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transcriptomics: exploration and
validation of core genes in tau
and AB pathological models
toward novel therapeutic targets
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Fang Lut*

!Institute of Clinical Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences,
Beijing, China, *Beijing University of Chinese Medicine, Beijing, China

Introduction: To decode the pathology of Alzheimer's disease (AD), this
study employs multi-omics approaches and bioinformatics analyses to explore
AD-associated differentially expressed genes (DEGs), dissect the underlying
mechanisms, and thereby facilitate the identification of core genes as well as
the development of targeted therapeutic strategies.

Methods: Six independent AD datasets were collected from the Gene Expression
Omnibus (GEO) database, and data were processed and normalized using the
R software. The evaluation of relationships between differentially expressed
genes (DEGs) and AD encompassed differential expression analysis, expression
quantitative trait loci (eQTL) analysis, and Mendelian randomization (MR)
analysis. Additionally, gene set enrichment analysis (GSEA), immune cell
correlation analysis, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were employed to investigate the
functional roles and pathways of these genes. Machine learning approaches
were applied to identify potential genes from differentially expressed genes
(DEGs) associated with AD. The diagnostic performance of these candidate
genes was assessed using a nomogram and receiver operating characteristic
curves. The expression levels of the identified genes were further validated via
quantitative real-time polymerase chain reaction (QRT-PCR).

Results: Differential gene analysis identified 294 highly expressed genes and 330
lowly expressed genes, and MR analysis identified 10 significantly co-expressed
genes associated with AD, specifically METTL7A, SERPINB6, VASP, ENTPD2,
CXCL1, FIBP, FUCAL, TARBP1, SORCS3, and DMXL2. Noteworthy observations
naive CD4% T cells in AD, with this distinct from CIBERSORT analysis
included the presence of uniqgue immune cell subset further underscoring
the critical role of immune processes in the pathogenesis and progression
of the disease. METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCALl, TARBPI,
SORCS3, and DMXL2 were selected for nomogram construction and machine
learning-based assessment of diagnostic value, demonstrating considerable
diagnostic potential. Furthermore, the significance of the identified key genes
was corroborated using both the GEO validation set and gRT-PCR.
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Conclusion: METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1l, TARBP1,
SORCS3, and DMXL2 may regulate the progression of AD. These findings
not only deepen our mechanistic understanding of AD pathology but also
provide potential candidate genes for the development of targeted therapeutic
strategies against AD.

KEYWORDS

Alzheimer's disease, microarray data, eQTL analysis, Mendelian randomization, gRT-

PCR

1 Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disorder, primarily impairs cognitive functions in older adults,
manifesting as gradual memory loss, deteriorating thinking
abilities, and diminished capacity for daily activities (Cairns et al,
2020; Freyssin et al., 2020). With the accelerating global aging
trend, AD has emerged as a critical public health challenge. Current
estimates indicate over 50 million individuals worldwide live with
AD, a number projected to double by 2050 (GBD 2019 Dementia
Forecasting Collaborators, 2022). Beyond causing profound
suffering for patients, AD imposes substantial economic burdens
on families and societies (Jia et al., 2018). Although its exact
etiology remains unclear, multifactorial mechanisms involving
genetic susceptibility, environmental influences, and lifestyle
factors are widely implicated (Zhang et al., 2024). Biochemically,
AD is characterized by B-amyloid plaque accumulation and
neurofibrillary tangle formation, pathological hallmarks driving
neurodegeneration and cognitive decline (John and Reddy, 2021;
Tzioras et al., 2023).

Alzheimer’s disease is strongly linked to rare mutations in APP,
PSEN1, and PSEN2 genes (Zhang et al., 2019), while the APOE
allele represents the strongest genetic risk factor for sporadic AD
(Huynh et al., 2017). Genome-wide association studies (GWAS)
and whole-genome sequencing (WGS) have identified additional
risk loci for late-onset AD, including TREM2, BIN1, CLU,
ABCA7, and CR1 (Schupf et al., 2015). A meta-analytic approach
further pinpointed susceptibility regions such as HLA-DRB5-
HLA-DRB1, PTK2B, and SORLI, underscoring the polygenic
architecture of AD (Farfel et al, 2016). Neuroinflammation, a
cardinal pathological feature, involves microglial and astrocytic
activation (Guo et al, 2020). Soluble oligomeric AP (0AP)
modulates glial responses through receptors like TREM2, LRP1,
and TLR4, potentially enhancing phagocytic clearance of 0AB
(Zhao et al., 2018). Pathological tau species, conversely, trigger
microglial inflammatory cascades, promoting cytokine release that
exacerbates tau hyperphosphorylation via feedback mechanisms on
neuronal signaling (McQuade et al., 2020).

In this study, we employed MR to investigate correlations
between eQTL data and AD genome-wide association study
(GWAS) data. Furthermore, AD-associated genes were precisely
localized using data from the GEO database. Functional
characterization of AD-related DEGs was performed via GO
analysis, KEGG pathway analysis, and GSEA. Cellular immune
infiltration analysis was applied to explore the association between
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the expression levels of AD-related key genes and infiltrating
immune cells. Finally, we validated the differential expression of
these key genes using machine learning approaches, in vitro cell
models, and external GEO datasets—findings that collectively
enhance the reliability of our results. The overarching aim of this
study was to precisely identify core regulatory genes involved
in AD pathology and facilitate the development of intervention
strategies related to AD (Figure 1).

