significance.
The magnitude of the difference varies across the analyses. Some
analyses show a larger difference in PFS than others. For example,
Figure 3C demonstrates that patients classified as high-risk based
on their proteomic profiles have a significantly lower probability of
remaining progression-free over time compared to those classified
as low-risk. The proteomic markers appear to successfully stratify
patients into groups with differing prognoses.

The EV-related genes resulted in significant separation of high-
and low-risk groups, indicated by a lower p-value in the logrank
test. A variety of normal and skewed distributions were observed

for risk scores (Supplementary Figure 1). When used for prediction
and classification tasks on the GSE5281 dataset, the risk model
targeting EV-related genes showed a 28% increase in accuracy, a
26% increase in F1-score, and a 35% increase in ROC AUC score
when compared to the unfiltered risk model (Figure 4).

GSEA of genetic risk factors showed significance in the
pathways of vasopressin-regulated water reabsorption, mitophagy,
Staphylococcus aureus infection, and amoebiasis (Figure 5). Red
bars indicate significance (p < 0.05), with bar length inversely
proportional to the p-value.

Evaluation on CMap showed several drugs that are highly
connected with the genes CCT8, HTRA1, NARS, and UBB
(Figure 6). The drugs contains several experimental drugs and only
one FDA-approved drug — etoposide.

Further analysis of the identified drugs and target genes
revealed the following dose and durations that provide optimal
perturbation of the targeted genes (Table 2). Perturbation,
measured as the z-score of cell line survival disturbance, was
significant for all experimental drugs (AG-592, cercosporin,
penfluridol, and puromycin), none of which are currently FDA-
approved.

4 Discussion

In general, the proposed risk model for AD produced
a significant separation of high- and low-risk individuals, as
evidenced by significant log-rank tests (p< 0.05) (Figure 3). Genes
identified in various omics data (CCT8, HIST1H3A, HIST1H4F,
HTRA1, KRT14, KRT5, NARS, RAB5C, UBB) showed a stronger
influence on the risk score than demographic factors. This
underscores the advantage of using large multi-omics datasets
generated by high-throughput screening methods over generic
risk factors obtained from screening and clinical assessments. The
reliance on older age cohorts in neurodegenerative disease research
often introduces sampling biases, as seen in the ADNI and UK
Biobank cohorts. By using factors that are less prone to bias, our
risk model can incorporate more datasets, leading to more accurate
risk estimations.

Comparing risk models developed with and without the EV-
focused filtering (Figures 3, 5) shows the benefits of EV-focused
filtering. The lower p-value of the model using EV-related genes
indicates superior separation of risk groups compared to the model
using all genes. Further evaluation in GSE5281 (Liang et al., 2007;
Liang et al., 2008a; Liang et al., 2008b; Readhead et al., 2018)
confirmed this improved predictive performance, reinforcing the
value of an EV-focused approach to AD risk modeling. These
results highlight the importance of EV-related genes as risk factors
for AD.

Beyond predictive power, the identified genetic risk factors
offer valuable targets for functional and enrichment analyses.
Among the nine genetic risk factors, three genes of interest—
CCT8, RAB5C, UBB—have functions relevant to AD. Additionally,
there is a significant effect from the KRT gene family (i.e., KRT5
and KRT14). However, KRT genes are common contaminants,
especially in proteomics studies. Thus, elevated KRT coefficients
are likely from environmental or operator error. CCT8, a part of
the CCT chaperonin family, plays a crucial role in protein folding
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FIGURE 2

Forest plot of scaling coefficients for EV-related AD risk model covariates. Scaling coefficients are modeled using DNA methylation, transcriptomics,
and proteomics data. Covariates include demographic features and gene signatures (p < 0.05) selected from multivariable LASSO Cox regression.
Coefficient values are calculated using multivariable Cox regression. (A) Transcriptomics, (B) proteomics, and (C) methylation.

