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Objective: Gait and posture symptoms—such as gait impairments, postural 
instability, and posture deformations—are common in Parkinson’s disease (PD) 
and closely linked to falls. Traditional assessments using clinical scales are time-
consuming and prone to subjective bias. This study aims to predict the severity 
of gait and posture symptoms using data collected from wearable sensors 
during a single laboratory-based walking assessment, providing an objective, 
efficient, and automated evaluation approach.

Methods: Sensor-based gait parameters were collected from 225 PD participants 
(mean age 63.15 ± 10.46 years) through a standardized walking assessment. The 
dataset was randomly split into a training set (80%) and an independent test set 
(20%) with balanced age, sex, and PD duration. Two machine learning models—
extreme gradient boosting (XGBoost) and support vector machine (SVM)—were 
trained to predict scores for five gait and posture items (#3.9–3.13) from the 
MDS-UPDRS III.

Results: XGBoost was chosen as the final model due to its better performance 
than SVM. Across all five gait and posture items, the models achieved over 
80% acceptable accuracy. For items #3.9–#3.11, absolute accuracy surpassed 
70%, and macro-F1 scores were above 0.60 in leave-one-out cross-validation 
(LOOCV). The model’s performance on the independent test set matched LOOCV 
results, confirming robustness. A total of 35, 35, 30, 30, and 40 gait features 
were selected for the predictive models of items #3.9–#3.13, respectively. 
Among these, key features with significant clinical relevance were identified. 
For example, Effective Trial Duration (R = 0.522, p < 0.001) had a positive 
correlation, while Shank—Swing RoM—mean (max) (R = −0.629, p < 0.001) had 
a negative correlation with scores on item #3.10. In addition, 180° Turn—Steps – 
mean (R = 0.482, p < 0.001) had a positive correlation with scores on item #3.11. 
These findings align with known clinical manifestations, reinforcing the clinical 
relevance of the identified gait features.

Conclusion: This study demonstrates the feasibility of using wearable sensor 
data to objectively assess gait and posture symptoms in PD. Though conducted 
in a clinical setting, the approach may support clinicians through consistent 
assessments and more frequent monitoring, with potential for future home-
based use to enable longitudinal symptom tracking.
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1 Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, with its prevalence rising significantly 
over the past three decades (Kalia and Lang, 2015; Su et al., 2025). Gait 
and posture symptoms—such as gait impairments, postural instability, 
and posture deformities—are common symptoms in PD and serve as 
crucial indicators of disease progression and fall risk (Lau et al., 2019; 
Debû et al., 2018). Gait and posture disturbance are also associated 
with non-motor issues, including anxiety and cognitive decline 
(Thenganatt and Jankovic, 2014; Artigas et  al., 2022). As PD is a 
progressive disease (Van der Marck et al., 2009), gait and posture 
symptoms worsen over time, resulting in a significant decline in 
patients’ mobility and independence, thereby affecting their overall 
quality of life (O'Gorman Tuura et al., 2018).

Currently, gait and posture symptoms are primarily assessed using 
the five items from the Movement Disorder Society’s Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS III) (Goetz et  al., 
2008) —#3.9 (arising from a chair), #3.10 (gait), #3.11 (freezing of 
gait), #3.12 (postural stability), and #3.13 (posture). These items 
collectively capture key aspects of axial motor function, including 
standing up, walking performance, freezing episodes, postural 
stability, and overall posture. Together, these tasks reflect critical 
dimensions of gait and posture control, which are particularly relevant 
for evaluating gait disturbances, postural instability, and overall 
functional mobility in individuals with PD. The evaluation of these 
items requires multiple motor tasks and relies heavily on subjective 
clinician judgment, which presents several limitations: (1) it imposes 
a significant burden on both patients and clinicians, (2) it is inherently 
subjective, leading to inter-rater variability (Zogaan et  al., 2024; 
Stebbins et al., 2013) and (3) subtle motor symptoms, such as speech, 
low-amplitude tremor, and axial symptoms, may be difficult to detect 
through visual observation alone (Zogaan et al., 2024; Stebbins et al., 
2013; De Rose et al., 2012). These limitations highlight the need for 
complementary assessment approaches that are objective, efficient, 
and capable of capturing subtle motor abnormalities.

Recent advances in wearable sensor technology, particularly the 
development of wireless inertial measurement units (IMUs) with high 
sampling frequency and improved measurement accuracy, have 
enabled objective, quantitative assessment of gait impairments in PD 
(Moreau et al., 2023). These technological improvements allow for 
continuous, high-resolution, and non-invasive monitoring of gait and 
posture, addressing limitations of traditional clinical tools such as the 
MDS-UPDRS, which often fail to detect subtle motor abnormalities, 
particularly those related to gait and posture. In parallel, machine 
learning models have shown promise in analyzing complex sensor-
derived kinematic data, facilitating the detection of clinically relevant 
motor fluctuations. Several studies have demonstrated the feasibility of 
using sensor-based measurements to predict scores on gait and posture 
clinical scales. For example, Abujrida et al. (2020) predicted scores for 
MDS-UPDRS II items #2.12 (walking and balance) and #2.13 (freezing) 
using gait parameters collected from a smartphone placed in the front 
pocket of participants during walking tasks, while Safarpour et al. 
(2022) utilized gait parameters obtained from wearable sensors placed 

on each foot and the lower lumbar region of participants during two 
standing balance tasks in a laboratory setting and daily activities at 
home to estimate postural instability gait difficulty (PIGD) scores. 
While these studies demonstrate the feasibility of sensor-based PD 
assessment, they present notable limitations: small sample sizes (e.g., 
fewer than 40 participants), reliance on self-recorded data with limited 
standardization, and a narrow focus on a single or aggregated symptom 
score (e.g., PIGD), which limits their ability to provide item-level 
assessment of specific gait and posture symptoms.

To address these gaps, this study aims to develop a robust, 
machine learning-based predictive model using wearable sensor-
derived kinematic features to estimate scores for all five individual gait 
and posture items of the MDS-UPDRS III (#3.9–#3.13) from a single, 
standardized walking assessment. By providing item-level, objective, 
and efficient symptom evaluation, this approach offers a more 
comprehensive alternative to conventional, subjective clinical 
assessments of gait and posture in PD.

