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Introduction: To decode the pathology of Alzheimer’s disease (AD), this

study employs multi-omics approaches and bioinformatics analyses to explore

AD-associated differentially expressed genes (DEGs), dissect the underlying

mechanisms, and thereby facilitate the identification of core genes as well as

the development of targeted therapeutic strategies.

Methods: Six independent AD datasets were collected from the Gene Expression

Omnibus (GEO) database, and data were processed and normalized using the

R software. The evaluation of relationships between differentially expressed

genes (DEGs) and AD encompassed differential expression analysis, expression

quantitative trait loci (eQTL) analysis, and Mendelian randomization (MR)

analysis. Additionally, gene set enrichment analysis (GSEA), immune cell

correlation analysis, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were employed to investigate the

functional roles and pathways of these genes. Machine learning approaches

were applied to identify potential genes from differentially expressed genes

(DEGs) associated with AD. The diagnostic performance of these candidate

genes was assessed using a nomogram and receiver operating characteristic

curves. The expression levels of the identified genes were further validated via

quantitative real-time polymerase chain reaction (qRT-PCR).

Results: Differential gene analysis identified 294 highly expressed genes and 330

lowly expressed genes, and MR analysis identified 10 significantly co-expressed

genes associated with AD, specifically METTL7A, SERPINB6, VASP, ENTPD2,

CXCL1, FIBP, FUCA1, TARBP1, SORCS3, and DMXL2. Noteworthy observations

naive CD4+ T cells in AD, with this distinct from CIBERSORT analysis

included the presence of unique immune cell subset further underscoring

the critical role of immune processes in the pathogenesis and progression

of the disease. METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1,

SORCS3, and DMXL2 were selected for nomogram construction and machine

learning-based assessment of diagnostic value, demonstrating considerable

diagnostic potential. Furthermore, the significance of the identified key genes

was corroborated using both the GEO validation set and qRT-PCR.
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Conclusion: METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, 

SORCS3, and DMXL2 may regulate the progression of AD. These findings 

not only deepen our mechanistic understanding of AD pathology but also 

provide potential candidate genes for the development of targeted therapeutic 

strategies against AD. 

KEYWORDS 

Alzheimer’s disease, microarray data, eQTL analysis, Mendelian randomization, qRT-
PCR 

1 Introduction 

Alzheimer’s disease (AD), a progressive neurodegenerative 
disorder, primarily impairs cognitive functions in older adults, 
manifesting as gradual memory loss, deteriorating thinking 
abilities, and diminished capacity for daily activities (Cairns et al., 
2020; Freyssin et al., 2020). With the accelerating global aging 
trend, AD has emerged as a critical public health challenge. Current 
estimates indicate over 50 million individuals worldwide live with 
AD, a number projected to double by 2050 (GBD 2019 Dementia 
Forecasting Collaborators, 2022). Beyond causing profound 
suering for patients, AD imposes substantial economic burdens 
on families and societies (Jia et al., 2018). Although its exact 
etiology remains unclear, multifactorial mechanisms involving 
genetic susceptibility, environmental influences, and lifestyle 
factors are widely implicated (Zhang et al., 2024). Biochemically, 
AD is characterized by β-amyloid plaque accumulation and 
neurofibrillary tangle formation, pathological hallmarks driving 
neurodegeneration and cognitive decline (John and Reddy, 2021; 
Tzioras et al., 2023). 

Alzheimer’s disease is strongly linked to rare mutations in APP, 
PSEN1, and PSEN2 genes (Zhang et al., 2019), while the APOE 
allele represents the strongest genetic risk factor for sporadic AD 
(Huynh et al., 2017). Genome-wide association studies (GWAS) 
and whole-genome sequencing (WGS) have identified additional 
risk loci for late-onset AD, including TREM2, BIN1, CLU, 
ABCA7, and CR1 (Schupf et al., 2015). A meta-analytic approach 
further pinpointed susceptibility regions such as HLA-DRB5-
HLA-DRB1, PTK2B, and SORL1, underscoring the polygenic 
architecture of AD (Farfel et al., 2016). Neuroinflammation, a 
cardinal pathological feature, involves microglial and astrocytic 
activation (Guo et al., 2020). Soluble oligomeric Aβ (oAβ) 
modulates glial responses through receptors like TREM2, LRP1, 
and TLR4, potentially enhancing phagocytic clearance of oAβ 
(Zhao et al., 2018). Pathological tau species, conversely, trigger 
microglial inflammatory cascades, promoting cytokine release that 
exacerbates tau hyperphosphorylation via feedback mechanisms on 
neuronal signaling (McQuade et al., 2020). 

In this study, we employed MR to investigate correlations 
between eQTL data and AD genome-wide association study 
(GWAS) data. Furthermore, AD-associated genes were precisely 
localized using data from the GEO database. Functional 
characterization of AD-related DEGs was performed via GO 
analysis, KEGG pathway analysis, and GSEA. Cellular immune 
infiltration analysis was applied to explore the association between 

the expression levels of AD-related key genes and infiltrating 
immune cells. Finally, we validated the dierential expression of 
these key genes using machine learning approaches, in vitro cell 
models, and external GEO datasets—findings that collectively 
enhance the reliability of our results. The overarching aim of this 
study was to precisely identify core regulatory genes involved 
in AD pathology and facilitate the development of intervention 
strategies related to AD (Figure 1). 

2 Materials and methods 

2.1 Data collection on Alzheimer’s 
disease 

Gene expression datasets and clinical phenotype data matching 
the search criteria “Alzheimer’s disease,” “human,” and “gene 
expression” were acquired through microarray dataset analysis. 
All gene expression profiles and corresponding platform probe 
annotations are publicly accessible for download from the Gene 
Expression Omnibus (GEO) database1 (Zhu et al., 2020). 

2.2 Identification of differential genes 

Using R software (version 4.3.2), we performed dataset-
specific preprocessing for GSE5281, GSE29378, GSE37263, and 
GSE138260, which involved data reading and initial normalization 
using gene expression matrices and annotation files downloaded 
from the GEO database. After individual preprocessing, the 
datasets were merged to combine 134 normal samples and 
142 Alzheimer’s disease (AD) samples, followed by batch eect 
correction and variance-stabilizing transformation. Dierential 
gene screening was conducted using the “limma” package with 
empirical Bayesian analysis, applying significance thresholds of 
P < 0.05 and absolute log2 fold change (logFC) > 0.585 (Yang 
et al., 2020). The “pheatmap” package was utilized to generate 
visualizations, including volcano plots for dierential expression 
analysis and heatmaps for clustering patterns of significant genes. 
Principal component analysis (PCA) was performed via the 
“prcomp” function to evaluate sample clustering, assess batch 

1 https://www.ncbi.nlm.nih.gov/geo/ 
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FIGURE 1 

Workflow diagram of this study. 

eect mitigation, and visualize key gene expression signatures 
distinguishing AD cases from healthy controls (Li et al., 
2019; Vacchio et al., 2019). This integrated analytical pipeline 
ensured robust data normalization, rigorous statistical testing, and 
comprehensive visualization of molecular markers associated with 
Alzheimer’s disease. 

2.3 GO and KEGG enrichment analysis 

Dierential genes were analyzed by GO functional annotation 
and KEGG pathway enrichment using the “clusterProfiler” R 
software package (Yang-Chun et al., 2020), and the filtering 
criterion was set at P < 0.05 to understand the potential functional 
pathways and pathogenesis (Lu et al., 2020). 

2.4 eQTL analysis of exposure data 

To identify genetic variants associated with gene expression, 
we conducted eQTL analysis using transcriptomic and genotypic 
data from multiple cohorts. Specifically, peripheral blood eQTL 

data comprising 5,311 European individuals were incorporated 
(Westra et al., 2013). The aggregated eQTL dataset utilized in 
this study was obtained from the GWAS Catalog website2 (Cao 
et al., 2022). Employing the R package “TwoSampleMR,” we 
identified single-nucleotide polymorphisms (SNPs) with strong 
statistical associations (P < 5 × 108) to serve as instrumental 
variables. Stringent linkage disequilibrium (LD) parameters were 
applied, setting the LD threshold at r2 < 0.001 and defining an 
aggregation distance of 10,000 kb (Wootton et al., 2020). SNPs 
exhibiting weak trait associations or insuÿcient explanatory power 
for phenotypic variance were excluded through filtering based on 
an F-test value > 10 (Roso et al., 2021), ensuring only robust 
genetic instruments were retained for subsequent analyses. 

2.5 Outcome data set 

The outcome data were sourced from the Genetic Association 
Database (see text footnote 2) within the GWAS Summary 

2 https://gwas.mrcieu.ac.uk/ 
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Dataset (IEU) (Wu et al., 2020). The specific GWAS identifier 
utilized was ebi-a-GCST90027158, which included 39,106 case 
samples and 46,828 control samples from European pedigree 
populations, encompassing a total of 20,921,626 single-nucleotide 
polymorphisms (SNPs). All GWAS summary statistics employed in 
this study are publicly accessible and available for free download. 