2 Materials and methods

2.1 Data collection on Alzheimer's
disease

Gene expression datasets and clinical phenotype data matching
the search criteria “Alzheimer’s disease; “human,” and “gene
expression” were acquired through microarray dataset analysis.
All gene expression profiles and corresponding platform probe
annotations are publicly accessible for download from the Gene
Expression Omnibus (GEO) database! (Zhu et al., 2020).

2.2 ldentification of differential genes

Using R software (version 4.3.2), we performed dataset-
specific preprocessing for GSE5281, GSE29378, GSE37263, and
GSE138260, which involved data reading and initial normalization
using gene expression matrices and annotation files downloaded
from the GEO database. After individual preprocessing, the
datasets were merged to combine 134 normal samples and
142 Alzheimer’s disease (AD) samples, followed by batch effect
correction and variance-stabilizing transformation. Differential
gene screening was conducted using the “limma” package with
empirical Bayesian analysis, applying significance thresholds of
P < 0.05 and absolute log2 fold change (logFC) > 0.585 (Yang
et al., 2020). The “pheatmap” package was utilized to generate
visualizations, including volcano plots for differential expression
analysis and heatmaps for clustering patterns of significant genes.
Principal component analysis (PCA) was performed via the
“prcomp” function to evaluate sample clustering, assess batch

1 https://www.ncbi.nlm.nih.gov/geo/
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Workflow diagram of this study

effect mitigation, and visualize key gene expression signatures
distinguishing AD cases from healthy controls (Li et al,
2019; Vacchio et al, 2019). This integrated analytical pipeline
ensured robust data normalization, rigorous statistical testing, and
comprehensive visualization of molecular markers associated with

Alzheimer’s disease.

2.3 GO and KEGG enrichment analysis

Differential genes were analyzed by GO functional annotation
and KEGG pathway enrichment using the “clusterProfiler” R
software package (Yang-Chun et al, 2020), and the filtering
criterion was set at P < 0.05 to understand the potential functional
pathways and pathogenesis (Lu et al., 2020).

2.4 eQTL analysis of exposure data

To identify genetic variants associated with gene expression,
we conducted eQTL analysis using transcriptomic and genotypic
data from multiple cohorts. Specifically, peripheral blood eQTL
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data comprising 5,311 European individuals were incorporated
(Westra et al,, 2013). The aggregated eQTL dataset utilized in
this study was obtained from the GWAS Catalog website? (Cao
et al, 2022). Employing the R package “TwoSampleMR; we
identified single-nucleotide polymorphisms (SNPs) with strong
statistical associations (P < 5 x 10%) to serve as instrumental
variables. Stringent linkage disequilibrium (LD) parameters were
applied, setting the LD threshold at r* < 0.001 and defining an
aggregation distance of 10,000 kb (Wootton et al., 2020). SNPs
exhibiting weak trait associations or insufficient explanatory power
for phenotypic variance were excluded through filtering based on
an F-test value > 10 (Rosoff et al., 2021), ensuring only robust
genetic instruments were retained for subsequent analyses.

2.5 Outcome data set

The outcome data were sourced from the Genetic Association
Database (see text footnote 2) within the GWAS Summary

2 https://gwas.mrcieu.ac.uk/
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Dataset (IEU) (Wu et al, 2020). The specific GWAS identifier
utilized was ebi-a-GCST90027158, which included 39,106 case
samples and 46,828 control samples from European pedigree
populations, encompassing a total of 20,921,626 single-nucleotide
polymorphisms (SNPs). All GWAS summary statistics employed in
this study are publicly accessible and available for free download.

2.6 Mendelian randomization analysis

Mendelian randomization (MR) analysis was conducted
using the TwoSampleMR software package. To explore causal
associations between Alzheimer’s disease and differentially
expressed genes, we employed inverse variance weighting (IVW),
MR-Egger, simple mode, weighted median, and weighted mode
methods, complemented by sensitivity analyses (Chen et al,
2020). Co-expressed genes—including both upregulated and
identified by
disease-associated gene sets with differentially expressed gene

downregulated  transcripts—were intersecting
lists. Subsequently, individual MR analyses were performed
for each gene in this intersection to determine its causal
relationship with Alzheimer’s disease. These analyses incorporated
heterogeneity testing, multiple validity assessments, and leave-one-
out sensitivity analysis to evaluate result robustness and reliability
(Nie et al., 2020).

2.7 Immune cell analysis

Immune cell infiltration profiles in the AD and normal tissue
samples from the GEO AD dataset were quantified using the
“LM22” signature matrix and the “CIBERSORT” algorithm in R
software (Zhu et al., 2019). Statistical significance of differences
in immune cell proportions between groups was evaluated with
1,000 permutations, and a P-value < 0.05 was set as the
threshold for meaningful results. Visualization of immune cell
infiltration patterns was accomplished by generating violin plots
and heatmaps using the “pheatmap” and “ggplot2” packages,
which clearly displayed the distribution of 22 immune cell
subsets across samples. For immune correlation analysis, the
Spearman correlation coefficient was calculated to assess the
associations between infiltrating immune cell subsets using the
“corrplot” package (Li J. et al., 2025). Meanwhile, the relationship
between immune cell infiltration levels and the expression of
immune checkpoint genes was explored through scatter plots
and linear regression analysis with the “ggpubr” package, and
statistical significance was determined by adjusting for multiple
comparisons using the Benjamini-Hochberg method (FDR < 0.05)
(Wang, 2025).

