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Objective: Gait and posture symptoms—such as gait impairments, postural
instability, and posture deformations—are common in Parkinson'’s disease (PD)
and closely linked to falls. Traditional assessments using clinical scales are time-
consuming and prone to subjective bias. This study aims to predict the severity
of gait and posture symptoms using data collected from wearable sensors
during a single laboratory-based walking assessment, providing an objective,
efficient, and automated evaluation approach.

Methods: Sensor-based gait parameters were collected from 225 PD participants
(mean age 63.15 + 10.46 years) through a standardized walking assessment. The
dataset was randomly split into a training set (80%) and an independent test set
(20%) with balanced age, sex, and PD duration. Two machine learning models—
extreme gradient boosting (XGBoost) and support vector machine (SVM)—were
trained to predict scores for five gait and posture items (#3.9-3.13) from the
MDS-UPDRS 1.

Results: XGBoost was chosen as the final model due to its better performance
than SVM. Across all five gait and posture items, the models achieved over
80% acceptable accuracy. For items #3.9-#3.11, absolute accuracy surpassed
70%, and macro-F1 scores were above 0.60 in leave-one-out cross-validation
(LOOCV). The model's performance on the independent test set matched LOOCV
results, confirming robustness. A total of 35, 35, 30, 30, and 40 gait features
were selected for the predictive models of items #3.9-#3.13, respectively.
Among these, key features with significant clinical relevance were identified.
For example, Effective Trial Duration (R = 0.522, p <0.001) had a positive
correlation, while Shank—Swing RoM—mean (max) (R = —=0.629, p < 0.001) had
a negative correlation with scores on item #3.10. In addition, 180° Turn—Steps —
mean (R = 0482, p < 0.001) had a positive correlation with scores on item #3.11.
These findings align with known clinical manifestations, reinforcing the clinical
relevance of the identified gait features.

Conclusion: This study demonstrates the feasibility of using wearable sensor
data to objectively assess gait and posture symptoms in PD. Though conducted
in a clinical setting, the approach may support clinicians through consistent
assessments and more frequent monitoring, with potential for future home-
based use to enable longitudinal symptom tracking.
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1 Introduction

Parkinsons disease (PD) is the second most common
neurodegenerative disorder, with its prevalence rising significantly
over the past three decades (Kalia and Lang, 2015; Su et al.,, 2025). Gait
and posture symptoms—such as gait impairments, postural instability,
and posture deformities—are common symptoms in PD and serve as
crucial indicators of disease progression and fall risk (Lau et al., 2019;
Debii et al., 2018). Gait and posture disturbance are also associated
with non-motor issues, including anxiety and cognitive decline
(Thenganatt and Jankovic, 2014; Artigas et al., 2022). As PD is a
progressive disease (Van der Marck et al., 2009), gait and posture
symptoms worsen over time, resulting in a significant decline in
patients’ mobility and independence, thereby affecting their overall
quality of life (O'Gorman Tuura et al., 2018).

Currently, gait and posture symptoms are primarily assessed using
the five items from the Movement Disorder Society’s Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS III) (Goetz et al.,
2008) —#3.9 (arising from a chair), #3.10 (gait), #3.11 (freezing of
gait), #3.12 (postural stability), and #3.13 (posture). These items
collectively capture key aspects of axial motor function, including
standing up, walking performance, freezing episodes, postural
stability, and overall posture. Together, these tasks reflect critical
dimensions of gait and posture control, which are particularly relevant
for evaluating gait disturbances, postural instability, and overall
functional mobility in individuals with PD. The evaluation of these
items requires multiple motor tasks and relies heavily on subjective
clinician judgment, which presents several limitations: (1) it imposes
a significant burden on both patients and clinicians, (2) it is inherently
subjective, leading to inter-rater variability (Zogaan et al., 2024;
Stebbins et al., 2013) and (3) subtle motor symptoms, such as speech,
low-amplitude tremor, and axial symptoms, may be difficult to detect
through visual observation alone (Zogaan et al., 2024; Stebbins et al.,
2013; De Rose et al., 2012). These limitations highlight the need for
complementary assessment approaches that are objective, efficient,
and capable of capturing subtle motor abnormalities.

Recent advances in wearable sensor technology, particularly the
development of wireless inertial measurement units (IMUs) with high
sampling frequency and improved measurement accuracy, have
enabled objective, quantitative assessment of gait impairments in PD
(Moreau et al., 2023). These technological improvements allow for
continuous, high-resolution, and non-invasive monitoring of gait and
posture, addressing limitations of traditional clinical tools such as the
MDS-UPDRS, which often fail to detect subtle motor abnormalities,
particularly those related to gait and posture. In parallel, machine
learning models have shown promise in analyzing complex sensor-
derived kinematic data, facilitating the detection of clinically relevant
motor fluctuations. Several studies have demonstrated the feasibility of
using sensor-based measurements to predict scores on gait and posture
clinical scales. For example, Abujrida et al. (2020) predicted scores for
MDS-UPDRS II items #2.12 (walking and balance) and #2.13 (freezing)
using gait parameters collected from a smartphone placed in the front
pocket of participants during walking tasks, while Safarpour et al.
(2022) utilized gait parameters obtained from wearable sensors placed
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on each foot and the lower lumbar region of participants during two
standing balance tasks in a laboratory setting and daily activities at
home to estimate postural instability gait difficulty (PIGD) scores.
While these studies demonstrate the feasibility of sensor-based PD
assessment, they present notable limitations: small sample sizes (e.g.,
fewer than 40 participants), reliance on self-recorded data with limited
standardization, and a narrow focus on a single or aggregated symptom
score (e.g., PIGD), which limits their ability to provide item-level
assessment of specific gait and posture symptoms.

To address these gaps, this study aims to develop a robust,
machine learning-based predictive model using wearable sensor-
derived kinematic features to estimate scores for all five individual gait
and posture items of the MDS-UPDRS III (#3.9-#3.13) from a single,
standardized walking assessment. By providing item-level, objective,
and efficient symptom evaluation, this approach offers a more
comprehensive alternative to conventional, subjective clinical
assessments of gait and posture in PD.