2.6 Mendelian randomization analysis 

Mendelian randomization (MR) analysis was conducted 
using the TwoSampleMR software package. To explore causal 
associations between Alzheimer’s disease and dierentially 
expressed genes, we employed inverse variance weighting (IVW), 
MR-Egger, simple mode, weighted median, and weighted mode 
methods, complemented by sensitivity analyses (Chen et al., 
2020). Co-expressed genes—including both upregulated and 
downregulated transcripts—were identified by intersecting 
disease-associated gene sets with dierentially expressed gene 
lists. Subsequently, individual MR analyses were performed 
for each gene in this intersection to determine its causal 
relationship with Alzheimer’s disease. These analyses incorporated 
heterogeneity testing, multiple validity assessments, and leave-one-
out sensitivity analysis to evaluate result robustness and reliability 
(Nie et al., 2020). 

2.7 Immune cell analysis 

Immune cell infiltration profiles in the AD and normal tissue 
samples from the GEO AD dataset were quantified using the 
“LM22” signature matrix and the “CIBERSORT” algorithm in R 
software (Zhu et al., 2019). Statistical significance of dierences 
in immune cell proportions between groups was evaluated with 
1,000 permutations, and a P-value < 0.05 was set as the 
threshold for meaningful results. Visualization of immune cell 
infiltration patterns was accomplished by generating violin plots 
and heatmaps using the “pheatmap” and “ggplot2” packages, 
which clearly displayed the distribution of 22 immune cell 
subsets across samples. For immune correlation analysis, the 
Spearman correlation coeÿcient was calculated to assess the 
associations between infiltrating immune cell subsets using the 
“corrplot” package (Li J. et al., 2025). Meanwhile, the relationship 
between immune cell infiltration levels and the expression of 
immune checkpoint genes was explored through scatter plots 
and linear regression analysis with the “ggpubr” package, and 
statistical significance was determined by adjusting for multiple 
comparisons using the Benjamini-Hochberg method (FDR < 0.05) 
(Wang, 2025). 

2.8 GSEA enrichment analysis 

Single-gene GSEA enrichment analysis is a common method 
used to assess the enrichment of individual genes in a dataset 
(Bourdely et al., 2020). Instead of relying on dierential genes, 
this method takes an enrichment perspective of the dataset by 
considering each gene in the expression matrix, ranking the genes 

according to a specific metric, and then checking whether the genes 
in the dataset are enriched at the top or bottom of the ranked 
list (Cai et al., 2019). Single-gene GSEA enrichment analysis is 
a powerful analytical tool that provides a more comprehensive 
assessment of the enrichment of all genes in a dataset, thus 
providing a deeper understanding of gene expression data (Sande-
Melón et al., 2019). In this study, in order to more comprehensively 
explore the potential regulatory mechanism of each co-expressed 
gene in AD, we employed GSEA (Gene Set Enrichment Analysis) 
enrichment analysis and visualization in R, and selected “C2: KEGG 
gene sets” as the database (Li and Guo, 2020), and then performed 
single gene GSEA enrichment analysis for each co-expressed gene. 
P < 0.05 was considered as significant enrichment. 

2.9 Identifying core genes for AD via 
machine learning 

This study employed three machine learning algorithms— 
random forests (RF), least absolute shrinkage and selection 
operator (LASSO) logistic regression, and support vector machine-
recursive feature elimination (SVM-RFE)—to screen for the 
characteristic genes of AD (Li G. et al., 2025). Specifically, the RF 
algorithm was implemented using the “randomForest” package in R 
software, LASSO logistic regression analysis was conducted via the 
“glmnet” package in R software, and the SVM-RFE algorithm was 
executed with the “e107” package in R software (Engebretsen and 
Bohlin, 2019). AD-related dierentially expressed genes (DEGs) 
were obtained by taking the intersection of the characteristic genes 
identified by the RF, LASSO logistic regression, and SVM-RFE 
algorithms. Furthermore, the eÿcacy of these common AD-related 
DEGs in diagnosing AD was evaluated using the receiver operating 
characteristic (ROC) curve. 

2.10 Cell culture 

SK-N-SH cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM), which was supplemented with 10% fetal 
bovine serum (FBS) and 1% each of penicillin and streptomycin. 
All cell cultures were maintained in a humidified incubator at 
37◦C with 5% CO2 (Goerges et al., 2024). To establish in vitro 
models that mimic distinct pathological features of AD, the SK-
N-SH cells underwent two separate treatment regimens. First, the 
cells were incubated with 20 nmol/L okadaic acid for 48 h to 
simulate AD-related tau pathology (Boban et al., 2019). The second 
regimen involved exposure to 10 µmol/L amyloid-β 1-42 (Aβ1−42) 
oligomers for 24 h to simulate AD-associated Aβ pathology 
(Han et al., 2017). 

2.11 qRT-PCR 

Total RNA was extracted from treated SK-N-SH cells using the 
TRIzol R  Plus RNA Purification Kit (Thermo Fisher, United States, 
REF:12183-555). The purity and concentration of the RNA was 
determined and then reverse transcribed to cDNA using the RNase-
Free DNase Set (Qiagen, Shanghai, China, REF:79254). It was then 
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TABLE 1 Primer sequences used in quantitative real-time polymerase 
chain reaction (qRT-PCR). 

Gene Primer 
direction 

Sequence 

METTL7A Forward GTGCTCTGTGAAGAACCAGGAG 

Reverse GATCCAGGACTTGTTGCCAGAAG 

SERPINB6 Forward AGGGAAACACCGCTGCACAGAT 

Reverse GTGCCAGTCTTGTTCACTTCGG 

VASP Forward CTGGGAGAAGAACAGCACAACC 

Reverse AGGTCCGAGTAATCACTGGAGC 

ENTPD2 Forward GGAGAACGACACAGGCATTGTG 

Reverse CCCCAGAAGGGTTGTCTGCAT 

FIBP Forward CAAGGTGGTAGAGGAAATGCGG 

Reverse CCTGTCTCAAAGCGGTTGTTAGC 

FUCA1 Forward GACTTCGGACCGCAGTTCACTG 

Reverse CCAGTTCCAAGACACAGGACTC 

TARBP1 Forward GATGGTCTTGCTGGCTGTGGAT 

Reverse GCATCTGTCAGTCTTCAGCAAGG 

SORCS3 Forward AGGCAGGAATGGAGACCCACAT 

Reverse CCAGGTCTGATAGTCCTCCTTG 

DMXL2 Forward GCTTTGGCTGATACAGTGGCTAC 

Reverse GGCAGCGATGTCAAAAGGCATG 

β-Actin Forward GATGACCCAGATCATGTTTGAGAC 

Reverse GGAGTCCATCACGATGCCAGT 

TABLE 2 Characteristics of the four datasets. 

GSE ID Sample Tissue Platform 

GSE5281 87 samples 74 

controls 
Brain GPL570-55999 

GSE29378 31 samples 32 

controls 
Brain GPL6947-13512 

GSE37263 8 samples 8 

controls 
Brain GPL5175-3188 

GSE138260 17 samples 19 

controls 
Brain GPL27556-

55246 

processed using the Start-up reagent: SuperScriptIII First-Strand 
Synthesis SuperMix (Thermo Fisher, United States, REF:11752-
050) and Power SYBR R  Green PCR Master Mix (Applied 
Biosystems, United States, REF:4367659). Finally, PCR was 
conducted on the CFX384 instrument (Bio-Rad, United States). 
The β-actin primer pairs was used as the internal control (Wang 
et al., 2020). The primer sequences used are shown in Table 1. 

3 Results 

3.1 GEO datasets processing 

Four Alzheimer’s disease microarray datasets were retrieved 
from the GEO database as experimental datasets. The four datasets 
comprised 142 Alzheimer’s disease patients and 134 healthy 

controls in total. Details of the included datasets are provided in 
Table 2. Using R version 4.3.2, we performed normalization and 
integration of gene expression values across respective datasets 
and mitigated batch eects via principal component analysis 
(PCA). As illustrated in Figure 2A, pronounced batch eects were 
evident among the four Alzheimer’s disease gene datasets prior to 
correction. Following normalization and PCA-based batch eect 
adjustment, all samples within the integrated dataset exhibited 
satisfactory homogeneity, as demonstrated in the post-correction 
PCA analysis shown in Figure 2B. 

3.2 Differential genes identification 

In the analytical results, smaller P-values indicated stronger 
statistical significance for both gene sequencing consistency and 
dierential gene expression. Overall, we identified 294 significantly 
upregulated and 330 significantly downregulated dierentially 
expressed genes (DEGs). Supplementary Table 1 lists detailed 
annotations for these DEGs, including gene symbols, entrez IDs, 
and adjusted P-values. Figures 2C, D display the top 50 upregulated 
and top 50 downregulated DEGs, respectively, ranked by absolute 
fold-change values. 