2.8 GSEA enrichment analysis

Single-gene GSEA enrichment analysis is a common method
used to assess the enrichment of individual genes in a dataset
(Bourdely et al., 2020). Instead of relying on differential genes,
this method takes an enrichment perspective of the dataset by
considering each gene in the expression matrix, ranking the genes

Frontiers in Aging Neuroscience

10.3389/fnagi.2025.1621153

according to a specific metric, and then checking whether the genes
in the dataset are enriched at the top or bottom of the ranked
list (Cai et al,, 2019). Single-gene GSEA enrichment analysis is
a powerful analytical tool that provides a more comprehensive
assessment of the enrichment of all genes in a dataset, thus
providing a deeper understanding of gene expression data (Sande-
Melén et al., 2019). In this study, in order to more comprehensively
explore the potential regulatory mechanism of each co-expressed
gene in AD, we employed GSEA (Gene Set Enrichment Analysis)
enrichment analysis and visualization in R, and selected “C2: KEGG
gene sets” as the database (Li and Guo, 2020), and then performed
single gene GSEA enrichment analysis for each co-expressed gene.
P < 0.05 was considered as significant enrichment.

2.9 Identifying core genes for AD via
machine learning

This study employed three machine learning algorithms—
random forests (RF), least absolute shrinkage and selection
operator (LASSO) logistic regression, and support vector machine-
recursive feature elimination (SVM-RFE)—to screen for the
characteristic genes of AD (Li G. et al,, 2025). Specifically, the RF
algorithm was implemented using the “randomForest” package in R
software, LASSO logistic regression analysis was conducted via the
“glmnet” package in R software, and the SVM-RFE algorithm was
executed with the “e107” package in R software (Engebretsen and
Bohlin, 2019). AD-related differentially expressed genes (DEGs)
were obtained by taking the intersection of the characteristic genes
identified by the RE, LASSO logistic regression, and SVM-RFE
algorithms. Furthermore, the efficacy of these common AD-related
DEGs in diagnosing AD was evaluated using the receiver operating
characteristic (ROC) curve.

2.10 Cell culture

SK-N-SH cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM), which was supplemented with 10% fetal
bovine serum (FBS) and 1% each of penicillin and streptomycin.
All cell cultures were maintained in a humidified incubator at
37°C with 5% CO, (Goerges et al., 2024). To establish in vitro
models that mimic distinct pathological features of AD, the SK-
N-SH cells underwent two separate treatment regimens. First, the
cells were incubated with 20 nmol/L okadaic acid for 48 h to
simulate AD-related tau pathology (Boban et al., 2019). The second
regimen involved exposure to 10 pmol/L amyloid-p 1-42 (ABi—42)
oligomers for 24 h to simulate AD-associated AP pathology
(Han et al., 2017).

2.11 qRT-PCR

Total RNA was extracted from treated SK-N-SH cells using the
TRIzol® Plus RNA Purification Kit (Thermo Fisher, United States,
REF:12183-555). The purity and concentration of the RNA was
determined and then reverse transcribed to cDNA using the RNase-
Free DNase Set (Qiagen, Shanghai, China, REF:79254). It was then
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TABLE 1 Primer sequences used in quantitative real-time polymerase
chain reaction (qQRT-PCR).

Gene Primer Sequence
direction

METTL7A Forward GTGCTCTGTGAAGAACCAGGAG
Reverse GATCCAGGACTTGTTGCCAGAAG
SERPINB6 Forward AGGGAAACACCGCTGCACAGAT
Reverse GTGCCAGTCTTGTTCACTTCGG
VASP Forward CTGGGAGAAGAACAGCACAACC
Reverse AGGTCCGAGTAATCACTGGAGC
ENTPD2 Forward GGAGAACGACACAGGCATTGTG
Reverse CCCCAGAAGGGTTGTCTGCAT
FIBP Forward CAAGGTGGTAGAGGAAATGCGG
Reverse CCTGTCTCAAAGCGGTTGTTAGC
FUCA1 Forward GACTTCGGACCGCAGTTCACTG
Reverse CCAGTTCCAAGACACAGGACTC
TARBP1 Forward GATGGTCTTGCTGGCTGTGGAT
Reverse GCATCTGTCAGTCTTCAGCAAGG
SORCS3 Forward AGGCAGGAATGGAGACCCACAT
Reverse CCAGGTCTGATAGTCCTCCTTG
DMXL2 Forward GCTTTGGCTGATACAGTGGCTAC
Reverse GGCAGCGATGTCAAAAGGCATG
B-Actin Forward GATGACCCAGATCATGTTTGAGAC
Reverse GGAGTCCATCACGATGCCAGT

TABLE 2 Characteristics of the four datasets.

GSE5281 87 samples 74 Brain GPL570-55999
controls

GSE29378 31 samples 32 Brain GPL6947-13512
controls

GSE37263 8 samples 8 Brain GPL5175-3188
controls

GSE138260 17 samples 19 Brain GPL27556-
controls 55246

processed using the Start-up reagent: SuperScriptIII First-Strand
Synthesis SuperMix (Thermo Fisher, United States, REF:11752-
050) and Power SYBR® Green PCR Master Mix (Applied
Biosystems, United States, REF:4367659). Finally, PCR was
conducted on the CFX384 instrument (Bio-Rad, United States).
The B-actin primer pairs was used as the internal control (Wang
etal,, 2020). The primer sequences used are shown in Table 1.

3 Results

3.1 GEO datasets processing

Four Alzheimer’s disease microarray datasets were retrieved
from the GEO database as experimental datasets. The four datasets
comprised 142 Alzheimer’s disease patients and 134 healthy
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controls in total. Details of the included datasets are provided in
Table 2. Using R version 4.3.2, we performed normalization and
integration of gene expression values across respective datasets
and mitigated batch effects via principal component analysis
(PCA). As illustrated in Figure 2A, pronounced batch effects were
evident among the four Alzheimer’s disease gene datasets prior to
correction. Following normalization and PCA-based batch effect
adjustment, all samples within the integrated dataset exhibited
satisfactory homogeneity, as demonstrated in the post-correction
PCA analysis shown in Figure 2B.

