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Background: This study aimed to quantitatively evaluate brain glymphatic

imaging features in patients with Alzheimer’s disease (AD), amnestic mild

cognitive impairment (aMCI), and normal controls (NC) by applying a

deep learning-based method for the automated segmentation of enlarged

perivascular space (EPVS) and diffusion tensor imaging analysis along

perivascular spaces (DTI-ALPS) indices.

Methods: A total of 89 patients with AD, 24 aMCI, and 32 NCs were included.

EPVS were automatically segmented from T1WI and T2WI images using a VB-

Net-based model. Quantitative metrics, including total EPVS volume, number,

and regional volume fractions were extracted, and segmentation performance

was evaluated using the Dice similarity coefficient. Bilateral ALPS indices were

also calculated. Group comparisons were conducted for all imaging metrics,

and correlations with cognitive scores were analyzed.

Results: VB-Net segmentation model demonstrated high accuracy, with mean

Dice coefficients exceeding 0.90. Compared to the NC group, both AD and

aMCI groups exhibited significantly increased EPVS volume, number, along with

reduced ALPS indices (all P < 0.05). Partial correlation analysis revealed strong

associations between ALPS and EPVS metrics and cognitive performance. The

combined imaging features showed good discriminative performance among

diagnostic groups.

Conclusion: The integration of deep learning-based EPVS segmentation and

DTI-ALPS analysis enables multidimensional assessment of glymphatic system

alterations, offering potential value for early diagnosis and translation in

neurodegenerative diseases.
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Alzheimer’s disease, amnestic mild cognitive impairment, glymphatic system, V-shape
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent
neurodegenerative disorder, characterized by a progressive
decline in cognitive function and memory. With the global
population aging, the burden of AD has emerged as an increasingly
urgent public health challenge worldwide (Alzheimer’s Association,
2023).Its growing prevalence imposes substantial emotional and
economic burdens on both families and healthcare systems alike
(Bai et al., 2022). Amnestic mild cognitive impairment (aMCI)
is widely recognized as an intermediate stage between normal
aging and AD, associated with a high risk of progression to
dementia, albeit with some potential for reversibility (Mian et al.,
2024).Although several clinical strategies have been developed for
the treatment of AD, their therapeutic efficacy remain limited and
unsatisfactory (Passeri et al., 2022). Consequently, identifying key
biological alterations during the aMCI stage is crucial for enabling
early diagnosis and intervention (Porsteinsson et al., 2021).

The glymphatic system, a brain-wide perivascular network
responsible for the clearance of metabolic waste, has attracted
increasing attention for its potential role in the pathophysiology
of AD (Rasmussen et al., 2018).Driven by arterial pulsations,
it facilitates the exchange between cerebrospinal fluid (CSF)
and interstitial fluid (ISF), thereby enhancing the clearance of
neurotoxic proteins such as β-amyloid and tau (Liu et al., 2022)
Aquaporin–4 (AQP4), a major water channel predominantly
localized at the astrocytic endfeet, undergoes notable age-related
changes, particularly a reduction in its perivascular polarization.
This loss of perivascular polarization has been closely associated
with AD-related pathological changes and may contribute to the
brain’s heightened vulnerability to neurodegeneration in aging
populations (Zeppenfeld et al., 2017). In animal models deficient
in AQP4, the circadian regulation of glymphatic clearance is
disrupted, leading to impaired elimination of brain metabolites
and further supporting the involvement of glymphatic dysfunction
in AD progression (Hablitz et al., 2020). Taken together, these
findings highlight the necessity of a systematic evaluation of
glymphatic function in AD and aMCI, which could not only deepen
our understanding of disease mechanisms but also facilitate the
identification of early imaging biomarkers with potential clinical
relevance.

Magnetic resonance imaging (MRI) has enabled noninvasive
in vivo evaluation of the glymphatic system (Bae et al., 2023;
Taoka and Naganawa, 2020; Zhang et al., 2021; Kamagata et al.,
2024). Perivascular spaces (PVS), as key anatomical conduits
within the glymphatic system, have garnered growing interest
for their potential utility as imaging biomarkers of impaired
brain clearance. Enlarged perivascular spaces (EPVS), frequently
observed in regions such as the basal ganglia (BG) and centrum
semiovale (CSO), may indicate underlying glymphatic drainage
dysfunction (Lynch et al., 2023). The volume, number, and spatial
distribution of EPVS have been associated with aging, cognitive
decline, and various neurological disorders. However, current
clinical assessments of EPVS primarily rely on visual rating
scales, which are inherently subjective and lack methodological
standardization (Moses et al., 2023).