and transport (Yang et al., 2018). Previous GWAS studies have
implicated CCT8 in suppressing Aβ-induced AD (Khabirova et al.,
2014). Mutations in CCT8 could theoretically increase the risk of
Aβ misfolding, a key factor in AD pathogenesis. This extends to
the epigenetic level, where DNA methylation can dynamically alter
gene expression. Suppression of CCT8, an important chaperone in
Aβ folding, poses significant risk, as reflected by its high scaling
coefficient in the DNA methylation risk score (Equation 5). RAB5C,
a member of the Rab family and Ras superfamily (Han et al.,
1996), is another risk factor. This gene is integral to docking/fusion
of vesicles (Barbera et al., 2019) through promotion of tethering
proteins, which pull vesicles closer together, and SNARE structures,
which further reduce vesicle distance and initiate fusion (Borchers
et al., 2021). Previous studies have observed signs of Rab5
overactivation in post-mortem brain tissue from AD patients,
dysregulating the endo-lysosomal system (Xu et al., 2018). This is
the second most impactful gene in the transcriptomics risk score,
which reflects the potential of the endosomal system in transporting
misfolded proteins. The gene UBB is also a risk factor that provides
insight for AD. Although normal UBB codes for ubiquitin B, an
altered variant has been observed to accumulate in the brains of
AD patients. Since ubiquitin is normally involved in protein cycling
through proteolysis, a failure to break down damaged proteins can

lead to the accumulation of misfolded proteins, as seen in AD
(Maniv et al., 2023).

Mitophagy, selected from the four pathways (Figure 4),
involves the regulation of mitochondrial degradation. This is
a hallmark of aging and neurodegenerative disorders (Fang
et al., 2019). Mitochondria are involved in energy production
through key metabolic pathways. This rapid energy production
cycle involves transfer of highly charged electrons, which may
produce dangerous byproducts that must be eliminated by
important mitochondrial pathways. Mitochondrial aging leads to
dysfunctional pathways, energy deficits, and increased retention
of dangerous byproducts, such as reactive oxygen species (ROS)
(Spinelli and Haigis, 2018). These factors can contribute to the
accumulation of Aβ and p-tau proteins, which are prominent
drivers of AD (Kerr et al., 2017). Similarly, imbalances in
mitochondrial fusion and fission could cause increased ROS
generation via mtDNA mutation, defective mitochondria, or
abnormally distributed mitochondria (Bonda et al., 2010). These
effects drive the pathophysiology of many diseases. Therefore,
reduction of mitophagy with aging (Wen et al., 2022) increases
the risk of developing AD. Other pathways, such as vasopressin-
regulated water reabsorption, staphylococcus aureus infection, and
amoebiasis, were previously thought to have a loose connection
with AD. Vasopressin-regulated water reabsorption has been
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FIGURE 3

Kaplan–Meier plots for difference in progression-free status between high and low risk individuals. Events were observed over a span of 5 years. Risk
groups were separated by a median risk score cutoff. Kaplan–Meier analysis was performed on the transcriptomics model trained on two subsets of
data: (A) transcriptomics model for EV-related genes, (B) transcriptomics model for all genes, (C) proteomics model for EV-related genes, and
(D) DNA Methylation model for EV-related genes.

thought to be a possible mechanism influencing the development
of AD through decreased concentrations of vasopressin in CSF
and brain tissue in patients with AD. Furthermore, the inability
for patients with AD to respond to osmotic stimuli supports that
vasopressin-regulated water reabsorption is significant in relation
to AD and demonstrates the potential for vasopressin regulation
to complement traditional treatment of AD (Norbiato et al., 1988).
Staphylococcus infection as a significant pathway supports the
possibility that human pathogens play a potential role in the
development of AD. This process was proposed to be caused

by increased cytokines and chemokines, which pass through the
blood-brain barrier and triggers protein misfolding. The proposed
cognitive improvement from antimicrobial drugs also supports
further studies of staphylococcus infections as a contributor to AD
pathogenesis (Catumbela et al., 2023). While amoebiasis has no
previous links to AD, it has been seen to alter the gut microbiome
(Ankri, 2021). The effect of the gut microbiome has been speculated
as a modulator of AD, thus supporting the potential for the
gut microbiome as a therapeutic target for management of AD
(Catumbela et al., 2023).
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FIGURE 4

Pathways of genetic risk factors in the EV-related AD risk model. Genes were evaluated together on the KEGG database using Enrichr (Chen et al.,
2013; Kuleshov et al., 2016; Xie et al., 2021). Four pathways were significant with p < 0.05.