3.2 Differential genes identification

In the analytical results, smaller P-values indicated stronger
statistical significance for both gene sequencing consistency and
differential gene expression. Overall, we identified 294 significantly
upregulated and 330 significantly downregulated differentially
expressed genes (DEGs). Supplementary Table 1 lists detailed
annotations for these DEGs, including gene symbols, entrez IDs,
and adjusted P-values. Figures 2C, D display the top 50 upregulated
and top 50 downregulated DEGs, respectively, ranked by absolute
fold-change values.

3.3 Selection of Mendelian
randomization instrument variables

Through cross-tabulation analysis, we identified co-expressed
genes from the intersection of related genes and differentially
expressed genes, comprising five up-regulated genes (METTL7A,
SERPINB6, VASP, ENTPD2, and CXCL1) and five down-
regulated genes (FIBP, FUCA1, TARBPI, SORCS3, and DMXL2),
as illustrated in Figures 3A, B. To further characterize the
chromosomal localization of these genes, we generated a
visualization of the co-expressed gene distribution across the
genome (Figure 3C). Subsequently, we conducted a MR analysis
on the 10 genes co-expressed with AD to evaluate the causal
effects of each gene on the disease. The results indicated that
all five upregulated co-expressed genes exhibited a significant
positive causal association with AD in the MR analysis using the
inverse-variance weighting method. Specifically, five upregulated
co-expressed genes exhibited significant positive associations with
Alzheimer’s disease: METTL7A (OR = 1.067; 95% CI: 1.026—
1.110; P = 0.001), SERPINB6 (OR = 1.022; 95% CI: 1.002-1.043;
P =0.033), VASP (OR = 1.046; 95% CI: 1.002-1.092; P = 0.040),
ENTPD2 (OR = 1.015; 95% CI: 1.015-1.099; P = 0.007), and CXCL1
(OR = 1.060; 95% CI: 1.019-1.104; P = 0.004). Conversely, all five
downregulated co-expressed genes showed significant negative
causal associations with the disease: FIBP (OR = 0.934; 95% CI:
0.897-0.973; P = 0.001), FUCA1 (OR = 0.943; 95% CI: 0.904-
0.984; P = 0.007), TARBP1 (OR = 0.920; 95% CI: 0.853-0.993;
P =0.033), SORCS3 (OR = 0.909; 95% CI: 0.840-0.982; P = 0.016),
and DMXL2 (OR = 0.950; 95% CI: 0.913-0.988; P = 0.011).
Beyond the MR-Egger approach, additional validation analyses
were conducted employing simple mode, weighted median,
and weighted mode methodologies. For the five upregulated
genes, all analytical methods consistently revealed an elevated
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risk of Alzheimer’s disease, as evidenced by odds ratios (ORs)
greater than 1. Conversely, across all applied methods, the five
downregulated genes consistently indicated a reduced risk of
Alzheimer’s disease, with ORs consistently below 1 (Figure 4).
The heterogeneity and pleiotropy tests for co-expressed genes
yielded non-significant results (all P-values > 0.05), indicating
no statistical evidence of heterogeneity or pleiotropic effects
that would necessitate adjustment for these biases. Results from
the leave-one-out sensitivity analysis demonstrated consistency
between the effect estimates when each instrumental variable
was excluded individually and the overall combined effect size,
confirming the robustness of the analytical framework.

3.4 Gene sensitivity analysis and
differential expression verification

Sensitivity analyses were conducted on 10 key AD genes using
MR-Egger regression and Cochran’s test. The results indicated
no heterogeneity or pleiotropy, thus confirming the reliability of
the findings (Table 3). The analysis of the funnel plot indicated
that no individual single-nucleotide polymorphism (SNP) affected
the outcome, implying the absence of directional pleiotropy for
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individual SNP non-violation and bias estimation. The leave-
one-out analysis further confirmed the absence of horizontal
pleiotropy, thereby demonstrating the robustness and reliability of
the analytical methods and results (Figure 5). Furthermore, the
present study examined the variations in expression of 10 pivotal
genes in AD by utilizing the validation set GSE48350 dataset. The
findings indicated notable distinctions in the levels of expression
of these critical genes in AD, thereby validating their differential
expression (Figure 6).

3.5 GO and KEGG enrichment analysis

After the screening process, we successfully identified
624 genes associated with AD. To delve deeper into the
potential functions of these differentially expressed genes,
we performed GO and KEGG enrichment analyses. The GO
enrichment analysis revealed that these genes were significantly
enriched in biological processes, cellular components, and
molecular function, including neuronal cell body organization,
regulation of membrane potential, neuronal cell body, and passive
transmembrane transporter protein activity (Figure 7A). In
the KEGG pathway analysis, the differentially expressed genes
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FIGURE 3
Screening and localization of critical genes. (A) Disease upregulated differentially expressed genes (DEGs) are intersected with genes with OR values
greater than one in the Mendelian randomization (MR) results. (B) Disease downregulated DEGs are intersected with genes with OR values less than
one in the MR results. (C) Position of disease-critical genes on human chromosomes.

TABLE 3 Sensitivity analysis of Alzheimer's disease (AD) critical genes.