2 Materials and methods

2.1 Participants

This study was approved by the Ethics Committee of Beijing 
Tiantan Hospital. Written informed consent was obtained from all the 
participants. A total of 248 participants diagnosed with PD (mean age: 
63.46 ± 10.54 years) were recruited from Beijing Tiantan Hospital, 
Capital Medical University. Participants met the diagnostic criteria for 
PD established by the Movement Disorder Society (MDS) (Postuma 
et al., 2015). The exclusion criteria were as follows: (1) a history of 
stroke and cerebrovascular disease, (2) orthopedic impairment or 
other disease which may lead to gait disturbance, (3) MDS-UPDRS III 
3.10: gait is score 4, (4) cognitive disorder was evaluated using Mini-
mental State Examination (MMSE) and the cutoff values of MMSE for 
exclusion were adjusted by the education level where <18 for illiterate 
level, <21 for elementary level, and <24 for middle or above level 
(Katzman et al., 1988). Of these, video recordings of MDS-UPDRS III 
gait and posture-related items (#3.9–#3.13) were available for 225 
participants and used for additional multi-rater scoring.

2.2 Setting and design

The MMSE and MDS-UPDRS III were administered and scored 
by a movement disorder specialist. An Motor Function and Motor 
Symptom Quantitative Assessment System (GYENNO SCIENCE, 
Shenzhen, China) (GYENNO Technologies Co. Ltd., 2022) was used 
in this assessment. This wearable motion and gait quantification 
assessment system is approved by Conformitè Europëenne Medical 
(CE Medical), National Medical Products administration (NMPA), and 
U.S. Food and Drug Administration (FDA). Moreover, this assessment 
platform has also supported research efforts at the intersection of 
medicine and engineering (Cai et al., 2023; He et al., 2024; Zhang et al., 
2024; Lin et  al., 2023). Participants performed a standardized gait 

https://doi.org/10.3389/fnagi.2025.1618764
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ma et al.� 10.3389/fnagi.2025.1618764

Frontiers in Aging Neuroscience 03 frontiersin.org

assessment consisting of three consecutive trials, referred to as shuttle 
walk tests. Each trial required participants to walk straight along a 
3.6-meter path, to execute a 180-degree turn, and return to the start 
position, while wearing ten inertial measurement unit (IMU) sensors 
(Figure 1). Two sensors were secured to the dorsal side of each wrist. 
The chest sensor was positioned over the sternum, while the waist 
sensor was placed at the level of the fifth lumbar vertebra (L5). For the 
lower limbs, a pair of thigh sensors were attached bilaterally, 7 cm 
above the knee, and a pair of shank sensors were positioned 7 cm below 
the knee joints. In addition, two foot sensors were fixed on the dorsal 
side of the metatarsus (instep) of each foot. All sensors were fastened 
firmly at their respective positions using adjustable straps. The 
3.6-meter distance was selected due to its widespread use in Parkinson’s 
disease gait assessments, offering an optimal balance between patient 
safety, spatial feasibility in clinical environments, and its demonstrated 

ability to effectively provoke early gait abnormalities and freezing 
episodes (Stebbins et al., 2013; Choi et al., 2020).

For 225 participants with available video recordings of gait and 
posture-related items (#3.9–#3.13) during the MDS-UPDRS III 
assessment, a multi-rater, multi-round adjudication process was 
employed to minimize subjectivity and inter-rater variability. Two 
qualified raters independently assessed each video. For items where 
ratings differed, a consensus meeting was held after 1 week to 
re-evaluate and discuss. If consensus matched either original rating, it 
was adopted as the final score. If not, a third, more senior movement 
disorder specialist conducted an independent assessment, which was 
used as the final rating. Our analysis was conducted based on 
participants for whom video recordings were available, with the 
finalized re-rated scores from the adjudication process serving as the 
definitive ground truth labels.

FIGURE 1

(A) Sensor locations and (B) walking assessment.
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2.3 Sensor measurements

Each IMU sensor consisted of 3-axial accelerometers and 
gyroscopes. Sensor data from the accelerometers and gyroscopes (x, 
y, and z-axis values) were continuously captured at a frequency of 
100 Hz by the ten IMU sensors throughout the gait assessments in real 
time and were transmitted to the host computer via a Bluetooth link. 
The gait assessment was segmented into two types of phases: straight 
walking and turning, following the approach described in our previous 
studies (Lin et al., 2023). These phases were identified using kinematic 
signals from the waist, specifically the waist’s horizontal rotation angle. 
Distinct peaks in the waist rotation curve correspond to turning 
events. The first and second peaks indicate the onset and completion 
of the first turn, while the third and fourth peaks mark the start and 
end of the second turn. The remaining periods were classified as 
straight walking phases. Before feature extraction, the raw sensor data 
underwent a preprocessing pipeline. Specifically, the data were 
processed through a filtering procedure to reduce noise while 
preserving the true motion signals. Subsequently, orientation 
estimation was performed to convert the raw acceleration and angular 
velocity signals into meaningful spatial kinematic parameters (e.g., 
joint angles and angular velocities).

Based on the processed sensor data, a total of 240 kinematic 
features, such as Step Length, Cadence, and Double Support, were 
calculated. The definitions of these kinematic features are listed in 
Supplementary Table 1. Each participant completed three walking 
trials. For each trial, the walking assessment was segmented into two 
straight-walk sections and two turning sections, resulting in a total 
of six straight-walk sections and six turning sections per participant 
across all three trials, refer to straight-walk I  (SW-1), 180° Turn 
I (T1), SW-2, T2, SW-3, T3, … and SW-6, T6. Extracted gait features 
were divided into three categories: (1) Segmentation-gait cycle-based 
features: these features were calculated within individual gait cycles 
but only for straight-walk sections. Within each straight-walk 
section, gait features were calculated for each gait cycle and then 
averaged across all gait cycles within that section. Averaging across 
all gait cycles in each section helps to minimize the impact of stride-
to-stride variability and random fluctuations, providing a more 
stable and reliable estimate of each gait parameter for that section. 
By analyzing each section separately rather than only across the 
entire assessment, we  were able to capture detailed, gait 
characteristics, which may be clinically relevant but could be masked 
if only whole-trial averages were considered. Gait cycles were 
detected by initial contact (IC) and terminal contact (TC) events as 
described in our previous studies (Lin et al., 2023). The right gait 
cycle begins from the right IC, then right TC, and then the right 
IC. The left gait cycle begins from the left IC, then the left TC, and 
then the left IC. Salarian et  al. (2004) demonstrated that shank 
gyroscope signals are particularly effective for identifying IC and TC 
events during walking. Specifically, the first local minimum before 
and after each peak in the shank’s angular velocity was used to 
determine the timing of IC and TC events. Following a similar 
approach, we  extracted IC and TC events from our data. For 
example, Trunk—Max Sagittal Angular Velocity, which was the 
measurement of the sagittal projection of the torso’s maximum 
angular velocity, it was calculated within individual gait cycles, and 
the values were then averaged across all gait cycles within a straight-
walk section. (2) Segmentation features: this type of gait feature was 