To improve the standardization and automation of EPVS
assessment, several deep learning–based segmentation approaches

have been proposed in recent years (Waymont et al., 2024).Among
these methods, VB-Net—a modified version of V-Net incorporates
bottleneck layers—has demonstrated superior performance in
brain structure segmentation, due to its use of skip connections
and ability to extract multi-scale features. This model achieved
an average Dice similarity coefficient (DSC) greater than 0.90 for
various small vessel disease markers in prior work, with high
recall (0.953) and precision (0.923) rates for EPVS segmentation,
validated against manual annotations by experienced radiologists
(Zhu et al., 2022). These characteristics make it particularly well-
suited for the detection of EPVS, which are often small in size,
morphologically heterogeneous, and poorly delineated at their
boundaries.

Among emerging techniques, diffusion tensor image analysis
along perivascular spaces (DTI-ALPS) quantifies water diffusivity
perpendicular to major white matter fiber tracts, offering a
reproducible and noninvasive metric for assessing glymphatic
function integrity (Taoka et al., 2017; Liu et al., 2024).This approach
has been increasingly applied to assess glymphatic activity across a
spectrum of neurological conditions, including neurodegenerative
disorders, ischemic stroke, and cerebral small vessel disease (Hsu
et al., 2023; Qin et al., 2023; Hong et al., 2024). Integrating
automated EPVS quantification with DTI-ALPS analysis represents
a promising strategy for the multidimensional evaluation of
glymphatic function in individuals with AD and aMCI.

In this study, we aimed to implement a fully automated MRI-
based EPVS segmentation framework using the VB-Net model, in
combination with DTI-ALPS indices, to enable a comprehensive
structural and functional evaluation of the glymphatic system in
patients with AD and aMCI. We hypothesize that individuals with
AD or aMCI exhibit varying degrees of glymphatic dysfunction,
which can be detected through distinct imaging biomarkers.
Furthermore, EPVS-derived metrics and DTI-ALPS indices may
offer complementary insights, potentially improving disease
detection and subtype differentiation.

2 Materials and methods

2.1 Participants and clinical information

AD and aMCI subjects were recruited in this cross-
sectional study conducted at the memory clinic of Zhejiang
Provincial People’s Hospital (Hangzhou, China) from September
2016 to March 2019. The normal control (NC) subjects were
volunteers recruited at the Hospital Health Promotion Center.
All participants were right-handed and signed an informed
consent. This study was carried out in accordance with the
Declaration of Helsinki, and all procedures were approved by the
local ethics committee of Zhejiang Provincial People’s Hospital
(No. 2012KY002).

The medical history, neuropsychological test, physical
examination, laboratory inspection, and craniocerebral MRI
scan data of all subjects were collected. The neuropsychological
scales involved the mini-mental state examination (MMSE) and
Montreal cognitive assessment (MoCA). The inclusion criteria for
AD patients were revised NINCDS-ADRDA criteria with MMSE
score ≤ 24 and MoCA score ≤ 26; higher scores indicated better
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cognition (Dubois et al., 2007). The inclusion criteria for aMCI
patients were as follows: (1) complaints of memory impairment
by patient, family, or physician; (2) normal clinical manifestations
including cognitive function; (3) MMSE score > 24 and ≤ 27.
The inclusion criteria for NC subjects were as follows: (1) no
stroke, epilepsy, depression, or other neurological or mental
diseases; (2) no hearing or visual impairment; (3) conventional
craniocerebral MRI showed no infarction, hemorrhage, tumor,
or other lesions; (4) MMSE score ≥ 28. The exclusion criteria
for all three groups were: (1) stroke and infarction; (2) traumatic
brain injury; (3) epilepsy, Parkinson’s disease, brain tumor, and
other neurological diseases that led to memory impairment;
(4) vascular dementia or mixed dementia; (5) severe anemia,
hypertension, diabetes, and use of psychotropic drugs. Finally, 89
AD patients, 24 aMCI patients, and 32 NC were enrolled in this
study.