2 Materials and methods
2.1 Participants

This study was approved by the Ethics Committee of Beijing
Tiantan Hospital. Written informed consent was obtained from all the
participants. A total of 248 participants diagnosed with PD (mean age:
63.46 + 10.54 years) were recruited from Beijing Tiantan Hospital,
Capital Medical University. Participants met the diagnostic criteria for
PD established by the Movement Disorder Society (MDS) (Postuma
et al., 2015). The exclusion criteria were as follows: (1) a history of
stroke and cerebrovascular disease, (2) orthopedic impairment or
other disease which may lead to gait disturbance, (3) MDS-UPDRS III
3.10: gait is score 4, (4) cognitive disorder was evaluated using Mini-
mental State Examination (MMSE) and the cutoff values of MMSE for
exclusion were adjusted by the education level where <18 for illiterate
level, <21 for elementary level, and <24 for middle or above level
(Katzman et al., 1988). Of these, video recordings of MDS-UPDRS IIT
gait and posture-related items (#3.9-#3.13) were available for 225
participants and used for additional multi-rater scoring.

2.2 Setting and design

The MMSE and MDS-UPDRS III were administered and scored
by a movement disorder specialist. An Motor Function and Motor
Symptom Quantitative Assessment System (GYENNO SCIENCE,
Shenzhen, China) (GYENNO Technologies Co. Ltd., 2022) was used
in this assessment. This wearable motion and gait quantification
assessment system is approved by Conformité Européenne Medical
(CE Medical), National Medical Products administration (NMPA), and
U.S. Food and Drug Administration (FDA). Moreover, this assessment
platform has also supported research efforts at the intersection of
medicine and engineering (Cai et al., 2023; He et al., 2024; Zhang et al.,
2024; Lin et al., 2023). Participants performed a standardized gait
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assessment consisting of three consecutive trials, referred to as shuttle
walk tests. Each trial required participants to walk straight along a
3.6-meter path, to execute a 180-degree turn, and return to the start
position, while wearing ten inertial measurement unit (IMU) sensors
(Figure 1). Two sensors were secured to the dorsal side of each wrist.
The chest sensor was positioned over the sternum, while the waist
sensor was placed at the level of the fifth lumbar vertebra (L5). For the
lower limbs, a pair of thigh sensors were attached bilaterally, 7 cm
above the knee, and a pair of shank sensors were positioned 7 cm below
the knee joints. In addition, two foot sensors were fixed on the dorsal
side of the metatarsus (instep) of each foot. All sensors were fastened
firmly at their respective positions using adjustable straps. The
3.6-meter distance was selected due to its widespread use in Parkinson’s
disease gait assessments, offering an optimal balance between patient
safety, spatial feasibility in clinical environments, and its demonstrated

10.3389/fnagi.2025.1618764

ability to effectively provoke early gait abnormalities and freezing
episodes (Stebbins et al., 2013; Choi et al., 2020).

For 225 participants with available video recordings of gait and
posture-related items (#3.9-#3.13) during the MDS-UPDRS III
assessment, a multi-rater, multi-round adjudication process was
employed to minimize subjectivity and inter-rater variability. Two
qualified raters independently assessed each video. For items where
ratings differed, a consensus meeting was held after 1 week to
re-evaluate and discuss. If consensus matched either original rating, it
was adopted as the final score. If not, a third, more senior movement
disorder specialist conducted an independent assessment, which was
used as the final rating. Our analysis was conducted based on
participants for whom video recordings were available, with the
finalized re-rated scores from the adjudication process serving as the
definitive ground truth labels.

(A) Sensor locations and (B) walking assessment.

A
Front Back
ID NAME POSITION
l ' 1 A Waist
2 B Chest
B
3 C Left hand
A

Right Left Left Right 4 D Right hand

C @D 5 E Left thigh

6 F Right thigh

F E

4 G Left shank

8 H Right shank
H ( G
9 | Left foot
J | 10 dl Right foot
B Three times
: : Turn
Walk 3.6 meters
FIGURE 1

Frontiers in Aging Neuroscience

03

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1618764
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

Ma et al.

2.3 Sensor measurements

Each IMU sensor consisted of 3-axial accelerometers and
gyroscopes. Sensor data from the accelerometers and gyroscopes (x,
y, and z-axis values) were continuously captured at a frequency of
100 Hz by the ten IMU sensors throughout the gait assessments in real
time and were transmitted to the host computer via a Bluetooth link.
The gait assessment was segmented into two types of phases: straight
walking and turning, following the approach described in our previous
studies (Lin et al., 2023). These phases were identified using kinematic
signals from the waist, specifically the waist’s horizontal rotation angle.
Distinct peaks in the waist rotation curve correspond to turning
events. The first and second peaks indicate the onset and completion
of the first turn, while the third and fourth peaks mark the start and
end of the second turn. The remaining periods were classified as
straight walking phases. Before feature extraction, the raw sensor data
underwent a preprocessing pipeline. Specifically, the data were
processed through a filtering procedure to reduce noise while
preserving the true motion signals. Subsequently, orientation
estimation was performed to convert the raw acceleration and angular
velocity signals into meaningful spatial kinematic parameters (e.g.,
joint angles and angular velocities).