FIGURE 5

Receiver operating characteristic (ROC) curve and classification metrics for transcriptomics risk model applied to the GSE5281 dataset. Patients are
labeled as cognitively normal (CN) or having Alzheimer’s Disease (AD). These labels are compared to risk group classification based on a risk score
and a median risk score cutoff. All gene list includes all genes in the transcriptomics dataset. EV gene list includes all overlapping genes in the
transcriptomics dataset and EV gene list. (A) The ROC for the transcriptomics risk model trained on all genes; (B) the ROC curve for transcriptomics
risk model trained on EV-related genes; (C) the prediction metrics for transcriptomics risk model trained on all genes and EV-related genes.

Penfluridol emerged as the most impactful drug based on its

z-scores affecting genes in our significant risk factors (Table 2).

Previous studies suggest its potential to reduce AD severity.

Although it is a potent neuroleptic drug used to treat psychotic

disorders since the 1970s (Janssen et al., 1970), penfluridol also

possesses antioxidative properties (Podsiedlik et al., 2022). Given
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FIGURE 6

Drugs connected to significant genetic risk factors. Impact on genes is assessed based on connectivity score in CMap; significance is indicated by a
connectivity score <−90 or >90. Ten drugs showed significant connectivity score for the genes CCT8 and HTRA1. Nine drugs showed significant
connectivity score for the gene UBB. One drug showed a significant connectivity score for the gene NARS.

TABLE 2 List of drugs targeting significant genes in the AD risk model. Significant perturbation levels are measured as a z-score of less than -1.96 or
greater than 1.96.

Drug Role Gene Dose (µM) Time (h) z-score

AG-592 Tyrosine kinase inhibitor CCT8 10 24 2.63

AG-592 Tyrosine kinase inhibitor NARS 10 24 2.59

AG-592 Tyrosine kinase inhibitor UBB 10 6 2.44

Cercosporin Protein kinase C inhibitor CCT8 10 24 2.76

Cercosporin Protein kinase C inhibitor HTRA1 10 6 4.52

Cercosporin Protein kinase C inhibitor NARS 10 24 2.42

Cercosporin Protein kinase C inhibitor UBB 10 24 2.09

Penfluridol Dopamine receptor antagonist CCT8 30 6 -5.76

Penfluridol Dopamine receptor antagonist HTRA1 30 6 7.29

Penfluridol Dopamine receptor antagonist NARS 30 24 -9.77

Penfluridol Dopamine receptor antagonist UBB 30 6 3.91

Puromycin Adenosine receptor agonist CCT8 10 24 3.48

Puromycin Adenosine receptor agonist HTRA1 10 24 4.65

Puromycin Adenosine receptor agonist NARS 10 24 3.83

Puromycin Adenosine receptor agonist UBB 10 24 2.87

that oxidizing agents contribute to Aβ accumulation, which is a
principal hallmark of AD (Azam et al., 2021), the antioxidative
effects of penfluridol can potentially be repurposed to treat AD.
Puromycin is a protein synthesis inhibitor which caused significant
perturbation to selected biomarkers. While its name is similar to
puromycin-sensitive aminopeptidase (PSA), which has proven to
slow down progression of AD by decreasing p-tau, it is puromycin
that exhibits significant effects in analysis. As an antibiotic,
puromycin kills pathogens, which is a proposed mechanism to
reduce development of AD and improve cognitive ability in
AD (Catumbela et al., 2023). Additionally, puromycin inhibits
cholinesterase, which has shown to offset the destruction of cells
that produce acetylcholine, maintains cholinergic transmission,
and improves AD prognosis (Ahmed et al., 2022). However, the
combined usage of PSA and puromycin needs caution, since
puromycin is a selective inhibitor of natural PSA in the body
(Reddi et al., 2020). Other drugs emerged from CMap which have
statistical significance but no association with the treatment of AD.
Cercosporin, a fungal toxin from the genus Cercospora, has no

