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Background: Deep transcranial magnetic stimulation (dTMS) is more beneficial 

in activating the leg muscle cortical representation. However, to date, no studies 

have evaluated the advantages of dTMS compared to repetitive transcranial 

magnetic stimulation (rTMS) in improving lower extremity motor function in 

subacute stroke patients. This study aims to compare the efficacy of dTMS and 

rTMS in treating lower extremity motor dysfunction in subacute stroke patients. 

Methods: In this single-blind, randomized controlled trial, fifty subacute stroke 

patients with lower extremity motor dysfunction were randomized to receive 

either dTMS or rTMS treatment. Patients’ Fugl-Meyer Assessment of Lower 

Extremity (FMA-LE), 10 m Maximum Walking Speed (10 m MWS), Berg Balance 

Scale (BBS), Timed Up and Go Test (TUGT), walking velocity, stride rate, stride 

length, gait cycle, double support percentage, and Resting Motor Threshold 

(RMT) were assessed before the intervention and after the 4-week intervention. 

Treatment effects were compared using two-way repeated-measures ANOVA. 

Correlations between lower extremity motor function and cortical excitability 

were analyzed using Pearson correlation analysis. 

Results: Forty-five patients completed the study (dTMS group: n = 22; rTMS 

group: n = 23). Two-way repeated measures ANOVA showed significant 

group × time interaction effects for FMA-LE, 10 m MWS, BBS, TUGT, walking 

velocity, stride length, gait cycle, and double support percentage. Post hoc 

analyses revealed both groups improved significantly from baseline in FMA-LE, 

10 m MWS, BBS, TUGT, RMT, walking velocity, stride length, and double support 

percentage. The dTMS group additionally improved stride rate and gait cycle, 

while the rTMS group did not. Post-intervention, the dTMS group demonstrated 

significantly greater improvements than rTMS in FMA-LE, 10 m MWS, TUGT, 

and walking velocity. After 4 weeks, RMT was significantly negatively correlated 
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with FMA-LE, 10 m MWS, BBS, and walking velocity. RMT was positively 

correlated with TUGT. 

Conclusion: Both dTMS and rTMS can improve lower extremity motor 

dysfunction in subacute stroke patients. Compared to rTMS, dTMS may 

provide more facilitative and accelerative effects to promote FMA-LE, TUGT, 

10 m MWS, and walking velocity. Therefore, as an adjunct to conventional 

rehabilitation therapies, dTMS is a valuable therapeutic option in stroke 

rehabilitation programs. 

KEYWORDS 

stroke, lower extremity, motor function, deep transcranial magnetic stimulation, 
repetitive transcranial magnetic stimulation 

1 Introduction 

Stroke is an acute cerebrovascular disease characterized 
by focal neurological deficits caused by various obstructions 
(ischemic) or ruptures (hemorrhagic) (GBD 2021 Stroke Risk 
Factor Collaborators, 2024). At present, stroke has become the 
second leading cause of death and one of the main causes of 
disability worldwide (Feigin et al., 2022). With the development 
of medical technology, the mortality rate of stroke has decreased 
year by year, but 72% of survivors still have lower extremity 
dysfunction, which aects the walking function of patients (Ng 
and Hui-Chan, 2010). Nearly 30% of stroke patients cannot 
walk normally even in the recovery stage, which greatly aects 
their social interaction and, in severe cases, leads to lifelong 
disability (Frenkel-Toledo et al., 2021). Therefore, improving the 
lower extremity motor function and restoring the ability to walk 
independently as soon as possible are urgent problems that many 
stroke patients are eager to solve. However, both drug therapies 
(Szelenberger et al., 2020) and traditional rehabilitation therapies 
(e.g., neurodevelopmental therapy (Langhammer and Stanghelle, 
2011), proprioceptive neuromuscular facilitation (Eng and Tang, 
2007), and electromyography biofeedback (Woodford and Price, 
2007)) seem to have little eect on improving lower extremity 
motor function in stroke patients. 