2.2 MR image acquisition

The MRI data were acquired on a clinical MR scanner using
an eight–element receiving coil (Discovery MR750 3.0T; GE
Healthcare, Wisconsin, United States). The MRI protocols included
T1-weighted imaging (T1WI), T2WI, T2-fluid attenuated inversion
recovery (FLAIR), and diffusion-weighted imaging (DWI, b = 0
and 1,000) to exclude subjects with craniocerebral disease. The DTI
data were acquired using gradient echo single-shot EPI sequence
with 25 diffusion gradient square [echo time (TE) = 63.8 ms,
repetition time (TR) = 8,612 ms, matrix = 256 × 256, field of view
(FOV) = 192× 192 mm2, slice thickness / slice spacing = 1.5/0 mm,
81 axial slices, voxel = 0.75 × 0.75 × 1.5 mm3, and b values 0 and
1,000 s/mm2]. Also, high-resolution three-dimensional (3D) T1-
weighted magnetization-prepared fast gradient echo (MPRAGE)
vector images were acquired (TE = 2.9 ms, TR = 6.7 ms,
matrix = 256 × 256 mm2, FOV = 256 × 256 mm2, slice
thickness/slice spacing = 1/0 mm, 192 sagittal slices, and
voxel = 1× 1× 1 mm3).

2.3 EPVS preprocessing

Enlarged perivascular spaces are fluid-filled spaces surrounding
small penetrating vessels, appearing as linear or ovoid structures
typically < 3 mm in diameter. According to the STRIVE-2 criteria,
EPVS are isointense to cerebrospinal fluid on all MRI sequences
and lack a hyperintense rim on FLAIR. They are most commonly
observed in the basal ganglia, centrum semiovale, and midbrain
(Duering et al., 2023).

Image processing was conducted on the uAI Research
Platform (uRP) (Wu et al., 2023), which integrates a generalized
segmentation framework based on the VB-Net architecture,
enabling robust extraction of various regions of interest (ROIs)
(Zhu et al., 2022). In this study, VB-Net was employed
to achieve efficient and reproducible automated segmentation
of EPVS. The preprocessing steps for T1- and T2-weighted
images were as follows: (a) N4 bias field correction was
applied to the T1-weighted images to address magnetic field
inhomogeneity; (b) a 3D VB-Net model deployed on the uRP

platform was used to perform skull stripping on the T1-
weighted images; (c) the Advanced Normalization Tools (ANTs)
framework was used to co-register T1 and T2 images, and
the brain mask from T1 was mapped onto the T2 images
to enable skull removal in T2-weighted images; (d) both T1
and T2 images were resampled to an isotropic voxel size of
1 mm× 1 mm× 1 mm; (e) image intensities were normalized to a
fixed range of [−1, 1].

Subsequently, the preprocessed T1–weighted images were
input into a 3D VB-Net model to segment the CSO, BG, and
midbrain regions, which served as anatomical references for
localizing EPVS lesions. The 3D VB-Net model, based on a
V-shaped bottleneck architecture, comprised input blocks, down-
sampling / up-sampling blocks with residual structures, and
output blocks. Bottleneck layers within each block reduced feature
map dimensions to optimize GPU memory while preserving
spatial details, and skip connections at each resolution fused
high-level contextual features with fine-grained local information,
enhancing boundary detection for heterogeneous regions like
the BG and CSO. Trained on T1-weighted images from 1,800
subjects and tested on 295 subjects, the 3D VB-Net model
achieved an average DSC of 0.92 and has been integrated into the
uRP platform for end-to-end workflows via a graphical interface
(Duering et al., 2023). Additionally, the key implementation
files are hosted on GitHub1. For detailed PVS segmentation,
the preprocessed T1 and T2 images were input into a 2D
VB-Net model. The 2D VB-Net model leveraged a V-shaped
bottleneck architecture with skip connections and multi-scale
feature extraction, which enabled robust segmentation of EPVS
despite boundary blurring and morphological heterogeneity.
Bottleneck layers compressed feature maps to retain discriminative
spatial details, while residual connections integrated low-level
boundary information with high-level semantic features. To
reduce false positives, segmented structures with lengths less
than 2 mm were excluded. The remaining structures were
retained and identified as EPVS lesions (as illustrated in
Figure 1).