known therapeutic effects for AD. It was likely selected due to the
usage of ROS in its mechanism of action (Newman and Townsend,
2016). Similarly, AG-592 is an experimental small molecule from
the CMap dataset that acts as a tyrosine kinase inhibitor, which has
no known effect on AD (Evangelista et al., 2022).

This study has some limitations due to data availability
and standardization. Unlike clinical data for various cancers,
AD lacks longitudinal studies required for TTE analysis. These
studies are often separate from omics data collected from
patients, requiring data collection and aggregation from different
sources and assays with varying annotations. Consequently, non-
standardized collection methods resulted in substantial unusable
non-overlapping data.

Future research could explore aspects that are not covered
in this study, such as biological validation, drug testing, and
expansion to cover other neurodegenerative diseases. To evaluate
the biomarkers identified in this study, animal models may be used
with gene knockouts of the identified biomarkers to observe their
effects on the status of AD. A similar process could be used to
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target the rate-determining step of a metabolic pathway. Drugs
causing strong perturbations in the identified biomarkers could
also be evaluated for their potential to reduce AD. Transgenic
animal models expressing human amyloid precursor protein (APP)
can reflect the efficacy of the proposed drugs. EVs can also
be explored as transport vesicles that can cross the blood-brain
barrier, facilitating drug delivery and biomarker detection via
non-invasive testing (Pauwels et al., 2021). Once established, this
workflow can be expanded to other neurodegenerative diseases
to improve prognosis, identify new biomarkers, and identify
potential treatments. Genomic biomarkers could be combined
with radiological biomarkers extracted from medical images in
future studies.

5 Conclusion

In conclusion, we demonstrated the effectiveness of EV-
related multi-omics risk scores in predicting AD. The risk
model, constructed using transcriptomics, proteomics, and DNA
methylation data, successfully predicted high- and low-risk
individuals based on significant risk factors. Nine genetic risk
factors contributed substantially to prognosis, while demographic
risk factors contributed much less. Three genetic risk factors
were found to have functions highly relevant to AD, and
enrichment analysis of all genetic risk factors identified the
Mitophagy pathway as significant. Four drugs had significant
connectivity with the genetic risk factors. Overall, this study
established a foundation for future biological evaluation using the
identified EV-related biomarkers and potential expansion to other
neurodegenerative diseases.
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Extracellular vesicles as drug transporters. Int. J. Mol. Sci. 24:10267. doi: 10.3390/
ijms241210267

Pauwels, M., Vandendriessche, C., and Vandenbroucke, R. (2021). Special delEVery:
Extracellular vesicles as promising delivery platform to the brain. Biomedicines 9:1734.
doi: 10.3390/biomedicines9111734

Pearson-Fuhrhop, K., Dunn, E., Mortero, S., Devan, W., Falcone, G., Lee, P., et al.
(2014). Dopamine genetic risk score predicts depressive symptoms in healthy adults
and adults with depression yao Y-G, editor. PLoS One 9:e93772. doi: 10.1371/journal.
pone.0093772

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.
doi: 10.48550/arXiv.1201.0490

Petersen, R., Aisen, P., Beckett, L., Donohue, M., Gamst, A., Harvey, D., et al.
(2010). Alzheimer’s disease neuroimaging initiative (ADNI): Clinical characterization.
Neurology 74, 201–209. doi: 10.1212/WNL.0b013e3181cb3e25

Podsiedlik, M., Markowicz-Piasecka, M., and Sikora, J. (2022). The Influence of
Selected Antipsychotic Drugs on Biochemical Aspects of Alzheimer’s Disease. Int. J.
Mol. Sci. 23:4621. doi: 10.3390/ijms23094621