Gene PMR—-Egger | PMR—Egger. PIVW. Q
(@]
METTL7A 0.724 0.820 0.876
SERPINB6 0.513 0.299 0.367
VASP 0.664 0.163 0.239
ENTPD2 0.857 0.452 0.734
CXCL1 0.902 0.454 0.581
FIBP 0.266 0.440 0335
FUCA1 0.652 0.078 0.113
TARBP1 0.940 0.776 0915
SORCS3 0.384 0.293 0.286
DMXL2 0.525 0.996 0.985

were primarily enriched in Pathways of neurodegeneration-
multiple diseases and the signaling pathways of Alzheimer’s
disease (Figure 7B).
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3.6 Analysis of immune cell infiltration
levels in AD and their correlation with
critical genes

The CIBERSORT algorithm was employed to characterize
immune cell profiles and investigate the association between
Alzheimer’s disease co-expressed genes and immune cell
infiltration. Figure 8A illustrates the distribution of 22 immune
cell types across individual samples, depicting their proportional
composition in each sample. We identified significant differences
in specific immune cell subsets, specifically naive CD4" T cells,
between AD and healthy controls. Notably, the proportion of naive
CDA4™ T cell phenotypes was significantly elevated in AD samples
relative to healthy controls (Figure 8B). Correlation analyses with
22 immune cell types (Figure 8C) revealed distinct associations for
co-expressed genes: METTL7A exhibited positive correlations with
naive B cells, resting memory CD4™ T cells, and M2 macrophages,
while negatively correlating with memory B cells, plasma cells,
CD8T T cells, and follicular helper T cells. SERPINB6 showed

negative associations with plasma cells and eosinophils. VASP
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exposure nsnp method pval OR(95% CI)
CXCL1 7 Weighted median 0.033 o 1.052 (1.004 to 1.102)
7 Inverse variance weighted 0.004 r—o-c 1.060 (1.019 to 1.104)
DMXL2 6 Weighted median 0.009 v-o-a 0.946 (0.907 to 0.986)
6 Inverse variance weighted 0.011 l-o-u 0.950 (0.913 to 0.988)
ENTPD2 < Weighted median 0.010 l-o-u 1.057 (1.013 to 1.102)
3 Inverse variance weighted 0.007 r—o-c 1.056 (1.015 to 1.099)
FIBP 5 Weighted median 0.004 o, 0.940 (0.902 to 0.981)
5 Inverse variance weighted <0.001 - 0.934 (0.897 to 0.973)
FUCA1 6 Weighted median 0.006 o 0.946 (0.909 to 0.984)
6 Inverse variance weighted 0.007 '-0-' 0.943 (0.904 to 0.984)
METTL7A 3 Weighted median 0.002 o 1.067 (1.024 to 1.111)
3 Inverse variance weighted 0.001 o 1.067 (1.026 to 1.110)
SERPINB6 4 Weighted median 0.017 [ 1.026 (1.005 to 1.047)
4 Inverse variance weighted 0.033 bt 1.022 (1.002 to 1.043)
SORCS3 5] Weighted median 0.153 —— 0.941 (0.865 to 1.023)
5 Inverse variance weighted 0.016 '—H 0.909 (0.840 to 0.982)
TARBP1 4 Weighted median 0.145 -—0—1 0.937 (0.859 to 1.023)
4 Inverse variance weighted 0.033 r—o—! 0.920 (0.853 to 0.993)
VASP 5) Weighted median 0.078 i-O-i 1.037 (0.996 to 1.079)
5 Inverse variance weighted 0.040 '-0-‘ 1.046 (1.002 to 1.092)
0!80!9 4 1}1 1‘.2
FIGURE 4

Disease critical genes causally associated with Alzheimer's disease (AD).

FIGURE 5
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Scatterplot of Mendelian randomization (MR) analysis of the association between Alzheimer’s disease (AD) critical genes and AD. (A) Scatterplot of
MR analysis of METTL7A. (B) Scatterplot of MR analysis of SERPINB6. (C) Scatterplot of MR analysis of VASP. (D) Scatterplot of MR analysis of
ENTPD2. (E) Scatterplot of MR analysis of CXCLL. (F) Scatterplot of MR analysis of FIBP. (G) Scatterplot of MR analysis of FUCAL. (H) Scatterplot of MR
analysis of TARBPL. () Scatterplot of MR analysis of SORCS3. (J) Scatterplot of MR analysis of DMXL2.

was positively linked to naive B cells, resting natural killer (NK)
cells, and M1 macrophages, but negatively associated with plasma
cells and follicular helper T cells. ENTPD2 displayed a negative
correlation with naive CD4™ T cell phenotypes. CXCL1 correlated
positively with regulatory T cells (Tregs) and M1 macrophages, and
negatively with resting mast cells. FUCA1 was positively associated
with M2 macrophages and neutrophils, but negatively correlated
with MO macrophages. TARBP1 showed positive associations with
memory B cells and plasma cells, while negatively correlating
with Tregs and M1 macrophages. SORCS3 and DMXL2 both
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demonstrated positive correlations with plasma cells. Additionally,
DMXL2 was positively associated with eosinophils and negatively
correlated with Tregs and M1 macrophages.