To evaluate the segmentation performance of the VB-Net
model, the Dice similarity coefficient (DSC) was used to quantify
the overlap between the AI-generated segmentation and the
manually annotated ground truth. In this study, the model-
generated EPVS results were reviewed and refined by two
experienced radiologists (Rater 1: Jianliang Miao; Rater 2: Qi Feng),
with these expert-corrected segmentations serving as the definitive
ground truth. The raters were blinded to group diagnosis (AD,
aMCI, NC) during their review to minimize bias. Consistency
was assessed between the AI segmentation and each individual
rater, as well as with the union and intersection of the two raters’
annotations. The DSC was calculated using the following formula:

DSC =
2 × TP

2 × TP++FP+FN

In this context, true positives (TP) refer to correctly identified
EPVS voxels, false positives (FP) to non-EPVS voxels incorrectly
labeled as EPVS, and false negatives (FN) to EPVS voxels that
were missed. A higher DSC indicates better agreement between

1 https://github.com/simonsf/RTP-Net
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FIGURE 1

VB-Net employed for EPVS segmentation. (a) T1-weighted images were used as an input for a 3D VB-Net model to obtain segmentation of centrum
semiovale, basal ganglia, and midbrain. (b) T1 and T2-weighted images were used as input for a 2D VB-Net model to obtain PVS segmentation.

the AI-generated segmentation and the ground truth. In addition
to DSC, we also calculated precision and recall to further assess
segmentation performance. The formulas are as follows:

recall =
TP

TP + FN
precision =

TP
TP+FP

Based on the segmentation results, the total volume and number of
EPVS lesions were extracted. In addition, EPVS volume fractions
within the basal ganglia (BG) and centrum semiovale (CSO)
regions were calculated for subsequent group comparisons and
correlation analyses.

2.4 DTI image preprocessing

Diffusion-weighted images were corrected for Eddy current
distortions and gradient direction using FSL 6.0 (Jenkinson et al.,
2012). High-resolution 3D T1WI and DTI brain images extraction
were captured using CAT12 toolbox (Gaser et al., 2024). Whole-
brain volume of each subject was calculated using CAT12 for
subsequent statistical analyses. The diffusion tensor model was then
applied at each voxel using the DTIfit tool in FSL, and parameter

values such as fractional anisotropy (FA) and mean diffusivity (MD)
were calculated. Subsequently, FA maps were generated.

Furthermore, the linear registration tool in FSL was first used
to align the 3D T1-weighted image to the individual DTI space,
ensuring spatial consistency. Subsequently, the DTI images were
registered to the MNI standard template using both linear and
nonlinear registration, and the resulting spatial transformation
matrices were obtained.

2.5 ALPS processing

After preprocessing, diffusion tensors were calculated in the
x (left–right), y (anterior–posterior), and z (superior–inferior)
directions at each voxel using FSL. Spherical region of interest
(ROI) with 5-mm diameter was then placed on the MNI T1
template (MNI152_T1_1mm_brain, version 2.4) (Fonov et al.,
2011; Figure 1). The center coordinates of the left and right
ROIs in projection fibers were (24, −12, 24) and (−28, −12, 24),
respectively, while those in association fibers were (36,−12, 24) and
(−40, −12, 24) (Zhang et al., 2021). The ROI masks were inversely
transformed to each subject’s T1 space using the deformation
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fields obtained from the prior registration. Manual verification was
performed in FSLEYES to confirm the registration accuracy and
ROI placement for each subject (Rater 1: Jianliang Miao; Rater 2:
Qi Feng). Finally, the ALPS index was calculated based on the FA
map using the following formula:

ALPS index = (Dx_proj + Dx_assoc)/ (Dy_proj + Dz_assoc)

The ALPS index was calculated separately for the left and
right hemispheres, and their mean was used as the individual-level
measure of overall glymphatic function (Toh and Siow, 2021), as
illustrated in Figure 2.