Qiu, P., Guo, Q., Yao, Q., Chen, J., and Lin, J. (2021). Characterization of exosome-
related gene risk model to evaluate the tumor immune microenvironment and predict
prognosis in triple-negative breast cancer. Front. Immunol. 12:736030. doi: 10.3389/
fimmu.2021.736030

Readhead, B., Haure-Mirande, J., Funk, C., Richards, M., Shannon, P., Haroutunian,
V., et al. (2018). Multiscale analysis of independent Alzheimer’s cohorts finds
disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron
99, 64–82.e7. doi: 10.1016/j.neuron.2018.05.023.

Reddi, R., Ganji, R., Marapaka, A., Bala, S., Yerra, N., Haque, N., et al. (2020).
Puromycin, a selective inhibitor of PSA acts as a substrate for other M1 family
aminopeptidases: Biochemical and structural basis. Int. J. Biol. Macromol. 165, 1373–
1381. doi: 10.1016/j.ijbiomac.2020.10.035

Sarko, D., and McKinney, C. (2017). Exosomes: Origins and therapeutic potential
for neurodegenerative disease. Front. Neurosci. 11:82. doi: 10.3389/fnins.2017.00082

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1617611
https://doi.org/10.1007/s10989-022-10482-2
https://doi.org/10.3390/microorganisms9030581
https://doi.org/10.3389/fneur.2021.765454
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.3389/fcell.2021.683459
https://doi.org/10.1186/s12964-019-0375-x
https://doi.org/10.2165/11532140-000000000-00000
https://doi.org/10.1083/jcb.202105120
https://doi.org/10.1186/s40035-024-00418-9
https://doi.org/10.1186/s40035-023-00369-7
https://doi.org/10.1186/s40035-023-00369-7
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.3310/pgfar05020
https://doi.org/10.3310/pgfar05020
https://doi.org/10.1093/nar/gkac328
https://doi.org/10.1038/s41593-018-0332-9
https://doi.org/10.1038/s41593-018-0332-9
https://doi.org/10.1007/s12035-021-02324-x
https://doi.org/10.4103/1673-5374.343882
https://doi.org/10.1159/000134325
https://doi.org/10.1159/000134325
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.1016/0014-2999(70)90043-9
https://doi.org/10.1016/0014-2999(70)90043-9
https://doi.org/10.1038/s41598-021-81279-4
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1016/j.jmb.2015.09.019
https://doi.org/10.1016/j.tins.2017.01.002
https://doi.org/10.1371/journal.pone.0102985
https://doi.org/10.1093/nar/gkw377
http://www.ncbi.nlm.nih.gov/books/NBK499922/
http://www.ncbi.nlm.nih.gov/books/NBK499922/
https://doi.org/10.1016/j.mad.2019.111175
https://doi.org/10.1152/physiolgenomics.00242.2007
https://doi.org/10.1152/physiolgenomics.00242.2007
https://doi.org/10.1152/physiolgenomics.00208.2006
https://doi.org/10.1152/physiolgenomics.00208.2006
https://doi.org/10.1073/pnas.0709259105
https://doi.org/10.1073/pnas.0709259105
https://doi.org/10.1038/s41467-023-41545-7
https://doi.org/10.1038/s41467-023-41545-7
https://doi.org/10.1016/j.nbd.2020.104976
https://doi.org/10.1021/jacs.6b00633
https://doi.org/10.1136/jnnp.51.7.903
https://doi.org/10.3390/ijms241210267
https://doi.org/10.3390/ijms241210267
https://doi.org/10.3390/biomedicines9111734
https://doi.org/10.1371/journal.pone.0093772
https://doi.org/10.1371/journal.pone.0093772
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.3390/ijms23094621
https://doi.org/10.3389/fimmu.2021.736030
https://doi.org/10.3389/fimmu.2021.736030
https://doi.org/10.1016/j.neuron.2018.05.023.
https://doi.org/10.1016/j.ijbiomac.2020.10.035
https://doi.org/10.3389/fnins.2017.00082
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1617611 July 21, 2025 Time: 17:38 # 13