3.3 Selection of Mendelian 
randomization instrument variables 

Through cross-tabulation analysis, we identified co-expressed 
genes from the intersection of related genes and dierentially 
expressed genes, comprising five up-regulated genes (METTL7A, 
SERPINB6, VASP, ENTPD2, and CXCL1) and five down-
regulated genes (FIBP, FUCA1, TARBP1, SORCS3, and DMXL2), 
as illustrated in Figures 3A, B. To further characterize the 
chromosomal localization of these genes, we generated a 
visualization of the co-expressed gene distribution across the 
genome (Figure 3C). Subsequently, we conducted a MR analysis 
on the 10 genes co-expressed with AD to evaluate the causal 
eects of each gene on the disease. The results indicated that 
all five upregulated co-expressed genes exhibited a significant 
positive causal association with AD in the MR analysis using the 
inverse-variance weighting method. Specifically, five upregulated 
co-expressed genes exhibited significant positive associations with 
Alzheimer’s disease: METTL7A (OR = 1.067; 95% CI: 1.026– 
1.110; P = 0.001), SERPINB6 (OR = 1.022; 95% CI: 1.002–1.043; 
P = 0.033), VASP (OR = 1.046; 95% CI: 1.002–1.092; P = 0.040), 
ENTPD2 (OR = 1.015; 95% CI: 1.015–1.099; P = 0.007), and CXCL1 
(OR = 1.060; 95% CI: 1.019–1.104; P = 0.004). Conversely, all five 
downregulated co-expressed genes showed significant negative 
causal associations with the disease: FIBP (OR = 0.934; 95% CI: 
0.897–0.973; P = 0.001), FUCA1 (OR = 0.943; 95% CI: 0.904– 
0.984; P = 0.007), TARBP1 (OR = 0.920; 95% CI: 0.853–0.993; 
P = 0.033), SORCS3 (OR = 0.909; 95% CI: 0.840–0.982; P = 0.016), 
and DMXL2 (OR = 0.950; 95% CI: 0.913–0.988; P = 0.011). 
Beyond the MR-Egger approach, additional validation analyses 
were conducted employing simple mode, weighted median, 
and weighted mode methodologies. For the five upregulated 
genes, all analytical methods consistently revealed an elevated 
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FIGURE 2 

Batch correction and variance analysis. (A) Before the batch correction. (B) After the batch correction. (C) Volcano plot of differential expression 
genes. (D) Heatmap of differential expression genes. 

risk of Alzheimer’s disease, as evidenced by odds ratios (ORs) 
greater than 1. Conversely, across all applied methods, the five 
downregulated genes consistently indicated a reduced risk of 
Alzheimer’s disease, with ORs consistently below 1 (Figure 4). 
The heterogeneity and pleiotropy tests for co-expressed genes 
yielded non-significant results (all P-values > 0.05), indicating 
no statistical evidence of heterogeneity or pleiotropic eects 
that would necessitate adjustment for these biases. Results from 
the leave-one-out sensitivity analysis demonstrated consistency 
between the eect estimates when each instrumental variable 
was excluded individually and the overall combined eect size, 
confirming the robustness of the analytical framework. 

3.4 Gene sensitivity analysis and 
differential expression verification 

Sensitivity analyses were conducted on 10 key AD genes using 
MR-Egger regression and Cochran’s test. The results indicated 
no heterogeneity or pleiotropy, thus confirming the reliability of 
the findings (Table 3). The analysis of the funnel plot indicated 
that no individual single-nucleotide polymorphism (SNP) aected 
the outcome, implying the absence of directional pleiotropy for 

individual SNP non-violation and bias estimation. The leave-
one-out analysis further confirmed the absence of horizontal 
pleiotropy, thereby demonstrating the robustness and reliability of 
the analytical methods and results (Figure 5). Furthermore, the 
present study examined the variations in expression of 10 pivotal 
genes in AD by utilizing the validation set GSE48350 dataset. The 
findings indicated notable distinctions in the levels of expression 
of these critical genes in AD, thereby validating their dierential 
expression (Figure 6). 

3.5 GO and KEGG enrichment analysis 

After the screening process, we successfully identified 
624 genes associated with AD. To delve deeper into the 
potential functions of these dierentially expressed genes, 
we performed GO and KEGG enrichment analyses. The GO 
enrichment analysis revealed that these genes were significantly 
enriched in biological processes, cellular components, and 
molecular function, including neuronal cell body organization, 
regulation of membrane potential, neuronal cell body, and passive 
transmembrane transporter protein activity (Figure 7A). In 
the KEGG pathway analysis, the dierentially expressed genes 
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FIGURE 3 

Screening and localization of critical genes. (A) Disease upregulated differentially expressed genes (DEGs) are intersected with genes with OR values 
greater than one in the Mendelian randomization (MR) results. (B) Disease downregulated DEGs are intersected with genes with OR values less than 
one in the MR results. (C) Position of disease-critical genes on human chromosomes. 

TABLE 3 Sensitivity analysis of Alzheimer’s disease (AD) critical genes. 

Gene PMR−Egger PMR−Egger. 
Q 

PIVW. Q 

METTL7A 0.724 0.820 0.876 

SERPINB6 0.513 0.299 0.367 

VASP 0.664 0.163 0.239 

ENTPD2 0.857 0.452 0.734 

CXCL1 0.902 0.454 0.581 

FIBP 0.266 0.440 0.335 

FUCA1 0.652 0.078 0.113 

TARBP1 0.940 0.776 0.915 

SORCS3 0.384 0.293 0.286 

DMXL2 0.525 0.996 0.985 

were primarily enriched in Pathways of neurodegeneration-
multiple diseases and the signaling pathways of Alzheimer’s 
disease (Figure 7B). 

3.6 Analysis of immune cell infiltration 
levels in AD and their correlation with 
critical genes 

The CIBERSORT algorithm was employed to characterize 

immune cell profiles and investigate the association between 

Alzheimer’s disease co-expressed genes and immune cell 
infiltration. Figure 8A illustrates the distribution of 22 immune 

cell types across individual samples, depicting their proportional 
composition in each sample. We identified significant dierences 
in specific immune cell subsets, specifically naive CD4+ T cells, 
between AD and healthy controls. Notably, the proportion of naive 

CD4+ T cell phenotypes was significantly elevated in AD samples 
relative to healthy controls (Figure 8B). Correlation analyses with 

22 immune cell types (Figure 8C) revealed distinct associations for 

co-expressed genes: METTL7A exhibited positive correlations with 

naive B cells, resting memory CD4+ T cells, and M2 macrophages, 
while negatively correlating with memory B cells, plasma cells, 
CD8+ T cells, and follicular helper T cells. SERPINB6 showed 

negative associations with plasma cells and eosinophils. VASP 
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FIGURE 4 

Disease critical genes causally associated with Alzheimer’s disease (AD). 

FIGURE 5 

Scatterplot of Mendelian randomization (MR) analysis of the association between Alzheimer’s disease (AD) critical genes and AD. (A) Scatterplot of 
MR analysis of METTL7A. (B) Scatterplot of MR analysis of SERPINB6. (C) Scatterplot of MR analysis of VASP. (D) Scatterplot of MR analysis of 
ENTPD2. (E) Scatterplot of MR analysis of CXCL1. (F) Scatterplot of MR analysis of FIBP. (G) Scatterplot of MR analysis of FUCA1. (H) Scatterplot of MR 
analysis of TARBP1. (I) Scatterplot of MR analysis of SORCS3. (J) Scatterplot of MR analysis of DMXL2. 

was positively linked to naive B cells, resting natural killer (NK) 
cells, and M1 macrophages, but negatively associated with plasma 
cells and follicular helper T cells. ENTPD2 displayed a negative 
correlation with naive CD4+ T cell phenotypes. CXCL1 correlated 
positively with regulatory T cells (Tregs) and M1 macrophages, and 
negatively with resting mast cells. FUCA1 was positively associated 
with M2 macrophages and neutrophils, but negatively correlated 
with M0 macrophages. TARBP1 showed positive associations with 
memory B cells and plasma cells, while negatively correlating 
with Tregs and M1 macrophages. SORCS3 and DMXL2 both 

demonstrated positive correlations with plasma cells. Additionally, 
DMXL2 was positively associated with eosinophils and negatively 
correlated with Tregs and M1 macrophages. 