Based on the processed sensor data, a total of 240 kinematic
features, such as Step Length, Cadence, and Double Support, were
calculated. The definitions of these kinematic features are listed in
Supplementary Table 1. Each participant completed three walking
trials. For each trial, the walking assessment was segmented into two
straight-walk sections and two turning sections, resulting in a total
of six straight-walk sections and six turning sections per participant
across all three trials, refer to straight-walk I (SW-1), 180° Turn
I(T1), SW-2,T2,SW-3, T3, ... and SW-6, T6. Extracted gait features
were divided into three categories: (1) Segmentation-gait cycle-based
features: these features were calculated within individual gait cycles
but only for straight-walk sections. Within each straight-walk
section, gait features were calculated for each gait cycle and then
averaged across all gait cycles within that section. Averaging across
all gait cycles in each section helps to minimize the impact of stride-
to-stride variability and random fluctuations, providing a more
stable and reliable estimate of each gait parameter for that section.
By analyzing each section separately rather than only across the
entire assessment, we were able to capture detailed, gait
characteristics, which may be clinically relevant but could be masked
if only whole-trial averages were considered. Gait cycles were
detected by initial contact (IC) and terminal contact (TC) events as
described in our previous studies (Lin et al., 2023). The right gait
cycle begins from the right IC, then right TC, and then the right
IC. The left gait cycle begins from the left IC, then the left TC, and
then the left IC. Salarian et al. (2004) demonstrated that shank
gyroscope signals are particularly effective for identifying IC and TC
events during walking. Specifically, the first local minimum before
and after each peak in the shank’s angular velocity was used to
determine the timing of IC and TC events. Following a similar
approach, we extracted IC and TC events from our data. For
example, Trunk—Max Sagittal Angular Velocity, which was the
measurement of the sagittal projection of the torso’s maximum
angular velocity, it was calculated within individual gait cycles, and
the values were then averaged across all gait cycles within a straight-
walk section. (2) Segmentation features: this type of gait feature was
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calculated directly within each section, independent of gait cycle
detection. These features reflect the overall performance or
characteristics of an entire section (e.g., a straight-walk or turning
segment) without relying on identifying precise gait events such as
IC or TC. By considering the specific conditions of each section,
segmentation features allow for a more comprehensive assessment
of gait and posture characteristics during different phases of the
assessment, providing complementary information beyond gait
cycle-based features. For example, SW—Lumbar—Difference of
Sagittal Sway was the difference of the sagittal projection of the
waist’s tilt relative to the gravity vertical between the start and end
moment of a straight walk section. (3) Whole assessment features:
this type of gait features was calculated across the entire gait
assessment, providing a global summary of gait performance. For
example, WT - Trunk - Difference of Coronal Sway represents the
difference in the trunk’s coronal tilt relative to the gravity vertical
between the start and end of the whole trial. This approach captures
overall changes or trends in gait characteristics throughout the entire
assessment, allowing for a comprehensive evaluation of general gait
stability and performance.

2.4 Feature construction

To represent overall gait characteristics, account for differences
across straight-walk sections and across turning sections, and
minimize bias due to limb dominance, feature construction was
performed in two steps. Step1: For both segmentation-gait cycle-based
features and segmentation features, the maximum, minimum, mean,
and mean of difference across the six straight-walk sections and six
turning sections were calculated. As a result, for each parameter, four
summary features were generated, noted as—max, —min, —mean,
and —diff_mean, respectively. For example, after feature construction
step 1, feature Gait Speed L was replaced by Gait Speed L—max, Gait
Speed L—min, Gait Speed L—mean, and Gait Speed L—diff_mean.
Step 2: To quantify asymmetry and overall condition, for each pair of
left- and right-side parameters, the maximum, minimum, and
absolute difference were calculated, resulting in three representative
features: (min), (max), and (diff). For example, after feature
construction step 2, the pair of left- and right-side parameters Gait
Speed L—mean and Gait Speed R—mean were replaced by Gait
Speed—mean (max), Gait Speed—mean (min), and Gait Speed—mean
(diff). This feature construction process was applied based on the
features obtained from all three walking trials, ensuring that the final
set of representative features for each participant integrated
information from all trials and all relevant sections. This strategy
enhances the stability and robustness of the extracted gait features
while preserving section-level and side-specific information.

2.5 Model construction and evaluation

2.5.1 Training and independent test data split

For model development, the dataset comprised 225 participants
for whom multi-rater consensus ratings of the MDS-UPDRS III gait
and posture-related items (#3.9-#3.13) were available and used as
ground truth labels. The dataset was randomly split into 80% for
training and 20% for testing, ensuring age, sex, and PD duration were
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matched between the sets. As a result of this participant-level split, it
is difficult to strictly guarantee a perfectly balanced score distribution
for each MDS-UPDRS III item between the training and test sets.
However, to ensure that the training set contained all available score
levels (e.g., 0-4) for each of the five gait and posture items (#3.9-
#3.13), we performed repeated random splitting until all score
categories were present in the training set for each item. This approach
follows recommended practices in clinical machine learning to avoid
missing outcome categories during model development. Feature
selection and model construction were conducted using the training
data. Leave-one-out cross-validation (LOOCV) was performed as a
validation method in the training data to fine-tune the model
hyperparameters and estimate the model performance. Independent
test data were then used to evaluate the final models that were
constructed using training data.

2.5.2 Predictive model for scores on the
MDS-UPDRS Il gait and posture items

Each of the MDS-UPDRS III gait and posture items was rated on
a 5-point scale (0 to 4) by a movement disorder specialist. Each item
score was transformed into an M-level categorical variable, where the
value of M for a specific gait and posture item was determined by the
sample size of each level for that specific gait and posture item. If a
score level had a sample size< 5 on the training data, it was merged
into the previous level to create a new level because sample imbalance
among levels would bias the overall model. For example, item #3.11
had < 5 samples scoring 4 points and 3 points, and these samples were
combined with those scoring 2 on this item, resulting in a final 3-level
categorical variable: 0, 1, and combined 2/3/4, Thus, scores on this
item would be converted into a 3-level categorical variable (0, 1, or
2/3/4). Item #3.13 had < 5 samples scoring 4 points, and these samples
were combined with those scoring 3 on this item, resulting in a final
4-level categorical variable: 0, 1, 2, and combined 3/4. Thus, scores on
this item would be converted into a 4-level categorical variable (0, 1,
2, or 3/4). This merging was regarded as an inherent limitation due to
sample imbalance. Same score categories were made in independent
test data as training data.

To identify the optimal classifier for this study, we compared two
models: extreme gradient boosting (XGBoost) (Chen and Guestrin,
2016) and support vector machine (SVM). XGBoost, as an ensemble
learning algorithm, is well-suited for capturing complex non-linear
relationships among features and offers robust performance with
effective built-in feature selection based on the Gain metric, where
higher Gain values indicate greater feature importance (Burnwal and
Jaiswal, 2023). SVM identifies an optimal separating hyperplane by
maximizing the margin between classes. To handle non-linear
relationships, it employs kernel functions—such as the Radial Basis
Function (RBF)—to transform data from its original low-dimensional
space into a higher-dimensional feature space. This transformation
increases the likelihood that complex patterns become linearly
separable. With an appropriately chosen kernel, this approach enables
effective classification even for intricate data distributions (Noble,
2006). Based on these strengths, we implemented both models to
determine which would better capture the associations between gait
parameters and clinical scores in our dataset.