3.7 GSEA enrichment analysis

To further explore the potential regulatory mechanisms of co-
expression in AD, we performed single-gene GSEA enrichment
analysis for each of the ten co-expression genes in the merged
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Validation of differential expression of disease-related key genes in
the Gene Expression Omnibus (GEO) validation dataset (GSE48350).
(Control, the healthy control group; AD, the Alzheimer's disease
patient group. *P < 0.05, **P < 0.01, ***P < 0.001).

dataset of GSE5281, GSE29378, GSE37263, and GSE138260. We
found that the expression of the ten co-expression genes was
closely associated with multiple biological pathways. Examples:
Cell adhesion molecules signaling pathway, Alanine, aspartate
and glutamate metabolism signaling pathway, Alzheimer disease
signaling pathway, Citrate cycle (TCA cycle) signaling pathway
and so on. This again demonstrates that AD progression is a
complex biological process and that the 10 co-expression genes
may influence AD development by regulating different pathways.
Among them, we noticed that several immune-related signaling
pathways were significantly enriched (Figure 9). Therefore, we
hypothesized that the expression of the co-expression gene may be
closely associated with the immune response in AD.

3.8 AD-related DEGs identification and
verification via machine learning

The forest plot depicting the 10 AD-related DEGs is presented
in Figure 3. Using the support vector machine (SVM) algorithm,

10.3389/fnagi.2025.1621153

we established that the model attained optimal accuracy with nine
genes included (Figures 10A, B). We subsequently deployed the
random forest (RF) algorithm to pinpoint potential diagnostic
biomarkers (Figures 10C, D). Lastly, implementation of the least
absolute shrinkage and selection operator (LASSO) regression
algorithm generated nine candidate biomarkers, as depicted in
Figures 10E, F. The nomogram indicated the importance of
each gene in the diagnostic model (Figure 10G). The accuracy
of the diagnostic model was evaluated using the calibration
analysis, which showed high accuracy in diagnosing diseases, as
demonstrated in Figures 10H, I. Furthermore, the area under
the receiver operating characteristic curve (AUC) for the merged
dataset (GSE5281, GSE29378, GSE37263, and GSE138260) was
0.860, indicative of robust diagnostic performance of the model
for AD (Figure 10]). Finally, the intersection of genes identified
by the SVM, RE and LASSO regression analyses was visualized
using a Venn diagram (Figure 10K). Nine common critical genes—
METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBPI,
SORCS3, and DMXL2—were selected for final validation.

The specific expression levels of these nine common critical
genes were compared between AD and control groups using
the Wilcoxon rank sum test, with analyses performed on
the merged dataset (GSE5281, GSE29378, GSE37263, and
GSE138260) (Figure 11A). Nine critical genes exhibited statistically
significant differences in the merged datasets. Receiver operating
characteristic curves were then constructed to assess the diagnostic
specificity and sensitivity of each gene in these datasets. In
the merged dataset (Figure 11B), METTL7A (AUC = 0.740),
SERPINB6 (AUC = 0.723), VASP (AUC = 0.723), ENTPD2
(AUC = 0.714), FIBP (AUC = 0.814), FUCA1 (AUC = 0.765),
TARBP1 (AUC = 0.732), SORCS3 (AUC = 0.712), and DMXL2
(AUC = 0.696) all showed significant diagnostic value. In the
GSE36980 dataset (Figure 11C), METTL7A (AUC 0.622),
SERPINB6 (AUC = 0.779), VASP (AUC = 0.653), ENTPD2
(AUC = 0.785), FIBP (AUC = 0.567), FUCA1 (AUC = 0.574),
TARBP1 (AUC = 0.613), SORCS3 (AUC = 0.789), and DMXL2
(AUC = 0.700) exhibited diagnostic value.

Moreover, we validated the mRNA expression of METTL7A,
SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, SORCS3,
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Gene set enrichment analysis (GSEA) of disease critical genes in Alzheimer's disease (AD). (A) GSEA enrichment results of METTL7A high expression
group. (B) GSEA enrichment results of SERPINB6 high expression group. (C) GSEA enrichment results of VASP high expression group. (D) GSEA
enrichment results of ENTPD2 high expression group. (E) GSEA enrichment results of CXCL1 high expression group. (F) GSEA enrichment results of
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group. (1) GSEA enrichment results of SORCS3 high expression group. (J) GSEA enrichment results of DMXL2 high expression group.
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FIGURE 10

Identification and validation of diagnostic biomarkers based on critical genes using machine learning. (A,B) Number of genes associated with the
lowest error rate and highest accuracy in the support vector machine (SYM) model. (C,D) Random forest analysis identifying critical genes and
extracting potential diagnostic biomarkers. (E,F) Biomarker screening through least absolute shrinkage and selection operator (LASSO) regression
analysis. (G=J) Visualization of the diagnostic nomogram (G) and evaluation of diagnostic performance (H-J). (K) Venn diagram illustrating nine
candidate diagnostic genes identified by the SVM, LASSO, and random forest algorithms.

and DMXL2 in AD-associated tau and Af pathology model. The
results revealed significantly increased mRNA levels of METTL7A,
SERPINB6, VASP, and ENTPD2, whereas FIBP, FUCA1, TARBP1,
SORCS3, and DMXL2 exhibited reduced mRNA expression in
the AD-associated tau and AP pathology model (Figures 12, 13).
Collectively, these findings indicate that all nine candidate genes
could serve as potential diagnostic markers for AD, and may be
involved in AD-associated tau and A pathogenesis.