3.7 GSEA enrichment analysis 

To further explore the potential regulatory mechanisms of co-
expression in AD, we performed single-gene GSEA enrichment 
analysis for each of the ten co-expression genes in the merged 
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FIGURE 6 

Validation of differential expression of disease-related key genes in 
the Gene Expression Omnibus (GEO) validation dataset (GSE48350). 
(Control, the healthy control group; AD, the Alzheimer’s disease 
patient group. *P < 0.05, **P < 0.01, ***P < 0.001). 

dataset of GSE5281, GSE29378, GSE37263, and GSE138260. We 
found that the expression of the ten co-expression genes was 
closely associated with multiple biological pathways. Examples: 
Cell adhesion molecules signaling pathway, Alanine, aspartate 
and glutamate metabolism signaling pathway, Alzheimer disease 
signaling pathway, Citrate cycle (TCA cycle) signaling pathway 
and so on. This again demonstrates that AD progression is a 
complex biological process and that the 10 co-expression genes 
may influence AD development by regulating dierent pathways. 
Among them, we noticed that several immune-related signaling 
pathways were significantly enriched (Figure 9). Therefore, we 
hypothesized that the expression of the co-expression gene may be 
closely associated with the immune response in AD. 

3.8 AD-related DEGs identification and 
verification via machine learning 

The forest plot depicting the 10 AD-related DEGs is presented 
in Figure 3. Using the support vector machine (SVM) algorithm, 

we established that the model attained optimal accuracy with nine 
genes included (Figures 10A, B). We subsequently deployed the 
random forest (RF) algorithm to pinpoint potential diagnostic 
biomarkers (Figures 10C, D). Lastly, implementation of the least 
absolute shrinkage and selection operator (LASSO) regression 
algorithm generated nine candidate biomarkers, as depicted in 
Figures 10E, F. The nomogram indicated the importance of 
each gene in the diagnostic model (Figure 10G). The accuracy 
of the diagnostic model was evaluated using the calibration 
analysis, which showed high accuracy in diagnosing diseases, as 
demonstrated in Figures 10H, I. Furthermore, the area under 
the receiver operating characteristic curve (AUC) for the merged 
dataset (GSE5281, GSE29378, GSE37263, and GSE138260) was 
0.860, indicative of robust diagnostic performance of the model 
for AD (Figure 10J). Finally, the intersection of genes identified 
by the SVM, RF, and LASSO regression analyses was visualized 
using a Venn diagram (Figure 10K). Nine common critical genes— 
METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, 
SORCS3, and DMXL2—were selected for final validation. 

The specific expression levels of these nine common critical 
genes were compared between AD and control groups using 
the Wilcoxon rank sum test, with analyses performed on 
the merged dataset (GSE5281, GSE29378, GSE37263, and 
GSE138260) (Figure 11A). Nine critical genes exhibited statistically 
significant dierences in the merged datasets. Receiver operating 
characteristic curves were then constructed to assess the diagnostic 
specificity and sensitivity of each gene in these datasets. In 
the merged dataset (Figure 11B), METTL7A (AUC = 0.740), 
SERPINB6 (AUC = 0.723), VASP (AUC = 0.723), ENTPD2 
(AUC = 0.714), FIBP (AUC = 0.814), FUCA1 (AUC = 0.765), 
TARBP1 (AUC = 0.732), SORCS3 (AUC = 0.712), and DMXL2 
(AUC = 0.696) all showed significant diagnostic value. In the 
GSE36980 dataset (Figure 11C), METTL7A (AUC = 0.622), 
SERPINB6 (AUC = 0.779), VASP (AUC = 0.653), ENTPD2 
(AUC = 0.785), FIBP (AUC = 0.567), FUCA1 (AUC = 0.574), 
TARBP1 (AUC = 0.613), SORCS3 (AUC = 0.789), and DMXL2 
(AUC = 0.700) exhibited diagnostic value. 

Moreover, we validated the mRNA expression of METTL7A, 
SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, SORCS3, 

FIGURE 7 

Functional enrichment analysis of critical genes. (A) Gene Ontology (GO) enrichment analysis of Alzheimer’s disease (AD) critical genes. (B) Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of AD critical genes. 
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FIGURE 8 

Analysis of immune cell infiltration in Alzheimer’s disease (AD). (A) Stacked bar plot depicting the proportional distribution of immune cell subsets 
between AD and control groups. (B) Box-and-whisker plots illustrating intergroup comparisons of 22 immune cell subsets between AD and control 
groups. (C) Heatmap displaying the correlation matrix between the 22 immune cell subsets and their co-expressed genes. P < 0.05 indicates 
statistical significance. 
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FIGURE 9 

Gene set enrichment analysis (GSEA) of disease critical genes in Alzheimer’s disease (AD). (A) GSEA enrichment results of METTL7A high expression 
group. (B) GSEA enrichment results of SERPINB6 high expression group. (C) GSEA enrichment results of VASP high expression group. (D) GSEA 
enrichment results of ENTPD2 high expression group. (E) GSEA enrichment results of CXCL1 high expression group. (F) GSEA enrichment results of 
FIBP high expression group. (G) GSEA enrichment results of FUCA1 high expression group. (H) GSEA enrichment results of TARBP1 high expression 
group. (I) GSEA enrichment results of SORCS3 high expression group. (J) GSEA enrichment results of DMXL2 high expression group. 

FIGURE 10 

Identification and validation of diagnostic biomarkers based on critical genes using machine learning. (A,B) Number of genes associated with the 
lowest error rate and highest accuracy in the support vector machine (SVM) model. (C,D) Random forest analysis identifying critical genes and 
extracting potential diagnostic biomarkers. (E,F) Biomarker screening through least absolute shrinkage and selection operator (LASSO) regression 
analysis. (G–J) Visualization of the diagnostic nomogram (G) and evaluation of diagnostic performance (H–J). (K) Venn diagram illustrating nine 
candidate diagnostic genes identified by the SVM, LASSO, and random forest algorithms. 

and DMXL2 in AD-associated tau and Aβ pathology model. The 
results revealed significantly increased mRNA levels of METTL7A, 
SERPINB6, VASP, and ENTPD2, whereas FIBP, FUCA1, TARBP1, 
SORCS3, and DMXL2 exhibited reduced mRNA expression in 
the AD-associated tau and Aβ pathology model (Figures 12, 13). 
Collectively, these findings indicate that all nine candidate genes 
could serve as potential diagnostic markers for AD, and may be 
involved in AD-associated tau and Aβ pathogenesis. 

4 Discussion 

Alzheimer’s disease (AD) is a progressive, irreversible, and 
currently incurable neurodegenerative disorder. Most patients 

develop obvious clinical symptoms at the middle-late stage, with 
an average disease course of 5–10 years after diagnosis, and 
only about 10% of patients survive for more than 10 years. 
Consequently, AD ranks among the leading causes of death in 
the elderly population globally (De Luca et al., 2019; Zhang 
et al., 2020). Aging is the most significant risk factor for AD, 
with the prevalence increasing exponentially after the age of 
65, accompanied by cumulative damage to neuronal structure 
and function (Mann, 1985). AD is characterized by typical 
pathological features, primarily including extracellular β-amyloid 
(Aβ) plaque deposition, intracellular neurofibrillary tangles (NFTs) 
formed by hyperphosphorylated tau protein, and extensive loss 
of neurons and synapses in the hippocampus and cerebral cortex 
(Leake, 2023). 
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FIGURE 11 

Expression of nine candidate diagnostic genes and validation of diagnostic specificity and sensitivity. (A) Expression of candidate diagnostic genes in 
the merged Alzheimer’s disease AD dataset. (B) Receiver operating characteristic (ROC) curves of individual candidate genes in the merged dataset. 
(C) ROC curves of individual candidate genes in the GSE36980 test dataset. This level of significance is much more stringent than *P < 0.05, 
**P < 0.01, and ***P < 0.0001. 

FIGURE 12 

The mRNA expression of METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, SORCS3, and DMXL2 in the Alzheimer’s disease (AD)-associated 
tau pathology. (Control, the normal cell group; Model 1, the OA-induced cellular AD-like model). 

In this study, we employed MR analysis combined with 

eQTL data to investigate the causal relationship between 

DEGs and AD-associated tau and Aβ pathology, based on 

six independent AD datasets from the GEO database. The 

MR analysis identified 10 genes significantly co-expressed 

with AD, namely METTL7A, SERPINB6, VASP, ENTPD2, 
CXCL1, FIBP, FUCA1, TARBP1, SORCS3, and DMXL2. In 

this study, we employed MR analysis combined with eQTL 

data to investigate the causal relationship between DEGs and 

AD, based on six independent AD datasets from the GEO 
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FIGURE 13 

The mRNA expression of METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, SORCS3, and DMXL2 in the Alzheimer’s disease (AD)-associated 
Aβ pathology. (Control, the normal cell group; Model 2, the Aβ1−42 -induced cellular AD-like model). 

database. The MR analysis identified 10 genes significantly 
co-expressed with AD, namely METTL7A, SERPINB6, VASP, 
ENTPD2, CXCL1, FIBP, FUCA1, TARBP1, SORCS3, and 
DMXL2. By integrating these MR-identified genes with DEGs 
from AD transcriptomic data, we further filtered out nine 
core genes (excluding CXCL1) that showed may be associated 
with AD-associated tau and Aβ pathology. Additionally, we 
conducted GO/KEGG enrichment analysis and immune cell 
correlation analysis for these critical genes—uncovering the 
unique presence of naive CD4+ T cells in AD and emphasizing 
immune processes in AD progression—and validated the genes’ 
expression and diagnostic value via qRT-PCR and nomogram 
construction. This finding has the potential to oer new insights 
into investigating the mechanisms underlying AD-associated tau 
and Aβ pathology and advancing the development of targeted 
therapeutic strategies against AD. 