For feature selection, features were ranked by their Gain scores
from the XGBoost model and incrementally incorporated into model
construction. Features were ordered from most to least important
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according to their respective Gain scores. For predictive model
construction, the top K features with the highest Gain values were
incrementally incorporated—starting from the top 5 features (K = 5)
and increasing in steps of five (i.e., K =5, 10, 15, ..., 50). The use of a
step size of five provided a balance between performance resolution
and computational efficiency. The upper limit of 50 features was set
considering the total sample size (n =225) to reduce the risk of
overfitting and to maintain model generalizability.

At each feature configuration (each value of K), hyperparameter
tuning was conducted via grid search within the training set during
cross-validation. For XGBoost, the parameter grid comprised learning
rates of 0.05 and 0.1, maximum tree depths of 3 and 4, gamma values
of 0.1 and 0.2, and lambda values of 3, 4, and 5. These ranges were
selected to balance model complexity and overfitting risk. For the
SVM with a RBF kernel, the hyperparameter grid included gamma
values of 0.001, 0.01, 0.1, and 1 and penalty parameters (C) of 0.1, 1,
10, and 100. These values were chosen to ensure a broad search over
possible decision boundary smoothness and margin settings, as
smaller gamma or C values reduce overfitting risk but may underfit,
while larger values allow more complex, potentially overfitted models.

For model training and evaluation, LOOCYV was applied. Class
imbalance, particularly the underrepresentation of severe UPDRS
scores, can lead to biased model performance by causing poor
sensitivity to minority classes and overfitting to majority classes. To
mitigate this issue, the Synthetic Minority Over-sampling Technique
(SMOTE) (Branco et al., 2016) was performed within each LOOCV
iteration. Specifically, SMOTE was applied only to the training subset
of each fold to synthetically generate new samples from the minority
classes, ensuring that the left-out test sample remained completely
independent of the oversampling process. This strategy effectively
reduces class imbalance while avoiding information leakage.

Across all combinations of feature counts, hyperparameters, and
model types, the model yielding the highest LOOCV performance
(e.g., accuracy and weighted F1) was selected as the optimal
configuration. This optimal model, with its corresponding selected
features and tuned hyperparameters, was then retrained on the entire
training set using the same SMOTE procedure. The final trained
model was subsequently applied to the independent test set for
unbiased performance evaluation.

2.5.3 Predictive model for scores on the
MDS-UPDRS Il gait and posture subscale

The score on the MDS-UPDRS III gait and posture subscale
was defined as the sum of scores on the five gait and posture items.
Least absolute shrinkage and selection operator (LASSO) (Santosa
and Symes, 1986; Tibshirani, 1996) was applied in our study to
predict the MDS-UPDRS III gait and posture subscale. The
regularization constant, lambda, was obtained through 10-fold
cross-validation of LASSO which could give the minimum mean
cross-validated error. Features were selected using the LASSO
algorithm based on the optimal lambda determined previously.
Only the features which have non-zero coefficients, beta, were kept
as the features for constructing the predictive model for gait and
posture subscale.

2.5.4 Model performance evaluation metrics

The performance of the gait and posture item classification
models was comprehensively evaluated using several metrics,

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1618764
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

Ma et al.

including weighted F1 score, absolute accuracy (ACC * 0), acceptable
accuracy (ACC + 1), Cohen’s weighted kappa (Kw), and per-class
precision, recall, and F1 score. In this study, ACC + 0 refers to the
proportion of cases where the predicted score exactly matches the
true score, while ACC + 1 reflects the proportion of cases where the
absolute difference between the predicted and true scores is <1.
Per-class precision measures the model’s accuracy in correctly
classifying instances of a given class, while per-class recall measures
the model’s ability to detect all actual instances within that class. The
F1 score for a given class is the harmonic mean of precision and
recall, providing a balanced measure of a model’s performance for
that class. For example, precision for a give class “Score 0” is the
fraction of instances correctly classified as Score 0 out of all instances
the model predicted to belong to Score 0. Recall for a give class “Score
0” is the fraction of instances in Score 0 that the model correctly
classified out of all instances in Score 0. The weighted F1 score is
calculated as the sum of the F1 scores for each class, weighted by the
number of true instances in each class (known as the support),
divided by the total number of instances across all classes. Weighted
F1 is suitable for imbalanced datasets as it incorporates per-class F1
scores proportionally to the class distribution, providing a
performance metric that reflects both model effectiveness and the
true class balance, without overly exaggerating the impact of minority
classes. The macro-F1 score is ideal for scenarios where fairness
across classes matters more than overall accuracy. It highlights model
performance on underrepresented classes, making it a critical metric
for imbalanced datasets. Kw (Cohen, 1968) measures agreement
between predicted and actual scores, applying higher weights to
greater disagreements. The value of Kw was interpreted as follows
(Landis and Koch, 1977): <0.00, poor agreement; 0.00-0.20, slight
agreement; 0.21-0.40, fair agreement; 0.41-0.60, moderate
agreement; 0.61-0.80, substantial agreement; and 0.81-1.00, almost
perfect agreement.

The performance of the model for predicting the gait and posture
subscale score was evaluated in terms of the mean absolute error
(MAE), root mean square error (RMSE) and Spearman correlation
coefficient (R). The value of R was interpreted as follows (Schober
et al, 2018): 0.00-0.10, negligible correlation; 0.10-0.39, weak
correlation; 0.40-0.69, moderate correlation; 0.70-0.89, strong
correlation; and 0.90-1.00, very strong correlation. The MAE and
RMSE were calculated as follows:

1 .
MAE Z*Z‘)’i—)’i‘
nia
n

RMSE = lZ:(y, —yi)z , where Ji is the true score and Y/ is the
=
predicted score.
Spearman’s correlation was used instead of Pearson’s correlation
because the assumption of normality was not met, making a
non-parametric approach more appropriate for assessing our data.