calculated directly within each section, independent of gait cycle 
detection. These features reflect the overall performance or 
characteristics of an entire section (e.g., a straight-walk or turning 
segment) without relying on identifying precise gait events such as 
IC or TC. By considering the specific conditions of each section, 
segmentation features allow for a more comprehensive assessment 
of gait and posture characteristics during different phases of the 
assessment, providing complementary information beyond gait 
cycle-based features. For example, SW—Lumbar—Difference of 
Sagittal Sway was the difference of the sagittal projection of the 
waist’s tilt relative to the gravity vertical between the start and end 
moment of a straight walk section. (3) Whole assessment features: 
this type of gait features was calculated across the entire gait 
assessment, providing a global summary of gait performance. For 
example, WT – Trunk – Difference of Coronal Sway represents the 
difference in the trunk’s coronal tilt relative to the gravity vertical 
between the start and end of the whole trial. This approach captures 
overall changes or trends in gait characteristics throughout the entire 
assessment, allowing for a comprehensive evaluation of general gait 
stability and performance.

2.4 Feature construction

To represent overall gait characteristics, account for differences 
across straight-walk sections and across turning sections, and 
minimize bias due to limb dominance, feature construction was 
performed in two steps. Step1: For both segmentation-gait cycle-based 
features and segmentation features, the maximum, minimum, mean, 
and mean of difference across the six straight-walk sections and six 
turning sections were calculated. As a result, for each parameter, four 
summary features were generated, noted as—max, —min, —mean, 
and —diff_mean, respectively. For example, after feature construction 
step 1, feature Gait Speed L was replaced by Gait Speed L—max, Gait 
Speed L—min, Gait Speed L—mean, and Gait Speed L—diff_mean. 
Step 2: To quantify asymmetry and overall condition, for each pair of 
left- and right-side parameters, the maximum, minimum, and 
absolute difference were calculated, resulting in three representative 
features: (min), (max), and (diff). For example, after feature 
construction step 2, the pair of left- and right-side parameters Gait 
Speed L—mean and Gait Speed R—mean were replaced by Gait 
Speed—mean (max), Gait Speed—mean (min), and Gait Speed—mean 
(diff). This feature construction process was applied based on the 
features obtained from all three walking trials, ensuring that the final 
set of representative features for each participant integrated 
information from all trials and all relevant sections. This strategy 
enhances the stability and robustness of the extracted gait features 
while preserving section-level and side-specific information.

2.5 Model construction and evaluation

2.5.1 Training and independent test data split
For model development, the dataset comprised 225 participants 

for whom multi-rater consensus ratings of the MDS-UPDRS III gait 
and posture-related items (#3.9–#3.13) were available and used as 
ground truth labels. The dataset was randomly split into 80% for 
training and 20% for testing, ensuring age, sex, and PD duration were 
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matched between the sets. As a result of this participant-level split, it 
is difficult to strictly guarantee a perfectly balanced score distribution 
for each MDS-UPDRS III item between the training and test sets. 
However, to ensure that the training set contained all available score 
levels (e.g., 0–4) for each of the five gait and posture items (#3.9–
#3.13), we  performed repeated random splitting until all score 
categories were present in the training set for each item. This approach 
follows recommended practices in clinical machine learning to avoid 
missing outcome categories during model development. Feature 
selection and model construction were conducted using the training 
data. Leave-one-out cross-validation (LOOCV) was performed as a 
validation method in the training data to fine-tune the model 
hyperparameters and estimate the model performance. Independent 
test data were then used to evaluate the final models that were 
constructed using training data.

2.5.2 Predictive model for scores on the 
MDS-UPDRS III gait and posture items

Each of the MDS-UPDRS III gait and posture items was rated on 
a 5-point scale (0 to 4) by a movement disorder specialist. Each item 
score was transformed into an M-level categorical variable, where the 
value of M for a specific gait and posture item was determined by the 
sample size of each level for that specific gait and posture item. If a 
score level had a sample size≤ 5 on the training data, it was merged 
into the previous level to create a new level because sample imbalance 
among levels would bias the overall model. For example, item #3.11 
had ≤ 5 samples scoring 4 points and 3 points, and these samples were 
combined with those scoring 2 on this item, resulting in a final 3-level 
categorical variable: 0, 1, and combined 2/3/4, Thus, scores on this 
item would be converted into a 3-level categorical variable (0, 1, or 
2/3/4). Item #3.13 had ≤ 5 samples scoring 4 points, and these samples 
were combined with those scoring 3 on this item, resulting in a final 
4-level categorical variable: 0, 1, 2, and combined 3/4. Thus, scores on 
this item would be converted into a 4-level categorical variable (0, 1, 
2, or 3/4). This merging was regarded as an inherent limitation due to 
sample imbalance. Same score categories were made in independent 
test data as training data.

To identify the optimal classifier for this study, we compared two 
models: extreme gradient boosting (XGBoost) (Chen and Guestrin, 
2016) and support vector machine (SVM). XGBoost, as an ensemble 
learning algorithm, is well-suited for capturing complex non-linear 
relationships among features and offers robust performance with 
effective built-in feature selection based on the Gain metric, where 
higher Gain values indicate greater feature importance (Burnwal and 
Jaiswal, 2023). SVM identifies an optimal separating hyperplane by 
maximizing the margin between classes. To handle non-linear 
relationships, it employs kernel functions—such as the Radial Basis 
Function (RBF)—to transform data from its original low-dimensional 
space into a higher-dimensional feature space. This transformation 
increases the likelihood that complex patterns become linearly 
separable. With an appropriately chosen kernel, this approach enables 
effective classification even for intricate data distributions (Noble, 
2006). Based on these strengths, we  implemented both models to 
determine which would better capture the associations between gait 
parameters and clinical scores in our dataset.