2.6 Statistical analysis

Statistical analyses were performed using SPSS version 26.0 and
FSL, with statistical significance defined as P < 0.05. Demographic
and neuropsychological variables were analyzed using SPSS. The
normality of all variables was assessed using the Shapiro–Wilk
test. Sex differences were assessed using the chi-square test. For
group comparisons of ALPS indices and PVS-related metrics, either
analysis of covariance (ANCOVA) or the Kruskal–Wallis H test
was applied, depending on the data distribution. When significant
differences were observed, post hoc comparisons were corrected
using either the Bonferroni or Dunn method as appropriate.

Partial correlation analyses were conducted to examine
associations between ALPS index, EPVS volume, number, and
volume fraction with cognitive test scores, controlling for age,
sex, years of education, and total brain volume as covariates.
Additionally, correlations between ALPS indices and EPVS metrics
were assessed to investigate the potential interrelationship between
these two glymphatic-related indicators in the disease context.
A P < 0.05 was considered statistically significant for all analyses.

3 Results

3.1 Demographics and clinical
information

A total of 89 patients with AD, 24 individuals with aMCI, and
32 cognitively normal controls (NC) were included in the study. No
significant differences were found among the three groups in terms
of age, sex, or years of education (P > 0.05 for all; see Table 1). In
contrast, both MMSE and MoCA scores differed significantly across
groups (P < 0.05 for both).

3.2 EPVS results

The segmentation performance of the VB-Net model
demonstrated high concordance with manual annotations in
terms of DSC, recall, and precision (see Figure 3). Specifically, the
median DSC between VB-Net and Rater 1 was 0.969 (recall: 0.960;
precision: 1.000), while that between VB-Net and Rater 2 was
0.986 (recall: 0.954; precision: 1.000) (see Table 2). The inter-rater

agreement between the two experts was also high, with a median
DSC of 0.996 (Figure 3).

Based on the segmentation results, the total volume and
number of EPVS lesions were quantified, along with their volume
fractions in the basal ganglia (BG) and centrum semiovale (CSO)
regions. As none of these variables met the assumption of
normality, group comparisons were conducted using the Kruskal–
Wallis H test. Significant group differences were identified in total
EPVS volume, lesion count, and BG volume fraction (all P < 0.01;
see Table 3). Post hoc comparisons with Bonferroni correction
revealed that differences between the AD and aMCI groups, as well
as between the AD and NC groups, remained statistically significant
(all P < 0.05).

3.3 Correlations between EPVS metrics
and clinical variables

Total EPVS volume, lesion number, and BG volume fraction
were all significantly negatively correlated with MMSE (R2 = 0.030,
P = 0.040; R2 = 0.035, P = 0.026; R2 = 0.032, P = 0.031) and MoCA
(R2 = 0.048, P = 0.009; R2 = 0.052; P = 0.007; R2 = 0.033, P = 0.029)
scores (see Figure 4), indicating that greater EPVS volume and
number—whether in volume, number, or BG distribution—is
associated with poorer cognitive performance.

3.4 ALPS results

As the ALPS index followed a normal distribution, analysis of
covariance (ANCOVA) was used to compare group differences.
Significant differences were observed among the three groups in
the left ALPS index (F = 28.893, P < 0.001), right ALPS index
(F = 3.595, P = 0.030), and mean ALPS index (F = 36.643,
P < 0.001). After Bonferroni correction, both the left and mean
ALPS indices remained significantly different across all pairwise
group comparisons—AD vs. aMCI, aMCI vs. NC, and AD vs. NC
(left ALPS: P < 0.001, P = 0.003, P = 0.002; mean ALPS: P < 0.001,
P < 0.001, P = 0.005). For the right ALPS index, significant
differences were found between the AD and aMCI groups, as well as
between the AD and NC groups (P < 0.001, P = 0.002, P = 0.0227;
see Table 4).