2.5.5 Contribution of sensors to each gait and
posture item model

The contribution of a specific sensor for an gait and posture item
model was defined as the proportion of features derived from that
sensor out of the total number of features included in the final gait and
posture item model on training data. We grouped the left- and
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right-side sensors at each location, resulting in sensors at the following
location: waist, chest, hand (left/right), thigh (left/right), shank (left/
right), and foot (left/right).

3 Results
3.1 Participants

The primary demographic characteristics of all participants
(n = 248) and re-rating sample (n = 225) are summarized in Table 1.
There were no statistically significant differences observed in
demographic variables between the overall cohort and the training
and testing subsets, for both the original and re-rating samples.
Figure 2 presents frequency histogram of scores for each gait and
posture item. As described in the Methods section, merged categories
(scores 0, 1, 2/3/4) were applied for items #3.9 (arising from chair) and
#3.11 (freezing of gait), merged categories (scores 0, I, 2/3) were
applied for items #3.10 (gait), while merged categories (scores 0, I, 2,
3/4) were applied for items #3.13 (posture). Figure 3 illustrates the
distribution of scores on the MDS-UPDRS III gait and posture
subscale, indicating fewer participants with higher scores.

3.2 Model LOOCYV performance and
interpretation

Predictive performance comparisons between XGBoost and SVM
algorithms for each of the five gait and posture items based on
LOOCYV are presented in Table 2. XGBoost consistently demonstrated
better performance compared to SVM; therefore, XGBoost was
selected as the final predictive model for all five gait and posture items.
Weighted F1 score of item #3.9 ~ #3.11 is above 0.7, while they are
approximately 0.6 for item #3.12 and #3.13. Macro-F1 score of item
#3.9 ~ #3.11 is above 0.6, while they are approximately 0.5 for item
#3.12 and #3.13. Absolute accuracy of all five XGBoost models
exceeded 55%, with items #3.9, #3.10, and #3.11 achieving values
above 70%. Acceptable accuracy (within +1 point of true scores)
exceeded 80% for all models, with notably high accuracy (>90%)
observed for items #3.9, and #3.10. Kw coefficients, indicating the level
of agreement between true and predicted scores, were above 0.5,
representing at least moderate agreement for all five models. Detailed
precision, recall, and F1 values for each gait and posture item
classification by XGBoost models are shown in Table 3. Overall,
precision and recall varied across score categories and items, with
lower score categories (indicating less severe impairment) generally
showing higher classification performance, while higher score
categories, particularly those with limited sample sizes, exhibited
reduced performance. For item # 3.9, the model achieved strong
classification performance for the unimpaired category (Score 0), with
LOOCV precision, recall, and F1 score of 0.855, 0.803, and 0.828,
respectively. While performance for higher severity categories showed
these
underrepresented (e.g., only 7 samples for Score 2/3/4 in LOOCV),

room for improvement, categories were notably
which likely contributed to reduced model performance in those
groups. In item # 3.10, the model demonstrated good performance for
Score 2/3 with a precision of 0.916 and recall of 0.784 under LOOCY,

while classification for Score 0 showed lower performance, with an F1
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TABLE 1 Demographic characteristics of the participants.

Variables Original sample Re-rating sample
Overall Train Test Overall Train Test

Participants, n 248 198 50 225 180 45
Age, mean (SD), years 63.46 (10.54) 63.43 (10.72) 63.58 (9.91) 0.996 63.15 (10.46) 62.83 (10.63) 64.39 (9.80) 0.671
Sex: Female, 11 (%) 117 (47.2) 93 (47.0) 24 (48.0) 0.992 106 (47.1) 84 (46.7) 22 (48.9) 0.965
MMSE score, mean (SD) 27.23 (2.37) 27.16 (2.39) 27.54 (2.32) 0.594 27.27 (2.42) 27.22 (2.46) 27.47 (2.30) 0.826
PD duration, mean (SD), years 6.74 (4.22) 6.82 (4.27) 6.39 (4.04) 0.812 6.54 (4.19) 6.56 (4.23) 6.46 (4.04) 0.989
MDS-UPDRS 1II total score, 32.45 (15.13) 32.31 (15.50) 33.00 (13.69) 0.96 31.74 (14.68) 3152 (1427) | 32.64(16.40) 0.904
mean (SD)
HY, mean (SD) 2.46 (0.84) 2.45 (0.86) 2.51(0.74) 0.894 2.39 (0.81) 2.39(0.77) 2.38 (0.95) 0.997
Medication on: yes, 1 (%) 97 (39.4) 79 (39.9) 18 (37.5) 0.955 90 (40.4) 73 (41.0) 17 (37.8) 0.925
Education™ no. (%) 0.532 0.992

Elementary level 35(14.1) 29 (14.6) 6(12.0) 33 (14.7) 26 (14.4) 7 (15.6)

Iliterate level 11 (4.4) 10 (5.1) 1(2.0) 11 (4.9) 9(5.0) 2 (4.4)

Middle or above 199 (80.2) 158 (79.8) 41 (82.0) 178 (79.1) 142 (78.9) 36 (80.0)

unknown 3(1.2) 1(0.5) 2(4.0) 3(1.3) 3(1.7) 0(0.0)

The Original sample refers to all participants initially included in the study. The Re-rating sample refers to participants with available video recordings of gait- and posture-related items (#3.9-
#3.13) for re-evaluation. *Education — unknown: three participants have unknown education; however, they have MMSE>24; therefore, they were included in our study. *p: were estimated
using one-way ANOVA test for continuous variables and the chi-squared test for categorical variables.
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FIGURE 2

Frequency histogram of the five gait and posture items. Bar charts labeled A to E display frequency distributions for various scores on different
activities: (A) arising from a chair, (B) gait, (C) freezing of gait, (D) postural stability, and (E) posture. Blue bars represent training data, and orange bars
represent test data. The legend clarifies the color codes for training and test datasets, as well as a combined level.
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score of 0.48. The model also demonstrated robust performance for
item # 3.11, achieving an F1 score of 0.889 for the non-impaired group
(Score 0) and 0.627 for higher severity categories (Score 2/3/4) under
LOOCY, suggesting reliable detection of both absence and presence
of freezing phenomena, despite limited data for intermediate severity
levels. Performance for items # 3.12 and # 3.13 followed similar trends,
with higher classification metrics for lower severity categories and
reduced performance for higher scores, primarily attributable to class
imbalance and the small number of samples representing more severe
symptoms. Confusion matrices for the training datasets of the final
XGBoost model are presented in Figure 4.