For feature selection, features were ranked by their Gain scores 
from the XGBoost model and incrementally incorporated into model 
construction. Features were ordered from most to least important 

according to their respective Gain scores. For predictive model 
construction, the top K features with the highest Gain values were 
incrementally incorporated—starting from the top 5 features (K = 5) 
and increasing in steps of five (i.e., K = 5, 10, 15, …, 50). The use of a 
step size of five provided a balance between performance resolution 
and computational efficiency. The upper limit of 50 features was set 
considering the total sample size (n = 225) to reduce the risk of 
overfitting and to maintain model generalizability.

At each feature configuration (each value of K), hyperparameter 
tuning was conducted via grid search within the training set during 
cross-validation. For XGBoost, the parameter grid comprised learning 
rates of 0.05 and 0.1, maximum tree depths of 3 and 4, gamma values 
of 0.1 and 0.2, and lambda values of 3, 4, and 5. These ranges were 
selected to balance model complexity and overfitting risk. For the 
SVM with a RBF kernel, the hyperparameter grid included gamma 
values of 0.001, 0.01, 0.1, and 1 and penalty parameters (C) of 0.1, 1, 
10, and 100. These values were chosen to ensure a broad search over 
possible decision boundary smoothness and margin settings, as 
smaller gamma or C values reduce overfitting risk but may underfit, 
while larger values allow more complex, potentially overfitted models.

For model training and evaluation, LOOCV was applied. Class 
imbalance, particularly the underrepresentation of severe UPDRS 
scores, can lead to biased model performance by causing poor 
sensitivity to minority classes and overfitting to majority classes. To 
mitigate this issue, the Synthetic Minority Over-sampling Technique 
(SMOTE) (Branco et al., 2016) was performed within each LOOCV 
iteration. Specifically, SMOTE was applied only to the training subset 
of each fold to synthetically generate new samples from the minority 
classes, ensuring that the left-out test sample remained completely 
independent of the oversampling process. This strategy effectively 
reduces class imbalance while avoiding information leakage.

Across all combinations of feature counts, hyperparameters, and 
model types, the model yielding the highest LOOCV performance 
(e.g., accuracy and weighted F1) was selected as the optimal 
configuration. This optimal model, with its corresponding selected 
features and tuned hyperparameters, was then retrained on the entire 
training set using the same SMOTE procedure. The final trained 
model was subsequently applied to the independent test set for 
unbiased performance evaluation.

2.5.3 Predictive model for scores on the 
MDS-UPDRS III gait and posture subscale

The score on the MDS-UPDRS III gait and posture subscale 
was defined as the sum of scores on the five gait and posture items. 
Least absolute shrinkage and selection operator (LASSO) (Santosa 
and Symes, 1986; Tibshirani, 1996) was applied in our study to 
predict the MDS-UPDRS III gait and posture subscale. The 
regularization constant, lambda, was obtained through 10-fold 
cross-validation of LASSO which could give the minimum mean 
cross-validated error. Features were selected using the LASSO 
algorithm based on the optimal lambda determined previously. 
Only the features which have non-zero coefficients, beta, were kept 
as the features for constructing the predictive model for gait and 
posture subscale.

2.5.4 Model performance evaluation metrics
The performance of the gait and posture item classification 

models was comprehensively evaluated using several metrics, 
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including weighted F1 score, absolute accuracy (ACC ± 0), acceptable 
accuracy (ACC ± 1), Cohen’s weighted kappa (Kw), and per-class 
precision, recall, and F1 score. In this study, ACC ± 0 refers to the 
proportion of cases where the predicted score exactly matches the 
true score, while ACC ± 1 reflects the proportion of cases where the 
absolute difference between the predicted and true scores is ≤1. 
Per-class precision measures the model’s accuracy in correctly 
classifying instances of a given class, while per-class recall measures 
the model’s ability to detect all actual instances within that class. The 
F1 score for a given class is the harmonic mean of precision and 
recall, providing a balanced measure of a model’s performance for 
that class. For example, precision for a give class “Score 0” is the 
fraction of instances correctly classified as Score 0 out of all instances 
the model predicted to belong to Score 0. Recall for a give class “Score 
0” is the fraction of instances in Score 0 that the model correctly 
classified out of all instances in Score 0. The weighted F1 score is 
calculated as the sum of the F1 scores for each class, weighted by the 
number of true instances in each class (known as the support), 
divided by the total number of instances across all classes. Weighted 
F1 is suitable for imbalanced datasets as it incorporates per-class F1 
scores proportionally to the class distribution, providing a 
performance metric that reflects both model effectiveness and the 
true class balance, without overly exaggerating the impact of minority 
classes. The macro-F1 score is ideal for scenarios where fairness 
across classes matters more than overall accuracy. It highlights model 
performance on underrepresented classes, making it a critical metric 
for imbalanced datasets. Kw (Cohen, 1968) measures agreement 
between predicted and actual scores, applying higher weights to 
greater disagreements. The value of Kw was interpreted as follows 
(Landis and Koch, 1977): <0.00, poor agreement; 0.00–0.20, slight 
agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate 
agreement; 0.61–0.80, substantial agreement; and 0.81–1.00, almost 
perfect agreement.

The performance of the model for predicting the gait and posture 
subscale score was evaluated in terms of the mean absolute error 
(MAE), root mean square error (RMSE) and Spearman correlation 
coefficient (R). The value of R was interpreted as follows (Schober 
et  al., 2018): 0.00–0.10, negligible correlation; 0.10–0.39, weak 
correlation; 0.40–0.69, moderate correlation; 0.70–0.89, strong 
correlation; and 0.90–1.00, very strong correlation. The MAE and 
RMSE were calculated as follows:

	 =
= −∑

1

ˆ1 n

i i
i

MAE y y
n
∣ ∣
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=
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, where iy  is the true score and ˆiy  is the 

predicted score.
Spearman’s correlation was used instead of Pearson’s correlation 

because the assumption of normality was not met, making a 
non-parametric approach more appropriate for assessing our data.

2.5.5 Contribution of sensors to each gait and 
posture item model

The contribution of a specific sensor for an gait and posture item 
model was defined as the proportion of features derived from that 
sensor out of the total number of features included in the final gait and 
posture item model on training data. We  grouped the left- and 

right-side sensors at each location, resulting in sensors at the following 
location: waist, chest, hand (left/right), thigh (left/right), shank (left/
right), and foot (left/right).