Repetitive transcranial magnetic stimulation (rTMS) is a non-
invasive brain stimulation technique widely used in clinical 
practice. At high frequencies (≥5 Hz), cortical excitability increases, 
whereas at low frequencies (≤1 Hz), a long-term depression eect 
is produced, and cortical excitability decreases (Kim et al., 2020). 
Currently, rTMS has become an important adjuvant therapy in 
the rehabilitation of stroke patients, and its eÿcacy in improving 
upper extremity movement disorders (Li et al., 2024), cognitive 
impairment (Zhang et al., 2024), depression (Cappon et al., 2022), 
and other diseases (Lefaucheur et al., 2020) has been confirmed. 
Its application in the rehabilitation of lower extremity function 
after stroke has also achieved initial results (Tung et al., 2019; Fan 
et al., 2021). However, the therapeutic eect of traditional rTMS 
for lower extremity motor function after stroke may have a certain 
upper limit because the primary motor cortex (M1) leg area is 
located deep within the intercerebral fissure 3–4 cm from the scalp 

surface, which makes it challenging for the circular coil or figure-
of-eight coil of rTMS to provide magnetic stimulation to the M1 
leg functional area to intervene (Kakuda et al., 2013). In contrast, 
deep transcranial magnetic stimulation (dTMS) using the H-coil 
can eectively overcome this depth-related stimulation challenge. 

Deep transcranial magnetic stimulation is an emerging non-
invasive brain stimulation technique developed on the basis of 
rTMS. Currently, dTMS is used to study and treat various mental 
and neurological diseases (Roth et al., 2014a). Compared with 
the traditional figure-of-eight coil, the H-coil used in dTMS 
can stimulate deeper areas of the brain without increasing the 
stimulation intensity (Ferrulli et al., 2021), including deeper cortical 
regions and fibers targeting subcortical regions (Zangen et al., 
2005; Roth et al., 2014b) and allows the stimulation of the cortical 
representation of distal lower extremity muscles to be possible 
at lower intensities than the figure-of-eight coil (Roth et al., 
2002, 2014b). The electric field generated by dTMS provides the 
possibility to stimulate the lower extremity representation in the 
M1 (Chieo et al., 2016). At present, studies have explored the 
comparison of the eÿcacy of dTMS and sham stimulation in 
improving lower extremity motor dysfunction in stroke patients 
(Chieo et al., 2014, 2021). Both studies have found that high-
frequency dTMS lasting for 3 weeks can significantly improve 
lower extremity motor function in stroke patients compared with 
sham stimulation. However, although dTMS is superior to sham 
stimulation, it is unclear whether this technique is superior to 
traditional rTMS. Therefore, the main purpose of this study is to 
compare the eÿcacy of dTMS and rTMS in treating lower extremity 
motor dysfunction in subacute stroke patients and to provide a 
scientific and reasonable basis for the treatment of lower extremity 
motor dysfunction in such patients. 

2 Materials and methods 

2.1 Study design 

In this single-blind, randomized controlled trial, participants 
were randomly assigned to either the dTMS or the rTMS 
group. Before the intervention, we collected patients’ demographic 
characteristics (including age, gender, course of the disease, 
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stroke type, lesion side, etc.) and conducted baseline assessments 
of lower extremity motor function (including lower extremity 
motor ability, balance function, gait parameters, etc.). A 4-week 
intervention was subsequently administered. After the completion 
of all interventions, participants underwent reassessment of lower 
extremity motor function. The study was conducted at Beijing 
Xiaotangshan Hospital between January and November 2024. 
The trial protocol was approved by the Ethics Committee of 
Beijing Xiaotangshan Hospital (No. 2024-01) and was registered 
at the Chinese Clinical Trial Registry (Trial registration number: 
ChiCTR2400081419). All subjects signed a written informed 
consent form before initiating the trial. 

2.2 Sample size calculation 

FMA-LE was used as the primary outcome measure. According 
to the results of a previous study (Mo and Liu, 2020), it was assumed 
that the mean values of FMA-LE in the dTMS group and the 
rTMS group were 27.15 and 24.69, respectively, and the standard 
deviation was 2.64. The significance level (α) was set at 0.05, and 
the statistical power was set at 0.80. The sample size N1 = 20 in 
the dTMS group and N2 = 20 in the rTMS group were calculated 
by PASS 15 software (NCSS Corp, Kaysville, UT, USA). The final 
sample size required was 25 per group to allow for a 20% dropout 
rate. A total of at least 50 patients were included. 

2.3 Setting, recruitment and participants 

We recruited a total of 50 subacute stroke patients. The patient 
inclusion criteria were as follows: (1) patients who were diagnosed 
with cerebral hemorrhage or cerebral infarction by head CT and/or 
MRI, with motor dysfunction of lower limbs; (2) ischemic or 
hemorrhagic stroke for the first time; (3) >2 weeks and <6 months 
after stroke onset; (4) aged between 30 and 75 years; (5) patients 
with standing balance ≥1 level; (6) patients who were able to 
complete 10 m walking with assistance; (7) patients who voluntarily 
completed dTMS or rTMS treatment and signed informed consent. 
Exclusion criteria included: (1) patients with a metallic foreign 
body in the skull, a cardiac pacemaker, or a cochlear implant; 
(2) patients with a history of epilepsy; (3) patients with severe 
heart, lung, liver, kidney and other vital organ failure; (4) patients 
with severe cognitive, communication, or emotional disorders; (5) 
patients who had received dTMS or rTMS treatment within the first 
3 months of this study. 