Feature importance (Gain) utilized in the final predictive models
for items #3.9 to #3.13 is detailed in Supplementary Tables 2-6. The
total number of features selected for predictive models of items #3.9,
#3.10, #3.11, #3.12, and #3.13 was 35, 35, 30, 30, and 40, respectively.
Importantly, several key features demonstrated meaningful clinical
correlations. For example, Shank—Swing RoM—max (max) had a
negative correlation (R = —0.476, p < 0.001, Figure 5A) with scores
on item #3.9. Higher scores on item #3.9 indicate more severe gait
and posture impairment, which is consistent with reduced lower-
limb mobility. A smaller shank swing range may reflect impaired
lower-limb strength and coordination, affecting functional tasks such
as standing up from a chair. Effective Trial Duration (R =0.522,
P <0.001) had a positive correlation, while Shank—Swing RoM—
mean (max) (R = —0.629, p < 0.001) had a negative correlation with
scores on item #3.10 (Figures 5B,C), which were consistent with

Frontiers in Aging Neuroscience

clinical findings. As the more severe the gait impairment is, the
slower the walking speed will be and the smaller the range of motion
of the shank will be. 180° Turn—Steps—mean had a positive
correlation (R = 0.482, p < 0.001, Figure 5D) with scores on item
#3.11. Higher scores on item #3.11 indicate more severe gait and
posture deficits, which is consistent with increased step count during
turning. Increased mean step count during turning may indicate gait
freezing tendencies or impaired postural control in PD patients. 180°
Turn—Max Angular Velocity—max (R = —0.586, p < 0.001) had a
negative correlation, while 180° Turn—Duration—mean (R = 0.604,
p<0.001) and Straight-Walking Duration—mean (R =0.551,
P <0.001) had positive correlation with scores on item #3.12
(Figures 5E-G), which were consistent with clinical observations. As
the more unsteady the participant is, the slower they walk, the more
time they would spend on walking. 180° Turn -Total Duration—mean
had a positive correlation (R=0.54, p <0.001), while Trunk—
Forward Sway Max—max had a negative correlation (R = —0.461,
P <0.001) with scores on item #3.13 (Figures 5H,I), which were also
consistent with clinical findings. The more sever posture impairment,
the more time the participant spends on turning. Trunk— Forward
Sway Max—max was used to describe the sagittal projection of the
trunk’s maximum forward tilt relative to the gravity vertical while
walking (backward: positive value, forward: negative value). The
larger the absolute value of the negative value, the greater the
participant’s trunk forward angle while walking, the severer the
posture damage, the higher scores on item #3.13.
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Predicting the MDS-UPDRS III gait and posture subscale score
via LOOCYV on the training data achieved a MAE of 1.349 and a
RMSE of 1.645. The correlation between predicted and actual subscale
scores was strong (R = 0.798).

3.3 Sensor contributions

Sensor contributions to predictive models for each gait and
posture item are presented in Supplementary Table 7. Because some
features incorporated multiple sensors, the cumulative sensor
contributions exceeded 100% for some gait and posture items. Shank
sensors provided the greatest contributions for gait and posture items
#3.10 (48.6%), #3.11 (43.3%), #3.12 (43.3%), and #3.13 (35%). For
item #3.9, the chest sensor contributed most (37.1%), followed by the
shank sensor (31.4%) and lumbar (28.6%). Comparison of the
contributions of different sensors revealed that shank sensors provided
the greatest contribution, followed by chest sensor.

3.4 Independent clinical evaluation

The full dataset of 225 participants was divided into training
(80%) and independent test sets (20%). Performance evaluations
P

10.3389/fnagi.2025.1618764

of the final predictive models on the independent test set are
provided in Tables 2, 3. Test data performance closely matched
training LOOCYV results, confirming the models’ reproducibility
capability. Weighted F1, macro-F1, absolute, and acceptable
accuracy values for items #3.9, #3.10, and #3.11 remained high
(above 0.7, 0.67, 70, and 90%, respectively). However, predictive
performance for items #3.12 and #3.13 was suboptimal. Table 3
shows class-specific evaluations on test data. The predictive model
for item #3.9 showed high precision and recall for Score 0 and
Score I (above 70%). No participants were predicted to be Score
2/3/4, which lead to the precision value to be NA. Model on gait
and posture item #3.10 had high precision and recall value on
Score 0 and Score 2/3 (above 75%). The fraction of instances
correctly classified as Score I out of all instances the model
predicted to belong to Score 1 was 46.2% (precision), while it was
50% for recall. Model on gait and posture item #3.11 exhibited
good performance for Score 0 and Score 2/3/4 but limited ability
for Scores 1. Confusion matrices for the test dataset of the final
XGBoost model are presented in Figure 6. Furthermore, the
predictive model for gait and posture subscale was evaluated on
independent test data, which achieved a MAE of 1.432, a RMSE of
1.776, and a strong correlation coefficient (R = 0.818) between the
predicted gait and posture subscale and true gait and
posture subscale.

TABLE 2 LOOCYV and test performance of the models predicting scores on the five gait and posture items.

Item, # Model

F1

(description)

Weighted ACC+0 ACCt1

Kw  Macro
F1

fea_ N
num?