Zhang et al. 10.3389/fnagi.2025.1617611

Spinelli, J., and Haigis, M. (2018). The multifaceted contributions of mitochondria
to cellular metabolism. Nat. Cell. Biol. 20, 745–754. doi: 10.1038/s41556-018-0124-1

Subramanian, A., Narayan, R., Corsello, S., Peck, D., Natoli, T., Lu, X., et al. (2017).
A next generation connectivity map: L1000 platform and the first 1,000,000 profiles.
Cell 171, 1437–1452.e17. doi: 10.1016/j.cell.2017.10.049.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., et al. (2015).
UK biobank: An open access resource for identifying the causes of a wide range of
complex diseases of middle and old age. PLoS Med. 12:e1001779. doi: 10.1371/journal.
pmed.1001779

Vespa, J., Armstrong, D., and Medina, L. (2020). “Demographic turning points for
the United States: Population projections for 2020 to 2060,” in Current Population
Reports Washington, DC: U.S. Census Bureau. 25–1144. Available online at: https:
//www.govinfo.gov/app/details/GOVPUB-C3-PURL-gpo93743

Wang, Y., Huang, W., Zheng, S., Wang, L., Zhang, L., and Pei, X. (2024).
Construction of an immune-related risk score signature for gastric cancer based on
multi-omics data. Sci. Rep. 14:1422. doi: 10.1038/s41598-024-52087-3

Wen, J., Pan, T., Li, H., Fan, H., Liu, J., Cai, Z., et al. (2022). Role of mitophagy in the
hallmarks of aging. J. Biomed. Res. 37, 1–14. doi: 10.7555/JBR.36.20220045

World Health Organization. (2004). ICD-10: International Statistical Classification
of Diseases and Related Health Problems: Tenth Revision. 2004:Spanish Version,
1st Edition Published by PAHO as Publicación Científica. Geneva: WHO,
544.

Xie, Z., Bailey, A., Kuleshov, M., Clarke, D., Evangelista, J., Jenkins, S., et al. (2021).
Gene set knowledge discovery with enrichr. Curr. Protoc. 1:e90. doi: 10.1002/cpz1.90

Xu, W., Fang, F., Ding, J., and Wu, C. (2018). Dysregulation of Rab5-mediated
endocytic pathways in Alzheimer’s disease. Traffic 19, 253–262. doi: 10.1111/tra.
12547

Yang, X., Ren, H., Shao, Y., Sun, Y., Zhang, L., Li, H., et al. (2018).
Chaperonin-containing T-complex protein 1 subunit 8 promotes cell migration
and invasion in human esophageal squamous cell carcinoma by regulating α-
actin and β-tubulin expression. Int. J. Oncol. 52, 2021–2030. doi: 10.3892/ijo.2018.
4335

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1617611
https://doi.org/10.1038/s41556-018-0124-1
https://doi.org/10.1016/j.cell.2017.10.049.
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://www.govinfo.gov/app/details/GOVPUB-C3-PURL-gpo93743
https://www.govinfo.gov/app/details/GOVPUB-C3-PURL-gpo93743
https://doi.org/10.1038/s41598-024-52087-3
https://doi.org/10.7555/JBR.36.20220045
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1111/tra.12547
https://doi.org/10.1111/tra.12547
https://doi.org/10.3892/ijo.2018.4335
https://doi.org/10.3892/ijo.2018.4335
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Estimating progression of Alzheimer's disease with extracellular vesicle-related multi-omics risk models
	Highlights
	1 Introduction
	2 Materials and methods
	2.1 Data sources
	2.1.1 Extracellular vesicles
	2.1.2 Multi-omics

	2.2 Pre-processing
	2.2.1 DNA methylation
	2.2.2 Transcriptomics
	2.2.3 Proteomics

	2.3 Risk score
	2.4 Evaluation

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 