3.5 Correlations between alps index and
clinical variables

Partial correlation analysis revealed significant positive
associations between ALPS indices (left, right, and mean)
and both MMSE and MoCA scores (P < 0.001 for all; see
Figure 5). Specifically, the left ALPS index correlated with MMSE
(R2 = 0.2758, P < 0.001) and MoCA (R2 = 0.2825, P < 0.001), and
the right ALPS index with MMSE (R2 = 0.3050, P < 0.001) and
MoCA (R2 = 0.3209, P < 0.001). The mean ALPS index showed the
strongest associations with MMSE (R2 = 0.3452, P < 0.001) and
MoCA (R2 = 0.3586, P < 0.001).
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FIGURE 2

Process of selecting ALPS ROIs on the individual. The MNI coordinates of the centers of the left and right ROIs were (36, −12, 24) and (−40, −12, 24)
in association fibers. The MNI coordinates of the centers of the left and right ROIs were (24, −12, 24) and (-@28, -12, 24) in projection fibers. The
corresponding transformation matrix produced in the registration Process is utilized for the inverse registration of the ROI in MNI space to each
individual’s FA map, which is subsequently subjected to clinical expert review to facilitate precise results.

TABLE 1 Demographics and clinical characteristics.

Characteristic AD (n = 89) aMCI (n = 24) NC (n = 32) Statistic P-value

Age (mean± SD) 68.750± 9.292 67.250± 9.317 65.410± 7.551 3.626 0.163a

Sex (male/female) 40:49 12:12 12:20 3.781 0.151b

Education (years) 7.830± 4.360 8.250± 4.173 8.720± 2.543 1.611 0.447a

MMSE, mean (SD) 17.270± 5.670 25.920± 0.974 28.590± 0.798 108.528 <0.001*a

MOCA, mean (SD) 13.38± 6.173 20.880± 3.982 27.280± 1.420 91.082 <0.001*a

AD, Alzheimer’s disease; aMCI, Amnestic mild cognitive impairment; NC, normal control; MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment. a : Kruskal–Wallis
H test;b : chi-square test; *P-value < 0.05.

FIGURE 3

Scatter plots showing the performance of VB-Net in segmenting EPVS lesions. (a) DSC, (b) recall, and (c) precision were calculated from the VB-Net
segmented results and ground truths (i.e., Reader1, Reader2, union of Readers, and intersection of Readers). The numbers annotated in the plot
represent the median. Each subgroup was also labeled with the median and its interquartile range.

3.6 Correlation between EPVS metrics
and ALPS index

To further investigate the relationship between EPVS
and the ALPS index, Spearman correlation analysis was
performed. The results revealed significant negative correlations

between the mean ALPS index and total EPVS volume,
lesion number, as well as EPVS volume fractions in the
BG and CSO regions (P = 0.022, P = 0.037, P = 0.029,
P = 0.011, respectively), suggesting a potential link between
structural EPVS volume and number and functional
glymphatic impairment.
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TABLE 2 Quantitative performance of VB-Net in segmenting EPVS lesions.

AI vs. reader1 AI vs. reader2 AI vs. union AI vs. intersection

DSC 0.969 (0.960, 1.000) 0.986 (0.956, 1.000) 0.961 (0.956, 1.000) 0.996 (0.960, 1.000)

Recall 0.960 (0.919, 1.000) 0.954 (0.934, 1.000) 0.934 (0.887, 1.000) 0.990 (0.960, 1.000)

Precision 1.000 (0.960, 1.000) 1.000 (0.960, 1.000) 1.000 (0.960, 1.000) 1.000 (0.960, 1.000)

All numbers were calculated from the overall participants. Each metric was represented with a median (25% Percentile, 75% Percentile).

TABLE 3 Total volume and number of EPVS lesions segmented from the VB-Net.

AD aMCI NC P P(1 vs. 2) P(1 vs. 3) P(2 vs. 3)

All EPVS lesions

1. Volume 457.5 (282.4,
735.4)

330.9 (192.6,
512.4)

320.6 (222.3,
473.7)

0.003 0.030 0.014 > 0.999

2. Number 19.0 (11.0, 29.0) 14.0 (8.5, 20.5) 12.0 (10.0, 17.5) 0.003 0.036 0.012 > 0.999

Each metric was represented with a median (25% percentile, 75% percentile). Comparison analyses were performed by Kruskal–Wallis H test, followed by Dunn’s multiple comparisons tests.