Hyperparameters

Loocv 3.9 (arising from XGBoost 0.748 74.4% 99.4% 0.52 0.626 35 180 = gamma = 0.1, max_depth =3,
chair) lambda = 3, eta = 0.1
SVM 0.725 72.2% 98.9% 0.49 0.705 10 180 | gamma = 0.1, cost =1
3.10 (gait) XGBoost 0.786 78.3% 98.9% 0.64 0.695 35 180 = gamma = 0.2, max_depth =3,
lambda = 5, eta = 0.05
SVM 0.763 76.1% 100.0% 0.63 0.795 20 180 | gamma = 0.01, cost = 0.1
3.11 (freezing of XGBoost 0.828 81.7% 87.2% 0.53 0.6 30 180 = gamma = 0.2, max_depth = 3,
gait) lambda =4, eta = 0.1
SVM 0.816 80.6% 88.9% 0.5 0.759 50 180 | gamma = 0.01, cost = 1
3.12 (postural XGBoost 0.571 56.7% 80.6% 0.51 0.481 30 180 = gamma = 0.1, max_depth = 3,
stability) lambda = 3, eta = 0.05
SVM 0.459 50.0% 76.7% 0.37 0.424 40 180 = gamma=0.1, cost =1
3.13 (posture) XGBoost 0.6 59.4% 88.3% 0.5 0.572 40 180 = gamma = 0.1, max_depth =3,
lambda =5, eta = 0.1
SVM 0.525 52.8% 93.9% 0.49 0.539 50 180 | gamma = 0.01, cost = 1
TEST 3.9 (arising from XGBoost 0.767 77.8% 100.0% 0.573 0.783 35 45 | gamma = 0.1, max_depth = 3,
chair) lambda = 3, eta=0.1
3.10 (gait) XGBoost 0.715 71.1% 100.0% 0.539 0.679 35 45 | gamma = 0.2, max_depth = 3,
lambda = 5, eta = 0.05
3.11 (freezing of XGBoost 0.777 82.2% 93.3% 0.664 0.823 30 45 gamma = 0.2, max_depth = 3,
gait) lambda =4, eta = 0.1
3.12 (postural XGBoost 0.408 40.0% 66.7% 0.278 0.422 30 45 | gamma = 0.1, max_depth = 3,
stability) lambda = 3, eta = 0.05
3.13 (posture) XGBoost 0.463 46.7% 84.4% 0.308 0.397 40 45 | gamma = 0.1, max_depth = 3,
lambda =5, eta = 0.1
*fea_num: the number of features that were included in constructing the models.
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TABLE 3 LOOCYV and test performance of the XGBoost models by class on predicting scores on the five gait and posture items.

Item, # Score LOOCV TEST

Gl e categories Precision Recall Precision Recall

3.9 (arising from chair) | Class: 0 (Score 0) 0.855 0.803 0.828 117 0.769 0.87 0.816 23
Class: 1 (Score I) 0.587 0.661 0.622 56 0.789 0.714 0.75 21
Class: 2 (Score 2/3/4) 0.429 0.429 0.429 7 NA 0 NA 1

3.10 (gait) Class: 0 (Score 0) 0.5 0.462 0.48 13 0.75 0.75 0.75 4
Class: 1 (Score I) 0.694 0.843 0.761 70 0.462 0.5 0.48 12
Class: 2 (Score 2/3) 0.916 0.784 0.844 97 0.821 0.793 0.807 29

3.11 (freezing of gait) Class: 0 (Score 0) 0.932 0.849 0.889 146 0.882 0.938 0.909 32
Class: 1 (Score 1) 0.25 0.333 0.286 6 NA 0 NA 5
Class: 2 (Score 2/3/4) 0.538 0.75 0.627 28 0.636 0.875 0.737 8

3.12 (postural stability) | Class: 0 (Score 0) 0.667 0.712 0.689 59 0.562 0.6 0.581 15
Class: 1 (Score I) 0.614 0.474 0.535 57 0.273 0.3 0.286 10
Class: 2 (Score 2) 0.2 0.3 0.24 10 0 0 NA 2
Class: 3 (Score 3) 0.578 0.578 0.578 45 0.462 0.353 0.4 17
Class: 4 (Score 4) 0.308 0.444 0.364 9 0 0 NA 1

3.13 (posture) Class: 0 (Score 0) 0.66 0.714 0.686 49 0.5 0.571 0.533 14
Class: 1 (Score I) 0.726 0.562 0.634 80 0.526 0.526 0.526 19
Class: 2 (Score 2) 0.375 0.455 0.411 33 0.4 0.25 0.308 8
Class: 3 (Score 3/4) 0.48 0.667 0.558 18 0.2 0.25 0.222 4

“N: sample size.

4 Discussion

This study developed five predictive models using wearable
sensor-based kinematic features to assess the severity of gait and
posture symptoms in PD, as measured by five MDS-UPDRS III gait
and posture items (#3.9-# 3.13). Our findings demonstrate the
potential of wearable sensor-based gait analysis as a quantitative,
automated, and standardized assessment tool, addressing the
limitations of conventional clinician-rated evaluations. In our study,
XGBoost consistently outperformed SVM across all five gait and
posture items. Notably, all five XGBoost predictive models
demonstrated acceptable performance, achieving acceptable accuracy
values exceeding 80%, with items #3.9, #3.10, and #3.11 surpassing
70% absolute accuracy during LOOCV on the training data.
Consistently, the weighted F1 scores for these items were above 0.70
and the macro-F1 scores were above 0.60, reflecting reliable model
performance in the context of class imbalance and multi-class
symptom classification. Additionally, the performance of these
models on independent test data closely matched the LOOCV
outcomes, highlighting the robust generalizability of our
predictive models.

Recent studies have highlighted the clinical value of gait-derived
features in PD. Cao et al. (2020) reported that step-to-step sequence
effect is associated with freezing of gait and can be mitigated by visual
cues. Park et al. (2025) used machine learning on gait parameters to
classify neurological disorders, while Taximaimaiti and Wang (2021)
found FOG linked to more severe motor and non-motor symptoms.
Several prior studies have further explored sensor-based methods for
PD gait and posture symptom assessment. Abujrida et al. (2020) used
smartphone-derived gait features to predict MDS-UPDRS II item
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scores (#2.12 walking and balance, #2.13 freezing), while Safarpour
et al. (2022) employed wearable sensors to predict PIGD scores,
achieving a moderate correlation (0.61). However, these studies either
focused on limited clinical items or lacked a standardized laboratory
assessment protocol. In contrast, our study is the first to simultaneously
predict all five MDS-UPDRS III gait and posture items with acceptable
accuracy (>80%) using a single, structured gait assessment. This
methodological advancement underscores the feasibility of wearable
sensor-based monitoring as a reliable alternative to subjective
clinical evaluations.