The pathological mechanisms underpinning AD—a leading 
cause of age-related neurodegeneration—remain only partially 
elucidated, leaving a critical gap in our capacity to unravel the 
disease’s progressive trajectory (Dong et al., 2022; Metaxas and 
Kempf, 2016). The genes under investigation are involved in 

multiple aspects of amyloid-beta (Aβ) metabolism, tau protein 
regulation, and other associated pathological processes—including 
neuroinflammation, synaptic impairment, and neuronal survival. 
Collectively, these regulatory roles drive the progression of AD. 

Neuroinflammation acts as a pivotal amplifier in AD 
pathogenesis, underpinning progressive neuronal dysfunction. 
Brain-resident microglia (innate immune cells for homeostasis) are 
overactivated by stimuli like amyloid-β (Aβ) deposition, secreting 
pro-inflammatory mediators. This exacerbates neuronal damage 
and Aβ aggregation, forming a deleterious feedforward loop in 
AD (Heneka et al., 2025). SERPINB6 (a serine protease inhibitor) 
suppresses pro-inflammatory proteases, reducing cytokine release 
and protecting synapses (Strik et al., 2004). Clinically, SERPINB6 
expression in AD patients’ frontal cortex is significantly higher than 
in healthy controls (Zattoni et al., 2022). FIBP modulates fibroblast 
growth factor 2 (FGF2)—an anti-inflammatory/neuroprotective 
factor that inhibits microglial activation—via direct binding. 
Hippocampal FIBP mRNA levels are reduced in AD patients 
vs. controls (Berger et al., 2020). In AD mouse models, 
FIBP overexpression restores FGF2 activity, reduces cerebral Aβ 
deposition, and improves spatial memory (Li Y. et al., 2025). 
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Impaired metabolism and clearance of amyloid-β (Aβ) 
constitute the initiating event in the pathogenesis of AD. SORCS3 
modulates the intracellular traÿcking of the amyloid precursor 
protein (APP), thereby constraining Aβ production (Eggert et al., 
2018). This reduction in SORCS3 activity disrupts the normal 
traÿcking of APP, leading to increased cleavage by β-secretase 
and a consequent elevation in Aβ production (Haass et al., 
2012). Genome-wide association studies (GWAS) have identified 
a significant association between the rs10884402 polymorphism 
in the SORCS3 gene and heightened AD risk (Kamran et al., 
2023; Ruganzu et al., 2021). FUCA1, by contrast, functions as 
a key glycosidase localized to lysosomes, where it mediates the 
degradation of fucose residues on glycoproteins and glycolipids. In 
AD, reduced FUCA1 activity has been observed, a deficit closely 
associated with abnormal lysosomal acidification—a hallmark 
of lysosomal dysfunction in the disease. This impairment in 
FUCA1 activity drives the accumulation of glycosylation waste 
products within lysosomes, which not only impedes the lysosomal 
degradation of Aβ but also compromises the phagocytic capacity 
of microglia toward Aβ (Huang et al., 2022; Quick et al., 
2023). Mechanistic insights from cell-based experiments further 
demonstrate that supplementation of FUCA1 in microglia restores 
lysosomal function and enhances the eÿciency of Aβ phagocytosis 
(Rao et al., 2025). 

Hyperphosphorylation of tau protein is tightly linked to 
synaptic damage in AD, with the VASP and TARBP1 genes 
emerging as key regulators of this pathological process—each 
contributing through distinct molecular mechanisms. VASP 
(vasodilator-stimulated phosphoprotein), an actin cytoskeleton-
binding protein, interacts with microtubule-associated proteins to 
modulate microtubule dynamics and maintain structural integrity. 
VASP participates in the release of neurotransmitters at the 
presynaptic membrane, supporting normal synaptic function 
(Venkatramani and Panda, 2019). In the AD brain, VASP 
expression is significantly upregulated—an eect potentially driven 
by heightened oxidative stress, a well-documented contributor 
to AD pathogenesis (Ionescu-Tucker and Cotman, 2021; Sinclair 
et al., 2015). Overexpression of VASP in tau transgenic mice 
reduces the formation of neurofibrillary tangles (NFTs)—the 
pathological aggregates of hyperphosphorylated tau—and restores 
neuronal microtubule integrity (Shim et al., 2007). TARBP1 
(TAR RNA-binding protein 1), by contrast, functions as a core 
component of the RNA-induced silencing complex (RISC), where 
it regulates the maturation and functional activity of microRNAs. 
In AD, reduced TARBP1 expression disrupts miR-124 maturation, 
leading to a marked upregulation of GSK-3β. This increase 
in GSK-3β activity exacerbates tau hyperphosphorylation and, 
concurrently, impairs miRNA-mediated regulation of synaptic 
genes—disrupting synaptic architecture and function (Ghafouri-
Fard et al., 2021). Mechanistic validation from cell-based 
experiments further confirms TARBP1’s role: overexpression of 
TARBP1 restores miR-124 activity, lowers GSK-3β expression, and 
reduces tau phosphorylation (Shi et al., 2024). 

Neuronal survival deficits and metabolic abnormalities 
represent additional critical hallmarks of AD pathology, with 
the ENTPD2, DMXL2, and METTL7A genes emerging as 
key mediators of these processes—each governing distinct 
molecular pathways that collectively contribute to AD progression. 
ENTPD2 (ectonucleoside triphosphate diphosphohydrolase 2), an 

exonucleotidase localized to the extracellular space, plays a pivotal 
role in regulating extracellular adenosine triphosphate (ATP) 
levels—a key modulator of neuroinflammation and neuronal 
survival. In the AD brain, ENTPD2 activity is increased, disrupting 
this protective cascade. The resultant elevation in extracellular 
ATP levels—driven in part by widespread neuronal death in 
AD—activates P2X7 receptors on microglia, triggering excessive 
microglial activation and exacerbating neuroinflammation (John 
and Reddy, 2021). DMXL2 (DMX-like 2), a Golgi apparatus-
associated protein, regulates two critical processes for neuronal 
health: the traÿcking of neurotransmitter synthesis enzymes 
and the maintenance of neuronal calcium homeostasis via 
modulation of calmodulin signaling. Reduced DMXL2 impairs 
neurotransmitter synthesis, leading to deficiencies in dopamine 
and acetylcholine that drive synaptic dysfunction. Concurrently, 
it disrupts calcium homeostasis, increasing the risk of neuronal 
apoptosis (Costain et al., 2019). METTL7A (methyltransferase-
like 7A), a protein with putative methyltransferase activity, 
contributes to neuronal metabolic homeostasis through two 
distinct mechanisms: regulation of lipid metabolism and 
modulation of RNA methylation (Lee et al., 2021). In AD, single-
cell sequencing studies reveal elevated METTL7A expression in 
microglia from AD patients—suggesting a potential compensatory 
response to AD-related metabolic stress (Mathys et al., 2019). 
Collectively, these genes demonstrate significant value as potential 
biomarkers and therapeutic targets in AD research. Future studies 
should focus on elucidating the specific molecular regulatory 
mechanisms of these genes, as well as systematically investigating 
their synergistic or antagonistic interactions in the pathological 
progression of AD. This will establish a robust theoretical and 
experimental foundation for the development of innovative 
diagnostic technologies and precision treatment strategies. 

It should be noted that the in vitro model used in this 
study has certain limitations. Firstly, the SK-N-SH cells used 
are a neuroblastoma cell line whose cellular phenotype and 
physiological functions dier significantly from those of primary 
neurons in vivo, making it diÿcult to fully mimic the pathological 
response characteristics of normal neurons. Secondly, the model 
fails to encompass the complex pathological components of AD 
progression, such as the neuroinflammatory microenvironment 
and synaptic damage. This limits the clinical translational value 
of the findings. 

Therefore, subsequent studies should optimize experimental 
systems further. This could be achieved by integrating primary 
neuronal cultures and brain organoid models derived from 
AD patients, which can mimic the brain’s three-dimensional 
microenvironment and cellular heterogeneity, as well as AD animal 
models, such as APP/PS1 transgenic mice. This would enable 
researchers to validate the pathological functions and regulatory 
mechanisms of core genes across multiple levels, from cells and 
organoids to whole animals. This multidimensional approach will 
provide more robust experimental evidence for their eventual 
application in the clinical diagnosis and treatment of AD. 