3 Results

3.1 Participants

The primary demographic characteristics of all participants 
(n = 248) and re-rating sample (n = 225) are summarized in Table 1. 
There were no statistically significant differences observed in 
demographic variables between the overall cohort and the training 
and testing subsets, for both the original and re-rating samples. 
Figure 2 presents frequency histogram of scores for each gait and 
posture item. As described in the Methods section, merged categories 
(scores 0, 1, 2/3/4) were applied for items #3.9 (arising from chair) and 
#3.11 (freezing of gait), merged categories (scores 0, 1, 2/3) were 
applied for items #3.10 (gait), while merged categories (scores 0, 1, 2, 
3/4) were applied for items #3.13 (posture). Figure 3 illustrates the 
distribution of scores on the MDS-UPDRS III gait and posture 
subscale, indicating fewer participants with higher scores.

3.2 Model LOOCV performance and 
interpretation

Predictive performance comparisons between XGBoost and SVM 
algorithms for each of the five gait and posture items based on 
LOOCV are presented in Table 2. XGBoost consistently demonstrated 
better performance compared to SVM; therefore, XGBoost was 
selected as the final predictive model for all five gait and posture items. 
Weighted F1 score of item #3.9 ~ #3.11 is above 0.7, while they are 
approximately 0.6 for item #3.12 and #3.13. Macro-F1 score of item 
#3.9 ~ #3.11 is above 0.6, while they are approximately 0.5 for item 
#3.12 and #3.13. Absolute accuracy of all five XGBoost models 
exceeded 55%, with items #3.9, #3.10, and #3.11 achieving values 
above 70%. Acceptable accuracy (within ±1 point of true scores) 
exceeded 80% for all models, with notably high accuracy (>90%) 
observed for items #3.9, and #3.10. Kw coefficients, indicating the level 
of agreement between true and predicted scores, were above 0.5, 
representing at least moderate agreement for all five models. Detailed 
precision, recall, and F1 values for each gait and posture item 
classification by XGBoost models are shown in Table  3. Overall, 
precision and recall varied across score categories and items, with 
lower score categories (indicating less severe impairment) generally 
showing higher classification performance, while higher score 
categories, particularly those with limited sample sizes, exhibited 
reduced performance. For item # 3.9, the model achieved strong 
classification performance for the unimpaired category (Score 0), with 
LOOCV precision, recall, and F1 score of 0.855, 0.803, and 0.828, 
respectively. While performance for higher severity categories showed 
room for improvement, these categories were notably 
underrepresented (e.g., only 7 samples for Score 2/3/4 in LOOCV), 
which likely contributed to reduced model performance in those 
groups. In item # 3.10, the model demonstrated good performance for 
Score 2/3 with a precision of 0.916 and recall of 0.784 under LOOCV, 
while classification for Score 0 showed lower performance, with an F1 
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TABLE 1  Demographic characteristics of the participants.

Variables Original sample Re-rating sample

Overall Train Test p* Overall Train Test p*
Participants, n 248 198 50 225 180 45

Age, mean (SD), years 63.46 (10.54) 63.43 (10.72) 63.58 (9.91) 0.996 63.15 (10.46) 62.83 (10.63) 64.39 (9.80) 0.671

Sex: Female, n (%) 117 (47.2) 93 (47.0) 24 (48.0) 0.992 106 (47.1) 84 (46.7) 22 (48.9) 0.965

MMSE score, mean (SD) 27.23 (2.37) 27.16 (2.39) 27.54 (2.32) 0.594 27.27 (2.42) 27.22 (2.46) 27.47 (2.30) 0.826

PD duration, mean (SD), years 6.74 (4.22) 6.82 (4.27) 6.39 (4.04) 0.812 6.54 (4.19) 6.56 (4.23) 6.46 (4.04) 0.989

MDS-UPDRS III total score, 

mean (SD)

32.45 (15.13) 32.31 (15.50) 33.00 (13.69) 0.96 31.74 (14.68) 31.52 (14.27) 32.64 (16.40) 0.904

HY, mean (SD) 2.46 (0.84) 2.45 (0.86) 2.51 (0.74) 0.894 2.39 (0.81) 2.39 (0.77) 2.38 (0.95) 0.997

Medication on: yes, n (%) 97 (39.4) 79 (39.9) 18 (37.5) 0.955 90 (40.4) 73 (41.0) 17 (37.8) 0.925

Educationa: no. (%) 0.532 0.992

  Elementary level 35 (14.1) 29 (14.6) 6 (12.0) 33 (14.7) 26 (14.4) 7 (15.6)

  Illiterate level 11 (4.4) 10 (5.1) 1 (2.0) 11 (4.9) 9 (5.0) 2 (4.4)

  Middle or above 199 (80.2) 158 (79.8) 41 (82.0) 178 (79.1) 142 (78.9) 36 (80.0)

  unknown 3 (1.2) 1 (0.5) 2 (4.0) 3 (1.3) 3 (1.7) 0 (0.0)

The Original sample refers to all participants initially included in the study. The Re-rating sample refers to participants with available video recordings of gait- and posture-related items (#3.9–
#3.13) for re-evaluation. aEducation – unknown: three participants have unknown education; however, they have MMSE>24; therefore, they were included in our study. *p: were estimated 
using one-way ANOVA test for continuous variables and the chi-squared test for categorical variables.

FIGURE 2

Frequency histogram of the five gait and posture items. Bar charts labeled A to E display frequency distributions for various scores on different 
activities: (A) arising from a chair, (B) gait, (C) freezing of gait, (D) postural stability, and (E) posture. Blue bars represent training data, and orange bars 
represent test data. The legend clarifies the color codes for training and test datasets, as well as a combined level.
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FIGURE 3

Distribution of participant scores on the MDS-UPDRS III gait and posture subscale.

score of 0.48. The model also demonstrated robust performance for 
item # 3.11, achieving an F1 score of 0.889 for the non-impaired group 
(Score 0) and 0.627 for higher severity categories (Score 2/3/4) under 
LOOCV, suggesting reliable detection of both absence and presence 
of freezing phenomena, despite limited data for intermediate severity 
levels. Performance for items # 3.12 and # 3.13 followed similar trends, 
with higher classification metrics for lower severity categories and 
reduced performance for higher scores, primarily attributable to class 
imbalance and the small number of samples representing more severe 
symptoms. Confusion matrices for the training datasets of the final 
XGBoost model are presented in Figure 4.