Given the clinical significance of gait and posture symptoms in
PD, we further analyzed how specific kinematic features correlated
with them to better understand the observed results. Postural
instability is a significant symptom of PD (Kim et al., 2013). The
more severe symptoms that PD patients have, the more they struggle
to maintain their balance, which reduces walking speed. The results
showed that the feature 180° Turn—Max Angular Velocity—max was
(R=-0.586, p<0.001,
Supplementary Table 5) with scores on item #3.12 (postural

moderately negatively correlated
stability). Higher scores on item #3.12 resulted in longer turning
durations of these PD patients on the assessment. In addition, PD
patients with more severe posture impairment tended to have
symptoms such as more severe flexion, scoliosis, or leaning to one
side. Our result shows that feature 180° Turn—Trunk—Sagittal
Mean Sway—mean, which was used to measure of the sagittal
projection of the torso’s tilt relative to the gravity vertical through
turning process, was moderately negatively correlated (R = —0.521,
p <0.001, Supplementary Table 6) with scores on item #3.13
(posture). Moreover, our result showed that 180° Turn—Duration—
mean (R =0.604, p < 0.001, Supplementary Table 5) had positive
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FIGURE 4
Confusion matrices for the training data. (A—E) Correspond to sections #3.9 to #3.13, respectively: #3.9 (arising from a chair), #3.10 (gait), #3.11
(freezing of gait), #3.12 (postural stability), and #3.13 (posture).

relationship, while 180° Turn—Max Angular Velocity—max
(R=-0.586, p<0.001, Supplementary Table 5) had negative
relationship with scores on item #3.12, reinforcing findings by
Ahmed et al. (2017), who reported that impaired postural stability
was associated with specific gait parameters, such as reduced walking
speed. Therefore, our results were consistent with the known clinical
manifestations of PD on these gait and posture symptom domains.

Beyond gait and posture symptoms, our findings also revealed
strong correlations between gait parameters and bradykinesia
severity, measured by the MDS-UPDRS III bradykinesia subscale
(sum of items 3.2, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.14) (Zhu et al., 2024).
For example, 180° Turn—Mean Angular Velocity—mean (R = —0.47,
p<0.001) and Shank—Swing RoM—mean (max) (R=-041,
P <0.001) correlated negatively with bradykinesia subscale,
suggesting that slower turning speeds and reduced shank motion
reflect movement slowness, characteristic  of
PD-related bradykinesia.

To optimize predictive accuracy, we compared two widely used

a key

machine learning algorithms: support vector machine (SVM) and
extreme gradient boosting (XGBoost). SVM identifies an optimal
separating hyperplane by maximizing the margin between classes.
To capture complex, non-linear relationships, SVM employs kernel
the RBF—which map the
low-dimensional data into a higher-dimensional feature space,

functions—such as original
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increasing the likelihood that otherwise inseparable patterns
become linearly separable (Noble, 2006). However, SVM
performance is sensitive to kernel selection, and suboptimal kernel
choices may limit its classification effectiveness. In contrast,
XGBoost, an ensemble learning approach based on gradient
boosting, is particularly well-suited for modeling complex,
non-linear feature interactions. It integrates effective built-in
feature selection through the Gain metric, where higher Gain values
reflect greater feature importance (Burnwal and Jaiswal, 2023). In
addition, XGBoost incorporates L1 and L2 regularization to
mitigate overfitting and improve model generalization. Although
XGBoost offers robust predictive performance, its computational
demands and sensitivity to hyperparameter tuning must be carefully
managed. Our findings demonstrated that XGBoost consistently
outperformed SVM under LOOCYV, likely due to its superior
capacity for capturing non-linear gait kinematic patterns and
effectively identifying relevant features.

This study has several considerations. First, a limited sample
size required merging categories with fewer participants,
potentially influencing differentiation among severity levels.
Future studies with larger and more diverse participant groups
could improve the model’s accuracy and reliability. Second, all
data in this study were obtained from a single clinical site, and no
external datasets were used for model validation. This limitation
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FIGURE 5
Boxplots of features based on gait and posture items #3.9 ~ #3.13. Nine boxplots labeled A to |, illustrating various metrics related to gait and posture
in different scenarios. Each plot shows data for three or more class levels, with correlation coefficients (R values) indicated. Boxplot represents data as
follows: the central line represents the median; the top and bottom lines of the box represent the 75th quantile (Q3) and 25th quantile (Q1),
respectively; the top and bottom of the error bars indicate the “Maximum” (Q3+1.5*(Q3-Q1)) and “Minimum” (Q1-1.5*(Q3-Q1)), respectively; and dots
represent outliers (outside the “Maximum” and "Minimum”).
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Confusion matrices for the test data. (A—E) Correspond to sections #3.9 to #3.13, respectively: #3.9 (arising from a chair), #3.10 (gait), #3.11 (freezing
of gait), #3.12 (postural stability), and #3.13 (posture).

may affect the generalizability of our findings. Independent
validation using data from other clinical settings will be important
to further establish the model’s applicability. Third, the initial
clinical scores in our study were provided by a single movement
disorder specialist, which may introduce subjectivity, a common
limitation in clinical practice. To address this concern and
enhance the reliability of the ground truth labels, we conducted
an additional multi-rater, multi-round re-rating process based on
video recordings of the gait and posture-related items
(MDS-UPDRS III #3.9-#3.13). This procedure helped reduce
potential bias and improve the robustness of the reference
standards used for model development. Finally, as the assessments
were conducted in a laboratory setting, future studies could
benefit from evaluating wearable sensor-based methods in home-
based, naturalistic environments. This approach could enable
remote monitoring of gait and posture symptoms, supporting
timely interventions and improving patient outcomes.

5 Conclusion

This study demonstrates the feasibility of wearable sensor-based
gait analysis for predicting MDS-UPDRS III gait and posture scores
in PD patients, which reinforcing the potential of objective, sensor-
based PD assessment tools.
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