FIGURE 4

Correlation analyses between the BG volume fraction, total EPVS volume, and EPVS number with MMSE, MOCA scales.

TABLE 4 Results of the EPVS and ALPS index in AD, aMCI, and NC participants.

AD (n = 89) aMCI (n = 24) NC (n = 32) P-valuec P-valued

EPVS total volume 457.5 (282.4, 735.4) 330.9 (192.6, 512.4) 320.6 (222.3, 473.7) 0.003*b 0.010*, 0.050*, 0.912

EPVS total number 19.000 (11.000, 29.000) 14.000 (8.500, 20.500) 12.0 (10.000, 17.500) 0.003*b 0.009*, 0.059, 0.901

BG EPVS volume fraction 0.236 (0.149, 0.311) 0.184 (0.110, 0.232) 0.172 (0.134, 0.240) 0.005*b 0.034*, 0.027*, 0.950

CSO EPVS volume fraction 0.000 (0.000, 0.014) 0.000 (0.000, 0.017) 0.000 (0.000, 0.008) 0.729b

ALPS index-L 1.312± 0.016 1.429± 0.047 1.576± 0.031 <0.001*a < 0.001*, 0.003*, 0.002*

ALPS index-R 1.303± 0.018 1.472± 0.043 1.565± 0.031 0.030*b <0.001*, 0.002*, 0.227

ALPS index 1.308± 0.015 1.450± 0.040 1.570± 0.027 <0.001*a < 0.001*, <0.001*,
0.005*

AD, Alzheimer’s disease; aMCI, Amnestic mild cognitive impairment; NC, normal control; EPVS volume fraction = EPVS volume/whole brain volume; BG, basal ganglia; CSO, centrum
semiovale. ALPS index: average of ALPS index-L and -R. *P-value < 0.05. a : ANOVA test. b : Kruskal–Wallis H test. c : P-value for comparison among AD, aMCI, and NC by ANOVA or
Kruskal–Wallis H test.d : P-value for Bonferroni’s correction between AD-NC, AD-aMCI, and aMCI-NC .

4 Discussion

This study systematically evaluated the structural and
functional integrity of the glymphatic system in patients with
Alzheimer’s disease (AD) and amnestic mild cognitive impairment

(aMCI) using diffusion tensor image analysis along perivascular
spaces (DTI-ALPS) and automated EPVS metrics derived from
deep learning segmentation. The results demonstrated that
ALPS indices were significantly reduced in both AD and aMCI
groups compared with normal controls, and were positively
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FIGURE 5

Correlation analyses between the ALPS index and MMSE, MOCA scales.

correlated with cognitive scores, suggesting that glymphatic
dysfunction may emerge as early as the aMCI stage. Using a
deep learning–based VB-Net model, we achieved high-accuracy
automatic segmentation of EPVS lesions, substantially improving
the efficiency and reproducibility of structural quantification.
Further analysis revealed significantly increased total EPVS volume
and basal ganglia (BG) volume fraction in patients with AD
and aMCI, both of which were closely associated with cognitive
decline. These findings reflect underlying impairment in brain
waste clearance and support the potential of EPVS as an early
neuroimaging biomarker of neurodegeneration. Importantly, a
significant negative correlation was also observed between ALPS
indices and EPVS metrics.

The glymphatic system plays a critical role in clearing brain
metabolic waste through CSF–interstitial fluid exchange driven
by arterial pulsation, and has been increasingly implicated in the
pathogenesis of various neurodegenerative disorders (Rasmussen
et al., 2018). Impairments such as AQP4 depolarization, blood–
brain barrier disruption, and restricted interstitial flow may
compromise glymphatic clearance efficiency, thereby facilitating
the accumulation of toxic proteins like β-amyloid (Aβ) and
tau in the brain parenchyma (Harrison et al., 2020; Wang
et al., 2023). In our study, the ALPS index was significantly
reduced in the aMCI group and showed a strong association
with cognitive decline, suggesting that glymphatic dysfunction
may precede overt clinical symptoms of dementia and serve as
a potential early imaging biomarker. This finding is consistent
with previous work by Huang et al. (2024). Notably, although
ALPS indices were reduced bilaterally, the left hemisphere
exhibited a more pronounced decline, consistent with the left-
lateralized aging pattern reported by Taoka et al. in healthy
older adults (Taoka et al., 2017). However, other studies have
reported right-hemispheric vulnerability (Bao et al., 2025),
which may be attributable to differences in ROI placement,
imaging resolution, or cohort characteristics, highlighting the
need for further validation using larger samples and standardized
methodology.