4 Discussion

Alzheimer’s disease (AD) is a progressive, irreversible, and
currently incurable neurodegenerative disorder. Most patients
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and function (Mann,

develop obvious clinical symptoms at the middle-late stage, with
an average disease course of 5-10 years after diagnosis, and
only about 10% of patients survive for more than 10 years.
Consequently, AD ranks among the leading causes of death in
the elderly population globally (De Luca et al, 2019; Zhang
et al, 2020). Aging is the most significant risk factor for AD,
with the prevalence increasing exponentially after the age of
65, accompanied by cumulative damage to neuronal structure
1985). AD 1is characterized by typical
pathological features, primarily including extracellular B-amyloid
(AB) plaque deposition, intracellular neurofibrillary tangles (NFTs)
formed by hyperphosphorylated tau protein, and extensive loss
of neurons and synapses in the hippocampus and cerebral cortex
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The mRNA expression of METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1, SORCS3, and DMXL2 in the Alzheimer's disease (AD)-associated
tau pathology. (Control, the normal cell group; Model 1, the OA-induced cellular AD-like model).

In this study, we employed MR analysis combined with
eQTL data to investigate the causal relationship between
DEGs and AD-associated tau and AP pathology, based on
six independent AD datasets from the GEO database. The
MR analysis identified 10 genes significantly co-expressed
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with AD, namely METTL7A, SERPINB6, VASP, ENTPD2,
CXCL1, FIBP, FUCAI, TARBPI, SORCS3, and DMXL2. In
this study, we employed MR analysis combined with eQTL
data to investigate the causal relationship between DEGs and
AD, based on six independent AD datasets from the GEO
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FIGURE 13

The mRNA expression of METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCAL, TARBP1, SORCS3, and DMXL2 in the Alzheimer's disease (AD)-associated
AB pathology. (Control, the normal cell group; Model 2, the AB;_4-induced cellular AD-like model).

database. The MR analysis identified 10 genes significantly
co-expressed with AD, namely METTL7A, SERPINB6, VASP,
ENTPD2, CXCL1, FIBP, FUCA1l, TARBP1, SORCS3,
DMXL2. By integrating these MR-identified genes with DEGs
from AD transcriptomic data, we further filtered out nine
core genes (excluding CXCL1) that showed may be associated
with AD-associated tau and AP pathology. Additionally, we
conducted GO/KEGG enrichment analysis and immune cell
correlation analysis for these critical genes—uncovering the

and

unique presence of naive CD4" T cells in AD and emphasizing
immune processes in AD progression—and validated the genes’
expression and diagnostic value via qRT-PCR and nomogram
construction. This finding has the potential to offer new insights
into investigating the mechanisms underlying AD-associated tau
and AP pathology and advancing the development of targeted
therapeutic strategies against AD.

The pathological mechanisms underpinning AD—a leading
cause of age-related neurodegeneration—remain only partially
elucidated, leaving a critical gap in our capacity to unravel the
disease’s progressive trajectory (Dong et al., 2022; Metaxas and
Kempf, 2016). The genes under investigation are involved in
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multiple aspects of amyloid-beta (AB) metabolism, tau protein
regulation, and other associated pathological processes—including
neuroinflammation, synaptic impairment, and neuronal survival.
Collectively, these regulatory roles drive the progression of AD.
Neuroinflammation acts as a pivotal amplifier in AD
pathogenesis, underpinning progressive neuronal dysfunction.
Brain-resident microglia (innate immune cells for homeostasis) are
overactivated by stimuli like amyloid-p (APB) deposition, secreting
pro-inflammatory mediators. This exacerbates neuronal damage
and AP aggregation, forming a deleterious feedforward loop in
AD (Heneka et al., 2025). SERPINB6 (a serine protease inhibitor)
suppresses pro-inflammatory proteases, reducing cytokine release
and protecting synapses (Strik et al., 2004). Clinically, SERPINB6
expression in AD patients’ frontal cortex is significantly higher than
in healthy controls (Zattoni et al., 2022). FIBP modulates fibroblast
growth factor 2 (FGF2)—an anti-inflammatory/neuroprotective
factor that inhibits microglial activation—via direct binding.
Hippocampal FIBP mRNA levels are reduced in AD patients
controls (Berger et al, 2020). In AD mouse models,
FIBP overexpression restores FGF2 activity, reduces cerebral AP

Vs.

deposition, and improves spatial memory (Li Y. et al., 2025).
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Impaired metabolism and clearance of amyloid-f (AB)
constitute the initiating event in the pathogenesis of AD. SORCS3
modulates the intracellular trafficking of the amyloid precursor
protein (APP), thereby constraining A production (Eggert et al.,
2018). This reduction in SORCS3 activity disrupts the normal
trafficking of APP, leading to increased cleavage by B-secretase
and a consequent elevation in Af production (Haass et al,
2012). Genome-wide association studies (GWAS) have identified
a significant association between the rs10884402 polymorphism
in the SORCS3 gene and heightened AD risk (Kamran et al,
2023; Ruganzu et al, 2021). FUCAL, by contrast, functions as
a key glycosidase localized to lysosomes, where it mediates the
degradation of fucose residues on glycoproteins and glycolipids. In
AD, reduced FUCAL activity has been observed, a deficit closely
associated with abnormal lysosomal acidification—a hallmark
of lysosomal dysfunction in the disease. This impairment in
FUCA1 activity drives the accumulation of glycosylation waste
products within lysosomes, which not only impedes the lysosomal
degradation of Af but also compromises the phagocytic capacity
of microglia toward AP (Huang et al, 2022; Quick et al,
2023). Mechanistic insights from cell-based experiments further
demonstrate that supplementation of FUCALI in microglia restores
lysosomal function and enhances the efficiency of Ap phagocytosis
(Rao et al., 2025).