5 Conclusion 

In summary, this study has clarified the regulatory roles of 
METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, 
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SORCS3, and DMXL2 in AD progression. Combined with 
functional enrichment analysis, it is inferred that these genes 
participate in the AD pathogenesis by regulating key pathological 
processes such as Aβ metabolism and tau phosphorylation. This 
fills a research gap regarding the roles of these genes in the 
molecular regulatory network of AD and deepens the systematic 
understanding of AD pathological mechanisms. On the other 
hand, the identified core genes provide potential biomarkers for 
developing highly specific and sensitive AD diagnostic reagents, 
while also oering key targets for AD-specific therapeutic drug 
development. This holds promise for overcoming the current 
challenges of delayed AD diagnosis and limited treatment options, 
laying the foundation for precision medicine in AD. 
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neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high 
molecular weight tau-immunoreactive protein species. J. Neurosci. Methods 319, 
60–68. doi: 10.1016/j.jneumeth.2018.09.030 

Bourdely, P., Anselmi, G., Vaivode, K., Ramos, R. N., Missolo-Koussou, Y., Hidalgo, 
S., et al. (2020). Transcriptional and Functional Analysis of CD1c(+) Human Dendritic 
Cells Identifies a CD163(+) Subset Priming CD8(+)CD103(+) T Cells. Immunity 53, 
335–352.e8. doi: 10.1016/j.immuni.2020.06.002. 

Cai, H., Li, J., Zhang, Y., Liao, Y., Zhu, Y., Wang, C., et al. (2019). LDHA 
promotes oral squamous cell carcinoma progression through facilitating glycolysis 
and epithelial-mesenchymal transition. Front. Oncol. 9:1446. doi: 10.3389/fonc.2019. 
01446 

Cairns, D. M., Rouleau, N., Parker, R. N., Walsh, K. G., Gehrke, L., and Kaplan, D. L. 
(2020). A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. 
Sci. Adv. 6:eaay8828. doi: 10.1126/sciadv.aay8828 

Cao, X., Wang, X., Zhang, S., and Sha, Q. (2022). Gene-based association tests using 
GWAS summary statistics and incorporating eQTL. Sci. Rep. 12:3553. doi: 10.1038/ 
s41598-022-07465-0 

Chen, X., Kong, J., Diao, X., Cai, J., Zheng, J., Xie, W., et al. (2020). Depression and 
prostate cancer risk: A Mendelian randomization study. Cancer Med. 9, 9160–9167. 
doi: 10.1002/cam4.3493 

Costain, G., Walker, S., Argiropoulos, B., Baribeau, D. A., Bassett, A. S., Boot, E., 
et al. (2019). Rare copy number variations aecting the synaptic gene DMXL2 in 
neurodevelopmental disorders. J. Neurodev. Disord. 11:3. doi: 10.1186/s11689-019-
9263-3 

De Luca, V., Spalletta, G., Souza, R. P., Gra, A., Bastos-Rodrigues, L., and Camargos 
Bicalho, M. A. (2019). Definition of late onset Alzheimer’s disease and anticipation 
eect of genome-wide significant risk variants: Pilot study of the APOE e4 allele. 
Neuropsychobiology 77, 8–12. doi: 10.1159/000490739 

Dong, Y., Yu, H., Li, X., Bian, K., Zheng, Y., Dai, M., et al. (2022). 
Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and 
inflammation in Alzheimer’s disease. J. Neuroinflamm. 19:205. doi: 10.1186/s12974-
022-02567-y 

Frontiers in Aging Neuroscience 15 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1621153
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1621153/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1621153/full#supplementary-material
https://doi.org/10.1016/j.molmed.2020.03.010
https://doi.org/10.1016/j.jneumeth.2018.09.030
https://doi.org/10.1016/j.immuni.2020.06.002.
https://doi.org/10.3389/fonc.2019.01446
https://doi.org/10.3389/fonc.2019.01446
https://doi.org/10.1126/sciadv.aay8828
https://doi.org/10.1038/s41598-022-07465-0
https://doi.org/10.1038/s41598-022-07465-0
https://doi.org/10.1002/cam4.3493
https://doi.org/10.1186/s11689-019-9263-3
https://doi.org/10.1186/s11689-019-9263-3
https://doi.org/10.1159/000490739
https://doi.org/10.1186/s12974-022-02567-y
https://doi.org/10.1186/s12974-022-02567-y
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1621153 October 7, 2025 Time: 17:19 # 16

Zhang et al. 10.3389/fnagi.2025.1621153 

Eggert, S., Thomas, C., Kins, S., and Hermey, G. (2018). Traÿcking in Alzheimer’s 
disease: Modulation of APP transport and processing by the transmembrane proteins 
LRP1. SorLA, SorCS1c, sortilin, and calsyntenin. Mol. Neurobiol. 55, 5809–5829. doi: 
10.1007/s12035-017-0806-x 

Engebretsen, S., and Bohlin, J. (2019). Statistical predictions with glmnet. Clin. 
Epigenet. 11:123. doi: 10.1186/s13148-019-0730-1 

Farfel, J. M., Yu, L., Buchman, A. S., Schneider, J. A., De Jager, P. L., and Bennett, 
D. A. (2016). Relation of genomic variants for Alzheimer disease dementia to common 
neuropathologies. Neurology 87, 489–496. doi: 10.1212/wnl.0000000000002909 

Freyssin, A., Page, G., Fauconneau, B., and Rioux Bilan, A. (2020). Natural stilbenes 
eects in animal models of Alzheimer’s disease. Neural. Regen. Res. 15, 843–849. 
doi: 10.4103/1673-5374.268970 

GBD 2019 Dementia Forecasting Collaborators (2022). Estimation of the global 
prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for 
the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125. doi: 
10.1016/s2468-2667(21)00249-8 

Ghafouri-Fard, S., Shoorei, H., Bahroudi, Z., Abak, A., Majidpoor, J., and Taheri, M. 
(2021). An update on the role of miR-124 in the pathogenesis of human disorders. 
Biomed. Pharmacotherapy 135:111198. doi: 10.1016/j.biopha.2020.111198 

Goerges, G., Disse, P., Peischard, S., Ritter, N., Brenker, C., Seebohm, G., et al. (2024). 
Evaluation of SK-N-SH cells as a model for NMDA receptor induced toxicity. Cell 
Physiol. Biochem. 58, 431–444. doi: 10.33594/000000722 

Guo, T., Zhang, D., Zeng, Y., Huang, T. Y., Xu, H., and Zhao, Y. (2020). Molecular 
and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. 
Neurodegener. 15:40. doi: 10.1186/s13024-020-00391-7 

Haass, C., Kaether, C., Thinakaran, G., and Sisodia, S. (2012). Traÿcking and 
proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2:a006270. doi: 10. 
1101/cshperspect.a006270 

Han, X. J., Hu, Y. Y., Yang, Z. J., Jiang, L. P., Shi, S. L., Li, Y. R., et al. (2017). 
Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol. Med. Rep. 
16, 4521–4528. doi: 10.3892/mmr.2017.7203 

Heneka, M. T., van der Flier, W. M., Jessen, F., Hoozemanns, J., Thal, D. R., Boche, 
D., et al. (2025). Neuroinflammation in Alzheimer disease. Nat. Rev. Immunol. 25, 
321–352. doi: 10.1038/s41577-024-01104-7 

Huang, S., Wang, Y. J., and Guo, J. (2022). Biofluid biomarkers of Alzheimer’s 
disease: Progress, problems, and perspectives. Neurosci. Bull. 38, 677–691. doi: 10. 
1007/s12264-022-00836-7 

Huynh, T. V., Liao, F., Francis, C. M., Robinson, G. O., Serrano, J. R., Jiang, H., et al. 
(2017). Age-Dependent eects of apoE reduction using antisense oligonucleotides in a 
model of β-amyloidosis. Neuron 96, 1013–1023.e4. doi: 10.1016/j.neuron.2017.11.014. 