Feature importance (Gain) utilized in the final predictive models 
for items #3.9 to #3.13 is detailed in Supplementary Tables 2–6. The 
total number of features selected for predictive models of items #3.9, 
#3.10, #3.11, #3.12, and #3.13 was 35, 35, 30, 30, and 40, respectively. 
Importantly, several key features demonstrated meaningful clinical 
correlations. For example, Shank—Swing RoM—max (max) had a 
negative correlation (R = −0.476, p < 0.001, Figure 5A) with scores 
on item #3.9. Higher scores on item #3.9 indicate more severe gait 
and posture impairment, which is consistent with reduced lower-
limb mobility. A smaller shank swing range may reflect impaired 
lower-limb strength and coordination, affecting functional tasks such 
as standing up from a chair. Effective Trial Duration (R = 0.522, 
p < 0.001) had a positive correlation, while Shank—Swing RoM—
mean (max) (R = −0.629, p < 0.001) had a negative correlation with 
scores on item #3.10 (Figures  5B,C), which were consistent with 

clinical findings. As the more severe the gait impairment is, the 
slower the walking speed will be and the smaller the range of motion 
of the shank will be. 180° Turn—Steps—mean had a positive 
correlation (R = 0.482, p < 0.001, Figure 5D) with scores on item 
#3.11. Higher scores on item #3.11 indicate more severe gait and 
posture deficits, which is consistent with increased step count during 
turning. Increased mean step count during turning may indicate gait 
freezing tendencies or impaired postural control in PD patients. 180° 
Turn—Max Angular Velocity—max (R = −0.586, p < 0.001) had a 
negative correlation, while 180° Turn—Duration—mean (R = 0.604, 
p < 0.001) and Straight-Walking Duration—mean (R = 0.551, 
p < 0.001) had positive correlation with scores on item #3.12 
(Figures 5E–G), which were consistent with clinical observations. As 
the more unsteady the participant is, the slower they walk, the more 
time they would spend on walking. 180° Turn -Total Duration—mean 
had a positive correlation (R = 0.54, p < 0.001), while Trunk—
Forward Sway Max—max had a negative correlation (R = −0.461, 
p < 0.001) with scores on item #3.13 (Figures 5H,I), which were also 
consistent with clinical findings. The more sever posture impairment, 
the more time the participant spends on turning. Trunk—Forward 
Sway Max—max was used to describe the sagittal projection of the 
trunk’s maximum forward tilt relative to the gravity vertical while 
walking (backward: positive value, forward: negative value). The 
larger the absolute value of the negative value, the greater the 
participant’s trunk forward angle while walking, the severer the 
posture damage, the higher scores on item #3.13.
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Predicting the MDS-UPDRS III gait and posture subscale score 
via LOOCV on the training data achieved a MAE of 1.349 and a 
RMSE of 1.645. The correlation between predicted and actual subscale 
scores was strong (R = 0.798).

3.3 Sensor contributions

Sensor contributions to predictive models for each gait and 
posture item are presented in Supplementary Table 7. Because some 
features incorporated multiple sensors, the cumulative sensor 
contributions exceeded 100% for some gait and posture items. Shank 
sensors provided the greatest contributions for gait and posture items 
#3.10 (48.6%), #3.11 (43.3%), #3.12 (43.3%), and #3.13 (35%). For 
item #3.9, the chest sensor contributed most (37.1%), followed by the 
shank sensor (31.4%) and lumbar (28.6%). Comparison of the 
contributions of different sensors revealed that shank sensors provided 
the greatest contribution, followed by chest sensor.

3.4 Independent clinical evaluation

The full dataset of 225 participants was divided into training 
(80%) and independent test sets (20%). Performance evaluations 

of the final predictive models on the independent test set are 
provided in Tables 2, 3. Test data performance closely matched 
training LOOCV results, confirming the models’ reproducibility 
capability. Weighted F1, macro-F1, absolute, and acceptable 
accuracy values for items #3.9, #3.10, and #3.11 remained high 
(above 0.7, 0.67, 70, and 90%, respectively). However, predictive 
performance for items #3.12 and #3.13 was suboptimal. Table 3 
shows class-specific evaluations on test data. The predictive model 
for item #3.9 showed high precision and recall for Score 0 and 
Score 1 (above 70%). No participants were predicted to be Score 
2/3/4, which lead to the precision value to be NA. Model on gait 
and posture item #3.10 had high precision and recall value on 
Score 0 and Score 2/3 (above 75%). The fraction of instances 
correctly classified as Score 1 out of all instances the model 
predicted to belong to Score 1 was 46.2% (precision), while it was 
50% for recall. Model on gait and posture item #3.11 exhibited 
good performance for Score 0 and Score 2/3/4 but limited ability 
for Scores 1. Confusion matrices for the test dataset of the final 
XGBoost model are presented in Figure  6. Furthermore, the 
predictive model for gait and posture subscale was evaluated on 
independent test data, which achieved a MAE of 1.432, a RMSE of 
1.776, and a strong correlation coefficient (R = 0.818) between the 
predicted gait and posture subscale and true gait and 
posture subscale.

TABLE 2  LOOCV and test performance of the models predicting scores on the five gait and posture items.

Type Item, # 
(description)

Model Weighted 
F1

ACC±0 ACC±1 Kw Macro 
F1

fea_
numa

N Hyperparameters

LOOCV 3.9 (arising from 

chair)

XGBoost 0.748 74.4% 99.4% 0.52 0.626 35 180 gamma = 0.1, max_depth = 3, 

lambda = 3, eta = 0.1

SVM 0.725 72.2% 98.9% 0.49 0.705 10 180 gamma = 0.1, cost = 1

3.10 (gait) XGBoost 0.786 78.3% 98.9% 0.64 0.695 35 180 gamma = 0.2, max_depth = 3, 

lambda = 5, eta = 0.05

SVM 0.763 76.1% 100.0% 0.63 0.795 20 180 gamma = 0.01, cost = 0.1

3.11 (freezing of 

gait)

XGBoost 0.828 81.7% 87.2% 0.53 0.6 30 180 gamma = 0.2, max_depth = 3, 

lambda = 4, eta = 0.1

SVM 0.816 80.6% 88.9% 0.5 0.759 50 180 gamma = 0.01, cost = 1

3.12 (postural 

stability)