Hyperphosphorylation of tau protein is tightly linked to
synaptic damage in AD, with the VASP and TARBPI genes
emerging as key regulators of this pathological process—each
contributing through distinct molecular mechanisms. VASP
(vasodilator-stimulated phosphoprotein), an actin cytoskeleton-
binding protein, interacts with microtubule-associated proteins to
modulate microtubule dynamics and maintain structural integrity.
VASP participates in the release of neurotransmitters at the
presynaptic membrane, supporting normal synaptic function
(Venkatramani and Panda, 2019). In the AD brain, VASP
expression is significantly upregulated—an effect potentially driven
by heightened oxidative stress, a well-documented contributor
to AD pathogenesis (Ionescu-Tucker and Cotman, 2021; Sinclair
et al, 2015). Overexpression of VASP in tau transgenic mice
reduces the formation of neurofibrillary tangles (NFTs)—the
pathological aggregates of hyperphosphorylated tau—and restores
neuronal microtubule integrity (Shim et al, 2007). TARBP1
(TAR RNA-binding protein 1), by contrast, functions as a core
component of the RNA-induced silencing complex (RISC), where
it regulates the maturation and functional activity of microRNAs.
In AD, reduced TARBP1 expression disrupts miR-124 maturation,
leading to a marked upregulation of GSK-3B. This increase
in GSK-3f activity exacerbates tau hyperphosphorylation and,
concurrently, impairs miRNA-mediated regulation of synaptic
genes—disrupting synaptic architecture and function (Ghafouri-
Fard et al, 2021). Mechanistic validation from cell-based
experiments further confirms TARBPI’s role: overexpression of
TARBP1 restores miR-124 activity, lowers GSK-3f expression, and
reduces tau phosphorylation (Shi et al., 2024).

Neuronal survival deficits and metabolic abnormalities
represent additional critical hallmarks of AD pathology, with
the ENTPD2, DMXL2, and METTL7A genes emerging as
key mediators of these processes—each governing distinct
molecular pathways that collectively contribute to AD progression.
ENTPD2 (ectonucleoside triphosphate diphosphohydrolase 2), an
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exonucleotidase localized to the extracellular space, plays a pivotal
role in regulating extracellular adenosine triphosphate (ATP)
levels—a key modulator of neuroinflammation and neuronal
survival. In the AD brain, ENTPD2 activity is increased, disrupting
this protective cascade. The resultant elevation in extracellular
ATP levels—driven in part by widespread neuronal death in
AD—activates P2X7 receptors on microglia, triggering excessive
microglial activation and exacerbating neuroinflammation (John
and Reddy, 2021). DMXL2 (DMX-like 2), a Golgi apparatus-
associated protein, regulates two critical processes for neuronal
health: the trafficking of neurotransmitter synthesis enzymes
and the maintenance of neuronal calcium homeostasis via
modulation of calmodulin signaling. Reduced DMXL2 impairs
neurotransmitter synthesis, leading to deficiencies in dopamine
and acetylcholine that drive synaptic dysfunction. Concurrently,
it disrupts calcium homeostasis, increasing the risk of neuronal
apoptosis (Costain et al., 2019). METTL7A (methyltransferase-
like 7A), a protein with putative methyltransferase activity,
contributes to neuronal metabolic homeostasis through two
distinct mechanisms: regulation of lipid metabolism and
modulation of RNA methylation (Lee et al., 2021). In AD, single-
cell sequencing studies reveal elevated METTL7A expression in
microglia from AD patients—suggesting a potential compensatory
response to AD-related metabolic stress (Mathys et al., 2019).
Collectively, these genes demonstrate significant value as potential
biomarkers and therapeutic targets in AD research. Future studies
should focus on elucidating the specific molecular regulatory
mechanisms of these genes, as well as systematically investigating
their synergistic or antagonistic interactions in the pathological
progression of AD. This will establish a robust theoretical and
experimental foundation for the development of innovative
diagnostic technologies and precision treatment strategies.

It should be noted that the in vitro model used in this
study has certain limitations. Firstly, the SK-N-SH cells used
are a neuroblastoma cell line whose cellular phenotype and
physiological functions differ significantly from those of primary
neurons in vivo, making it difficult to fully mimic the pathological
response characteristics of normal neurons. Secondly, the model
fails to encompass the complex pathological components of AD
progression, such as the neuroinflammatory microenvironment
and synaptic damage. This limits the clinical translational value
of the findings.

Therefore, subsequent studies should optimize experimental
systems further. This could be achieved by integrating primary
neuronal cultures and brain organoid models derived from
AD patients, which can mimic the brain’s three-dimensional
microenvironment and cellular heterogeneity, as well as AD animal
models, such as APP/PSI transgenic mice. This would enable
researchers to validate the pathological functions and regulatory
mechanisms of core genes across multiple levels, from cells and
organoids to whole animals. This multidimensional approach will
provide more robust experimental evidence for their eventual
application in the clinical diagnosis and treatment of AD.

5 Conclusion

In summary, this study has clarified the regulatory roles of
METTL7A, SERPINB6, VASP, ENTPD2, FIBP, FUCA1, TARBP1,
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SORCS3, and DMXL2 in AD progression. Combined with
functional enrichment analysis, it is inferred that these genes
participate in the AD pathogenesis by regulating key pathological
processes such as AP metabolism and tau phosphorylation. This
fills a research gap regarding the roles of these genes in the
molecular regulatory network of AD and deepens the systematic
understanding of AD pathological mechanisms. On the other
hand, the identified core genes provide potential biomarkers for
developing highly specific and sensitive AD diagnostic reagents,
while also offering key targets for AD-specific therapeutic drug
development. This holds promise for overcoming the current
challenges of delayed AD diagnosis and limited treatment options,
laying the foundation for precision medicine in AD.
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