Ionescu-Tucker, A., and Cotman, C. W. (2021). Emerging roles of oxidative stress 
in brain aging and Alzheimer’s disease. Neurobiol. Aging 107, 86–95. doi: 10.1016/j. 
neurobiolaging.2021.07.014 

Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Qin, W., et al. (2018). The cost of Alzheimer’s 
disease in China and re-estimation of costs worldwide. Alzheimers Dement. 14, 
483–491. doi: 10.1016/j.jalz.2017.12.006 

John, A., and Reddy, P. H. (2021). Synaptic basis of Alzheimer’s disease: Focus 
on synaptic amyloid beta, P-tau and mitochondria. Ageing Res. Rev. 65:101208. doi: 
10.1016/j.arr.2020.101208 

Kamran, M., Laighneach, A., Bibi, F., Donohoe, G., Ahmed, N., Rehman, A. U., 
et al. (2023). Independent associated SNPs at SORCS3 and its protein interactors for 
multiple brain-related disorders and traits. Genes 14:482. doi: 10.3390/genes14020482 

Leake, I. (2023). Oligomeric tau might spread trans-synaptically in Alzheimer 
disease. Nat. Rev. Neurosci. 24, 393–393. doi: 10.1038/s41583-023-00714-9 

Lee, E., Kim, J.-Y., Kim, T.-K., Park, S.-Y., and Im, G.-I. (2021). Methyltransferase-
like protein 7A (METTL7A) promotes cell survival and osteogenic dierentiation 
under metabolic stress. Cell Death Discovery 7:154. doi: 10.1038/s41420-021-00555-4 

Li, G., Zhou, Q., Xie, M., Zhao, B., Zhang, K., Luo, Y., et al. (2025). Identification 
of ageing-associated gene signatures in heart failure with preserved ejection fraction 
by integrated bioinformatics analysis and machine learning. Genes Dis. 12:101478. 
doi: 10.1016/j.gendis.2024.101478 

Li, J., Wang, X., Lin, Y., Li, Z., and Xiong, W. (2025). Integrative eQTL and 
Mendelian randomization analysis reveals key genetic markers in mesothelioma. 
Respirat. Res. 26:140. doi: 10.1186/s12931-025-03219-4 

Li, N., van Unen, V., Guo, N., Abdelaal, T., Somarakis, A., Eggermont, J., et al. 
(2019). Early-Life compartmentalization of immune cells in human fetal tissues 
revealed by high-dimensional mass cytometry. Front. Immunol. 10:1932. doi: 10.3389/ 
fimmu.2019.01932 

Li, Y., and Guo, D. (2020). Identification of novel lncRNA markers in glioblastoma 
multiforme and their clinical significance: A study based on multiple sequencing data. 
Onco Targets Ther. 13, 1087–1098. doi: 10.2147/ott.S235951 

Li, Y., Yang, C., Liu, X., Shu, J., Zhao, N., Sun, Z., et al. (2025). Potential therapeutic 
targets for Alzheimer’s disease: Fibroblast growth factors and their regulation of 
ferroptosis, pyroptosis and autophagy. Neuroscience 573, 42–51. doi: 10.1016/j. 
neuroscience.2025.03.009 

Lu, P. J., Wang, G., Cai, X. D., Zhang, P., and Wang, H. K. (2020). Sequencing 
analysis of matrix metalloproteinase 7-induced genetic changes in Schwann cells. 
Neural. Regen. Res. 15, 2116–2122. doi: 10.4103/1673-5374.282263 

Mann, D. M. (1985). The neuropathology of Alzheimer’s disease: A review with 
pathogenetic, aetiological and therapeutic considerations. Mech. Ageing Dev. 31, 
213–255. doi: 10.1016/0047-6374(85)90092-2 

Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., 
et al. (2019). Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 
332–337. doi: 10.1038/s41586-019-1195-2 

McQuade, A., Kang, Y. J., Hasselmann, J., Jairaman, A., Sotelo, A., Coburn, M., 
et al. (2020). Gene expression and functional deficits underlie TREM2-knockout 
microglia responses in human models of Alzheimer’s disease. Nat. Commun. 11:5370. 
doi: 10.1038/s41467-020-19227-5 

Metaxas, A., and Kempf, S. J. (2016). Neurofibrillary tangles in Alzheimer’s disease: 
Elucidation of the molecular mechanism by immunohistochemistry and tau protein 
phospho-proteomics. Neural. Regen. Res. 11, 1579–1581. doi: 10.4103/1673-5374. 
193234 

Nie, R. C., Yuan, S. Q., Wang, Y., Zou, X. B., Chen, S., Li, S. M., et al. (2020). 
Surrogate endpoints for overall survival in anti-programmed death-1 and anti-
programmed death ligand 1 trials of advanced melanoma. Ther. Adv. Med. Oncol. 
12:1758835920929583. doi: 10.1177/1758835920929583 

Quick, J. D., Silva, C., Wong, J. H., Lim, K. L., Reynolds, R., Barron, A. M., et al. 
(2023). Lysosomal acidification dysfunction in microglia: An emerging pathogenic 
mechanism of neuroinflammation and neurodegeneration. J. Neuroinflamm. 20:185. 
doi: 10.1186/s12974-023-02866-y 

Rao, C., Semrau, S., and Fossati, V. (2025). Decoding microglial functions in 
Alzheimer’s disease: Insights from human models. Trends Immunol. 46, 310–323. 
doi: 10.1016/j.it.2025.02.011 

Roso, D. B., Clarke, T. K., Adams, M. J., McIntosh, A. M., Davey Smith, G., 
Jung, J., et al. (2021). Educational attainment impacts drinking behaviors and risk 
for alcohol dependence: Results from a two-sample Mendelian randomization study 
with ∼780,000 participants. Mol. Psychiatry 26, 1119–1132. doi: 10.1038/s41380-019-
0535-9 

Ruganzu, J. B., Zheng, Q., Wu, X., He, Y., Peng, X., Jin, H., et al. (2021). 
TREM2 overexpression rescues cognitive deficits in APP/PS1 transgenic mice by 
reducing neuroinflammation via the JAK/STAT/SOCS signaling pathway. Exp. Neurol. 
336:113506. doi: 10.1016/j.expneurol.2020.113506 

Sande-Melón, M., Marques, I. J., Galardi-Castilla, M., Langa, X., Pérez-López, M., 
Botos, M. A., et al. (2019). Adult sox10(+) cardiomyocytes contribute to myocardial 
regeneration in the zebrafish. Cell Rep. 29, 1041–1054.e5. doi: 10.1016/j.celrep.2019. 
09.041. 

Schupf, N., Lee, A., Park, N., Dang, L. H., Pang, D., Yale, A., et al. (2015). Candidate 
genes for Alzheimer’s disease are associated with individual dierences in plasma 
levels of beta amyloid peptides in adults with Down syndrome. Neurobiol. Aging 
36:2907.e1–10. doi: 10.1016/j.neurobiolaging.2015.06.020. 

Shi, X., Zhang, Y., Wang, Y., Wang, J., Gao, Y., Wang, R., et al. (2024). The tRNA 
Gm18 methyltransferase TARBP1 promotes hepatocellular carcinoma progression 
via metabolic reprogramming of glutamine. Cell Death Dier. 31, 1219–1234. doi: 
10.1038/s41418-024-01323-4 

Shim, S. B., Lim, H. J., Chae, K. R., Kim, C. K., Hwang, D. Y., Jee, S. W., et al. (2007). 
Tau overexpression in transgenic mice induces glycogen synthase kinase 3β and 
β-catenin phosphorylation. Neuroscience 146, 730–740. doi: 10.1016/j.neuroscience. 
2007.01.041 

Sinclair, L. I., Tayler, H. M., and Love, S. (2015). Synaptic protein levels altered in 
vascular dementia. Neuropathol. Appl. Neurobiol. 41, 533–543. doi: 10.1111/nan.12215 

Strik, M. C. M., Wolbink, A., Wouters, D., Bladergroen, B. A., Verlaan, A. R., van 
Houdt, I. S., et al. (2004). Intracellular serpin SERPINB6 (PI6) is abundantly expressed 
by human mast cells and forms complexes with β-tryptase monomers. Blood 103, 
2710–2717. doi: 10.1182/blood-2003-08-2981 

Tzioras, M., McGeachan, R. I., Durrant, C. S., and Spires-Jones, T. L. (2023). Synaptic 
degeneration in Alzheimer disease. Nat. Rev. Neurol. 19, 19–38. doi: 10.1038/s41582-
022-00749-z 

Vacchio, M. S., Ciucci, T., Gao, Y., Watanabe, M., Balmaceno-Criss, M., McGinty, 
M. T., et al. (2019). A thpok-directed transcriptional circuitry promotes Bcl6 and Maf 
expression to orchestrate T follicular helper dierentiation. Immunity 51, 465–478.e6. 
doi: 10.1016/j.immuni.2019.06.023. 