XGBoost 0.571 56.7% 80.6% 0.51 0.481 30 180 gamma = 0.1, max_depth = 3, 

lambda = 3, eta = 0.05

SVM 0.459 50.0% 76.7% 0.37 0.424 40 180 gamma = 0.1, cost = 1

3.13 (posture) XGBoost 0.6 59.4% 88.3% 0.5 0.572 40 180 gamma = 0.1, max_depth = 3, 

lambda = 5, eta = 0.1

SVM 0.525 52.8% 93.9% 0.49 0.539 50 180 gamma = 0.01, cost = 1

TEST 3.9 (arising from 

chair)

XGBoost 0.767 77.8% 100.0% 0.573 0.783 35 45 gamma = 0.1, max_depth = 3, 

lambda = 3, eta = 0.1

3.10 (gait) XGBoost 0.715 71.1% 100.0% 0.539 0.679 35 45 gamma = 0.2, max_depth = 3, 

lambda = 5, eta = 0.05

3.11 (freezing of 

gait)

XGBoost 0.777 82.2% 93.3% 0.664 0.823 30 45 gamma = 0.2, max_depth = 3, 

lambda = 4, eta = 0.1

3.12 (postural 

stability)

XGBoost 0.408 40.0% 66.7% 0.278 0.422 30 45 gamma = 0.1, max_depth = 3, 

lambda = 3, eta = 0.05

3.13 (posture) XGBoost 0.463 46.7% 84.4% 0.308 0.397 40 45 gamma = 0.1, max_depth = 3, 

lambda = 5, eta = 0.1

afea_num: the number of features that were included in constructing the models.
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TABLE 3  LOOCV and test performance of the XGBoost models by class on predicting scores on the five gait and posture items.

Item, # 
(description)

Score 
categories

LOOCV TEST

Precision Recall F1 Na Precision Recall F1 Na

3.9 (arising from chair) Class: 0 (Score 0) 0.855 0.803 0.828 117 0.769 0.87 0.816 23

Class: 1 (Score 1) 0.587 0.661 0.622 56 0.789 0.714 0.75 21

Class: 2 (Score 2/3/4) 0.429 0.429 0.429 7 NA 0 NA 1

3.10 (gait) Class: 0 (Score 0) 0.5 0.462 0.48 13 0.75 0.75 0.75 4

Class: 1 (Score 1) 0.694 0.843 0.761 70 0.462 0.5 0.48 12

Class: 2 (Score 2/3) 0.916 0.784 0.844 97 0.821 0.793 0.807 29

3.11 (freezing of gait) Class: 0 (Score 0) 0.932 0.849 0.889 146 0.882 0.938 0.909 32

Class: 1 (Score 1) 0.25 0.333 0.286 6 NA 0 NA 5

Class: 2 (Score 2/3/4) 0.538 0.75 0.627 28 0.636 0.875 0.737 8

3.12 (postural stability) Class: 0 (Score 0) 0.667 0.712 0.689 59 0.562 0.6 0.581 15

Class: 1 (Score 1) 0.614 0.474 0.535 57 0.273 0.3 0.286 10

Class: 2 (Score 2) 0.2 0.3 0.24 10 0 0 NA 2

Class: 3 (Score 3) 0.578 0.578 0.578 45 0.462 0.353 0.4 17

Class: 4 (Score 4) 0.308 0.444 0.364 9 0 0 NA 1

3.13 (posture) Class: 0 (Score 0) 0.66 0.714 0.686 49 0.5 0.571 0.533 14

Class: 1 (Score 1) 0.726 0.562 0.634 80 0.526 0.526 0.526 19

Class: 2 (Score 2) 0.375 0.455 0.411 33 0.4 0.25 0.308 8

Class: 3 (Score 3/4) 0.48 0.667 0.558 18 0.2 0.25 0.222 4

aN: sample size.

4 Discussion

This study developed five predictive models using wearable 
sensor-based kinematic features to assess the severity of gait and 
posture symptoms in PD, as measured by five MDS-UPDRS III gait 
and posture items (#3.9–# 3.13). Our findings demonstrate the 
potential of wearable sensor-based gait analysis as a quantitative, 
automated, and standardized assessment tool, addressing the 
limitations of conventional clinician-rated evaluations. In our study, 
XGBoost consistently outperformed SVM across all five gait and 
posture items. Notably, all five XGBoost predictive models 
demonstrated acceptable performance, achieving acceptable accuracy 
values exceeding 80%, with items #3.9, #3.10, and #3.11 surpassing 
70% absolute accuracy during LOOCV on the training data. 
Consistently, the weighted F1 scores for these items were above 0.70 
and the macro-F1 scores were above 0.60, reflecting reliable model 
performance in the context of class imbalance and multi-class 
symptom classification. Additionally, the performance of these 
models on independent test data closely matched the LOOCV 
outcomes, highlighting the robust generalizability of our 
predictive models.

Recent studies have highlighted the clinical value of gait-derived 
features in PD. Cao et al. (2020) reported that step-to-step sequence 
effect is associated with freezing of gait and can be mitigated by visual 
cues. Park et al. (2025) used machine learning on gait parameters to 
classify neurological disorders, while Taximaimaiti and Wang (2021) 
found FOG linked to more severe motor and non-motor symptoms. 
Several prior studies have further explored sensor-based methods for 
PD gait and posture symptom assessment. Abujrida et al. (2020) used 
smartphone-derived gait features to predict MDS-UPDRS II item 

scores (#2.12 walking and balance, #2.13 freezing), while Safarpour 
et  al. (2022) employed wearable sensors to predict PIGD scores, 
achieving a moderate correlation (0.61). However, these studies either 
focused on limited clinical items or lacked a standardized laboratory 
assessment protocol. In contrast, our study is the first to simultaneously 
predict all five MDS-UPDRS III gait and posture items with acceptable 
accuracy (>80%) using a single, structured gait assessment. This 
methodological advancement underscores the feasibility of wearable 
sensor-based monitoring as a reliable alternative to subjective 
clinical evaluations.