As a key anatomical component of the glymphatic system,
PVS facilitate CSF transport and clearance. The volume and
number of EPVS has been linked to cognitive impairment
in neurodegenerative diseases, and PVS dilation may reflect
impaired glymphatic clearance, resulting in interstitial metabolite
accumulation and subsequent structural expansion (Hilal et al.,
2018; Jie et al., 2020). Due to the low signal intensity, small
size, and morphological variability of EPVS, manual annotation
remains time-consuming and inherently subjective. In this study,
we employed a deep learning–based VB-Net algorithm (Duering
et al., 2023) to achieve accurate EPVS segmentation on both T1WI
and T2WI images. The model demonstrated excellent performance
across imaging modalities, with a Dice coefficient exceeding 0.90.
Owing to its lightweight architecture and high inference efficiency,
VB-Net is well-suited for deployment in clinical settings.

By extending the analysis to include individuals with aMCI, we
further compared regional EPVS metrics and found significantly
elevated EPVS volume fractions in the BG in both AD and aMCI
groups, whereas no significant differences were observed in the
CSO. This finding aligns with recent longitudinal studies reporting
faster EPVS expansion in the BG than in the CSO, with the
BG region exhibiting greater sensitivity to Aβ and tau pathology
(B = 0.05 vs. 0.03) (Menze et al., 2024). Another study involving
Aβ-PET–positive AD patients also reported increased BG-EPVS
volume and number in late-onset AD, which was associated
with hypertension and lacunar infarction, whereas CSO-EPVS did
not exhibit similar associations and may instead reflect cerebral
amyloid angiopathy (CAA)–related changes (Jung et al., 2024).
Our findings support the notion that BG-EPVS may serve as a
regional marker for early glymphatic dysfunction. However, other
studies have reported elevated CSO-EPVS volume and number in
neurodegenerative conditions, with PVS dilation associated with
CSF AQP4 and total tau levels, suggesting that CSO changes may
also reflect glymphatic dysfunction and neuronal injury (Sacchi
et al., 2023). Current inconsistencies in the regional sensitivity
and pathophysiological significance of EPVS may stem from
differences in ROI definitions, quantification methods, and cohort
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characteristics, underscoring the need for further standardized
investigations.

Furthermore, we identified a significant negative correlation
between ALPS indices and EPVS metrics, suggesting that structural
EPVS dilation may be accompanied by functional glymphatic
impairment, consistent with a structure–function association in
glymphatic disruption.

Despite the strengths of our study, several limitations should
be acknowledged. First, the sample size was relatively small and
exhibited group imbalance, and larger cohorts will be necessary
to enhance the generalizability of the findings. Second, the
calculation of the ALPS index depends on image registration
and ROI placement. Although a standardized protocol was
employed, further studies are needed to validate its robustness
and reproducibility across different scanners and processing
pipelines. Future studies could incorporate advanced neuroimaging
biomarkers such as amyloid and tau PET quantification to improve
differentiation between AD and aMCI subtypes. Moreover,
glymphatic dysfunction may be interact with alterations in
metabolic and lipidomic pathways. Integrating multiomic features,
including metabolites and lipids, may offer a promising approach to
improve both mechanistic understanding and diagnostic prediction
(Zhou, 2021).

5 Conclusion

In conclusion, this study integrated ALPS and EPVS metrics
to demonstrate the presence of both functional and structural
glymphatic abnormalities at the aMCI stage. We proposed a
combined assessment framework for glymphatic function and
structure and provided preliminary evidence of its discriminative
value in differentiating AD and aMCI. By leveraging deep learning
techniques to enhance the efficiency and reliability of EPVS
quantification, our findings highlight the potential utility of
glymphatic imaging markers in the early identification of AD.
This approach may contribute to clinical decision-making in the
diagnosis and management of cognitive impairment and further
facilitate the translational application of glymphatic biomarkers.
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