Venkatramani, A., and Panda, D. (2019). Regulation of neuronal microtubule 
dynamics by tau: Implications for tauopathies. Int. J. Biol. Macromol. 133, 473–483. 
doi: 10.1016/j.ijbiomac.2019.04.120 

Wang, S. (2025). The relationship between immune cell infiltration and necroptosis 
gene expression in sepsis: An analysis using single-cell transcriptomic data. Front. Cell 
Infect. Microbiol. 15:1618438. doi: 10.3389/fcimb.2025.1618438 

Wang, Z., Shang, J., Li, Z., Li, H., Zhang, C., He, K., et al. (2020). PIK3CA is regulated 
by CUX1, promotes cell growth and metastasis in bladder cancer via activating 
epithelial-mesenchymal transition. Front. Oncol. 10:536072. doi: 10.3389/fonc.2020. 
536072 

Frontiers in Aging Neuroscience 16 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1621153
https://doi.org/10.1007/s12035-017-0806-x
https://doi.org/10.1007/s12035-017-0806-x
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1212/wnl.0000000000002909
https://doi.org/10.4103/1673-5374.268970
https://doi.org/10.1016/s2468-2667(21)00249-8
https://doi.org/10.1016/s2468-2667(21)00249-8
https://doi.org/10.1016/j.biopha.2020.111198
https://doi.org/10.33594/000000722
https://doi.org/10.1186/s13024-020-00391-7
https://doi.org/10.1101/cshperspect.a006270
https://doi.org/10.1101/cshperspect.a006270
https://doi.org/10.3892/mmr.2017.7203
https://doi.org/10.1038/s41577-024-01104-7
https://doi.org/10.1007/s12264-022-00836-7
https://doi.org/10.1007/s12264-022-00836-7
https://doi.org/10.1016/j.neuron.2017.11.014.
https://doi.org/10.1016/j.neurobiolaging.2021.07.014
https://doi.org/10.1016/j.neurobiolaging.2021.07.014
https://doi.org/10.1016/j.jalz.2017.12.006
https://doi.org/10.1016/j.arr.2020.101208
https://doi.org/10.1016/j.arr.2020.101208
https://doi.org/10.3390/genes14020482
https://doi.org/10.1038/s41583-023-00714-9
https://doi.org/10.1038/s41420-021-00555-4
https://doi.org/10.1016/j.gendis.2024.101478
https://doi.org/10.1186/s12931-025-03219-4
https://doi.org/10.3389/fimmu.2019.01932
https://doi.org/10.3389/fimmu.2019.01932
https://doi.org/10.2147/ott.S235951
https://doi.org/10.1016/j.neuroscience.2025.03.009
https://doi.org/10.1016/j.neuroscience.2025.03.009
https://doi.org/10.4103/1673-5374.282263
https://doi.org/10.1016/0047-6374(85)90092-2
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1038/s41467-020-19227-5
https://doi.org/10.4103/1673-5374.193234
https://doi.org/10.4103/1673-5374.193234
https://doi.org/10.1177/1758835920929583
https://doi.org/10.1186/s12974-023-02866-y
https://doi.org/10.1016/j.it.2025.02.011
https://doi.org/10.1038/s41380-019-0535-9
https://doi.org/10.1038/s41380-019-0535-9
https://doi.org/10.1016/j.expneurol.2020.113506
https://doi.org/10.1016/j.celrep.2019.09.041.
https://doi.org/10.1016/j.celrep.2019.09.041.
https://doi.org/10.1016/j.neurobiolaging.2015.06.020.
https://doi.org/10.1038/s41418-024-01323-4
https://doi.org/10.1038/s41418-024-01323-4
https://doi.org/10.1016/j.neuroscience.2007.01.041
https://doi.org/10.1016/j.neuroscience.2007.01.041
https://doi.org/10.1111/nan.12215
https://doi.org/10.1182/blood-2003-08-2981
https://doi.org/10.1038/s41582-022-00749-z
https://doi.org/10.1038/s41582-022-00749-z
https://doi.org/10.1016/j.immuni.2019.06.023.
https://doi.org/10.1016/j.ijbiomac.2019.04.120
https://doi.org/10.3389/fcimb.2025.1618438
https://doi.org/10.3389/fonc.2020.536072
https://doi.org/10.3389/fonc.2020.536072
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1621153 October 7, 2025 Time: 17:19 # 17

Zhang et al. 10.3389/fnagi.2025.1621153 

Westra, H. J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., 
et al. (2013). Systematic identification of trans eQTLs as putative drivers of known 
disease associations. Nat. Genet. 45, 1238–1243. doi: 10.1038/ng.2756 

Wootton, R. E., Richmond, R. C., Stuijfzand, B. G., Lawn, R. B., Sallis, H. M., Taylor, 
G. M. J., et al. (2020). Evidence for causal eects of lifetime smoking on risk for 
depression and schizophrenia: A Mendelian randomisation study. Psychol. Med. 50, 
2435–2443. doi: 10.1017/s0033291719002678 

Wu, F., Huang, Y., Hu, J., and Shao, Z. (2020). Mendelian randomization study 
of inflammatory bowel disease and bone mineral density. BMC Med. 18:312. doi: 
10.1186/s12916-020-01778-5 

Yang, L., Zhao, H., Yin, X., Liang, H., Zheng, Z., Shen, Q., et al. (2020). Exploring 
cisplatin resistance in ovarian cancer through integrated bioinformatics approach and 
overcoming chemoresistance with sanguinarine. Am. J. Transl. Res. 12, 923–939. 

Yang-Chun, F., Sen-Yu, W., Yuan, Z., and Yan-Chun, H. (2020). Genome-Wide 
profiling of human papillomavirus DNA integration into human genome and its 
influence on PD-L1 expression in Chinese uygur cervical cancer women. J. Immunol. 
Res. 2020:6284960. doi: 10.1155/2020/6284960 

Zattoni, M., Mearelli, M., Vanni, S., Colini Baldeschi, A., Tran, T. H., Ferracin, C., 
et al. (2022). Serpin signatures in prion and Alzheimer’s diseases. Mol. Neurobiol. 59, 
3778–3799. doi: 10.1007/s12035-022-02817-3 

Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J., and Chen, L. (2024). 
Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug 
development strategies. Signal Transduct Target Ther. 9:211. doi: 10.1038/s41392-024-
01911-3 

Zhang, M., Dilliott, A. A., Khallaf, R., Robinson, J. F., Hegele, R. A., Comishen, 
M., et al. (2019). Genetic and epigenetic study of an Alzheimer’s disease family with 
monozygotic triplets. Brain 142, 3375–3381. doi: 10.1093/brain/awz289 

Zhang, Y. Q., Wang, C. F., Xu, G., Zhao, Q. H., Xie, X. Y., Cui, H. L., et al. (2020). 
Mortality of Alzheimer’s disease patients: A 10-Year follow-up pilot study in shanghai. 
Can. J. Neurol. Sci. 47, 226–230. doi: 10.1017/cjn.2019.333 

Zhao, Y., Wu, X., Li, X., Jiang, L. L., Gui, X., Liu, Y., et al. (2018). TREM2 is a 
receptor for β-Amyloid that mediates microglial function. Neuron 97, 1023–1031.e7. 
doi: 10.1016/j.neuron.2018.01.031. 

Zhu, C., Zhang, X., Kourkoumelis, N., Shen, Y., and Huang, W. (2020). Integrated 
analysis of DEAD-Box helicase 56: A potential oncogene in osteosarcoma. Front. 
Bioeng. Biotechnol. 8:588. doi: 10.3389/fbioe.2020.00588 

Zhu, C., Zou, C., Guan, G., Guo, Q., Yan, Z., Liu, T., et al. (2019). Development 
and validation of an interferon signature predicting prognosis and treatment response 
for glioblastoma. Oncoimmunology 8:e1621677. doi: 10.1080/2162402x.2019.162 
1677 

Frontiers in Aging Neuroscience 17 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1621153
https://doi.org/10.1038/ng.2756
https://doi.org/10.1017/s0033291719002678
https://doi.org/10.1186/s12916-020-01778-5
https://doi.org/10.1186/s12916-020-01778-5
https://doi.org/10.1155/2020/6284960
https://doi.org/10.1007/s12035-022-02817-3
https://doi.org/10.1038/s41392-024-01911-3
https://doi.org/10.1038/s41392-024-01911-3
https://doi.org/10.1093/brain/awz289
https://doi.org/10.1017/cjn.2019.333
https://doi.org/10.1016/j.neuron.2018.01.031.
https://doi.org/10.3389/fbioe.2020.00588
https://doi.org/10.1080/2162402x.2019.1621677
https://doi.org/10.1080/2162402x.2019.1621677
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Deciphering Alzheimer's disease transcriptomics: exploration and validation of core genes in tau and Aβ pathological models toward novel therapeutic targets
	1 Introduction
	2 Materials and methods
	2.1 Data collection on Alzheimer's disease
	2.2 Identification of differential genes
	2.3 GO and KEGG enrichment analysis
	2.4 eQTL analysis of exposure data
	2.5 Outcome data set
	2.6 Mendelian randomization analysis
	2.7 Immune cell analysis
	2.8 GSEA enrichment analysis
	2.9 Identifying core genes for AD via machine learning
	2.10 Cell culture
	2.11 qRT-PCR

	3 Results
	3.1 GEO datasets processing
	3.2 Differential genes identification
	3.3 Selection of Mendelian randomization instrument variables
	3.4 Gene sensitivity analysis and differential expression verification
	3.5 GO and KEGG enrichment analysis
	3.6 Analysis of immune cell infiltration levels in AD and their correlation with critical genes
	3.7 GSEA enrichment analysis
	3.8 AD-related DEGs identification and verification via machine learning

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