Given the clinical significance of gait and posture symptoms in 
PD, we further analyzed how specific kinematic features correlated 
with them to better understand the observed results. Postural 
instability is a significant symptom of PD (Kim et al., 2013). The 
more severe symptoms that PD patients have, the more they struggle 
to maintain their balance, which reduces walking speed. The results 
showed that the feature 180° Turn—Max Angular Velocity—max was 
moderately negatively correlated (R = −0.586, p < 0.001, 
Supplementary Table  5) with scores on item #3.12 (postural 
stability). Higher scores on item #3.12 resulted in longer turning 
durations of these PD patients on the assessment. In addition, PD 
patients with more severe posture impairment tended to have 
symptoms such as more severe flexion, scoliosis, or leaning to one 
side. Our result shows that feature 180° Turn—Trunk—Sagittal 
Mean Sway—mean, which was used to measure of the sagittal 
projection of the torso’s tilt relative to the gravity vertical through 
turning process, was moderately negatively correlated (R = −0.521, 
p < 0.001, Supplementary Table  6) with scores on item #3.13 
(posture). Moreover, our result showed that 180° Turn—Duration—
mean (R = 0.604, p < 0.001, Supplementary Table 5) had positive 
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relationship, while 180° Turn—Max Angular Velocity—max 
(R = −0.586, p < 0.001, Supplementary Table  5) had negative 
relationship with scores on item #3.12, reinforcing findings by 
Ahmed et al. (2017), who reported that impaired postural stability 
was associated with specific gait parameters, such as reduced walking 
speed. Therefore, our results were consistent with the known clinical 
manifestations of PD on these gait and posture symptom domains.

Beyond gait and posture symptoms, our findings also revealed 
strong correlations between gait parameters and bradykinesia 
severity, measured by the MDS-UPDRS III bradykinesia subscale 
(sum of items 3.2, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.14) (Zhu et al., 2024). 
For example, 180° Turn—Mean Angular Velocity—mean (R = −0.47, 
p < 0.001) and Shank—Swing RoM—mean (max) (R = −0.41, 
p < 0.001) correlated negatively with bradykinesia subscale, 
suggesting that slower turning speeds and reduced shank motion 
reflect movement slowness, a key characteristic of 
PD-related bradykinesia.

To optimize predictive accuracy, we compared two widely used 
machine learning algorithms: support vector machine (SVM) and 
extreme gradient boosting (XGBoost). SVM identifies an optimal 
separating hyperplane by maximizing the margin between classes. 
To capture complex, non-linear relationships, SVM employs kernel 
functions—such as the RBF—which map the original 
low-dimensional data into a higher-dimensional feature space, 

increasing the likelihood that otherwise inseparable patterns 
become linearly separable (Noble, 2006). However, SVM 
performance is sensitive to kernel selection, and suboptimal kernel 
choices may limit its classification effectiveness. In contrast, 
XGBoost, an ensemble learning approach based on gradient 
boosting, is particularly well-suited for modeling complex, 
non-linear feature interactions. It integrates effective built-in 
feature selection through the Gain metric, where higher Gain values 
reflect greater feature importance (Burnwal and Jaiswal, 2023). In 
addition, XGBoost incorporates L1 and L2 regularization to 
mitigate overfitting and improve model generalization. Although 
XGBoost offers robust predictive performance, its computational 
demands and sensitivity to hyperparameter tuning must be carefully 
managed. Our findings demonstrated that XGBoost consistently 
outperformed SVM under LOOCV, likely due to its superior 
capacity for capturing non-linear gait kinematic patterns and 
effectively identifying relevant features.

This study has several considerations. First, a limited sample 
size required merging categories with fewer participants, 
potentially influencing differentiation among severity levels. 
Future studies with larger and more diverse participant groups 
could improve the model’s accuracy and reliability. Second, all 
data in this study were obtained from a single clinical site, and no 
external datasets were used for model validation. This limitation 

FIGURE 4

Confusion matrices for the training data. (A–E) Correspond to sections #3.9 to #3.13, respectively: #3.9 (arising from a chair), #3.10 (gait), #3.11 
(freezing of gait), #3.12 (postural stability), and #3.13 (posture).
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FIGURE 5

Boxplots of features based on gait and posture items #3.9 ~ #3.13. Nine boxplots labeled A to I, illustrating various metrics related to gait and posture 
in different scenarios. Each plot shows data for three or more class levels, with correlation coefficients (R values) indicated. Boxplot represents data as 
follows: the central line represents the median; the top and bottom lines of the box represent the 75th quantile (Q3) and 25th quantile (Q1), 
respectively; the top and bottom of the error bars indicate the “Maximum” (Q3+1.5*(Q3−Q1)) and “Minimum” (Q1−1.5*(Q3-Q1)), respectively; and dots 
represent outliers (outside the “Maximum” and “Minimum”).
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may affect the generalizability of our findings. Independent 
validation using data from other clinical settings will be important 
to further establish the model’s applicability. Third, the initial 
clinical scores in our study were provided by a single movement 
disorder specialist, which may introduce subjectivity, a common 
limitation in clinical practice. To address this concern and 
enhance the reliability of the ground truth labels, we conducted 
an additional multi-rater, multi-round re-rating process based on 
video recordings of the gait and posture-related items 
(MDS-UPDRS III #3.9–#3.13). This procedure helped reduce 
potential bias and improve the robustness of the reference 
standards used for model development. Finally, as the assessments 
were conducted in a laboratory setting, future studies could 
benefit from evaluating wearable sensor-based methods in home-
based, naturalistic environments. This approach could enable 
remote monitoring of gait and posture symptoms, supporting 
timely interventions and improving patient outcomes.

5 Conclusion

This study demonstrates the feasibility of wearable sensor-based 
gait analysis for predicting MDS-UPDRS III gait and posture scores 
in PD patients, which reinforcing the potential of objective, sensor-
based PD assessment tools.
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Glossary

PD - Parkinson’s disease

MDS-UPDRS - Movement Disorder Society’s Unified Parkinson’s 
Disease Rating Scale

PIGD - Postural Instability Gait Difficulty

MMSE - Mini-Mental State Examination

CE Medical - ConformitÈ Europëenne Medical

NMPA - National Medical Products Administration

FDA - U.S. Food and Drug Administration

IMU - inertial measurement unit

SW-1 - straight-walk I

T1 - 180° Turn I

IC - initial contact

TC - terminal contact

LOOCV - leave-one-out cross-validation

XGBoost - extreme gradient boosting

LASSO - least absolute shrinkage and selection operator

ACC ± 0 - absolute accuracy

ACC ± 1 - acceptable accuracy

Kw - Cohen’s weighted kappa

MAE - mean absolute error

RMSE - root mean square error

R - Spearman correlation coefficient
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