2.4 Interventions 

Both groups of patients received routine treatment, including 
using drugs to inhibit platelet aggregation, lipid regulation, blood 
pressure control, blood glucose control, etc. At the same time, they 
all participated in regular physical therapy for individual lower 
extremity motor function (5 days/week for a total of 4 weeks). 
This training includes transfer, sitting, standing, static and dynamic 
balance, and walking training. 

Deep transcranial magnetic stimulation or Repetitive 
transcranial magnetic stimulation therapy was completed before 
each physical therapy in both groups. We used a Brainsway dTMS 
system equipped with an H7-coil (Brainsway Ltd, Jerusalem, 
Israel) to intervene in patients in the dTMS group. The optimal 
stimulation site on the skull was defined as the position on the 
midsagittal plane at which the largest motor evoked potential 
(MEP) in the tibialis anterior (TA) of the unaected lower 
extremity was elicited on surface electromyography. The coil 
was positioned with its center vertically over the determined 
stimulation site on the midsagittal plane, so that the bilateral leg 
motor areas would be stimulated simultaneously (Figure 1A). 
Stimulation parameters were: 80%–120% of RMT (increasing 
from 80%); 80 5-s trains at 5 Hz, 10-s inter-train interval, with a 
total of 2000 pulses over 20 min (Figure 1B). The stimulation was 
conducted once a day for 5 days per week for 4 weeks. We used 
the M-100 Ultimate Transcranial Magnetic Stimulation device 
equipped with a 70-mm figure-of-eight coil from Shenzhen Yingzhi 
Technology Co., Ltd. (China) to intervene in patients in the rTMS 
group. The stimulation target and treatment parameters were the 
same as those in the dTMS group. 

2.5 Outcome measures 

The demographic data were obtained from the medical files. 
A blinded therapist, who was not involved in the participant 
selection process, administered the Fugl-Meyer Assessment of 
Lower Extremity (FMA-LE), 10 m Maximum Walking Speed (10 m 
MWS), Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), 
walking velocity, stride rate, stride length, gait cycle, double support 
percentage, Motor Evoked Potential (MEP), and Resting Motor 
Threshold (RMT) before and after the 4-week intervention. 

The FMA-LE includes 7 major items, such as reflex, hip 
movement, knee movement, and ankle movement, with a total of 
17 items and a total score of 34 points. The higher the score, the 
better the recovery of lower extremity motor function of patients. 
The content of the scale is detailed, which can accurately reflect the 
recovery of lower extremity motor function in stroke patients with 
hemiplegia (Hsieh et al., 2009). 

Assessment of 10 m MWS: The starting point, 2 m, 8 m, and 
the endpoint were marked on the ground with a straight distance 
of 10 m. After hearing the beginning command, the patient moved 
from the starting point to the endpoint at the fastest speed. The 
evaluator used a stopwatch to record the time required for the 
patient to step from 2 m to 8 m and calculated the 10 m MWS. The 
test was carried out three times, and the average value of the data 
obtained three times was recorded. The faster the patient’s walking 
speed, the better the patient’s walking function. 

The BBS is the most widely used clinical scale to assess balance 
performance in patients with neurological disorders, including 
static balance and dynamic balance. There are 14 items in the BBS. 
The lowest score of each item is 0, the highest score is 4, and the 
total score is 56. Higher scores indicate better balance function 
(Meseguer-Henarejos et al., 2019). 

The TUGT is a rapid quantitative assessment method for 
body mobility ability, balance function, and fall risk. Procedure: 
The subjects sat in a chair with armrests and backrests, and the 
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FIGURE 1 

Stimulation methods: (A) Stimulation target diagram, (B) stimulation paradigm. 

evaluators recorded the time (in seconds) that the subjects left the 
back of the seat and walked forward for 3 m, then turned around 
to sit down and leaned back against the chair back. The test was 
carried out three times, and the average value of the data obtained 
three times was recorded. The shorter the time, the better the 
balance function (Flansbjer et al., 2005). 

Gait parameters were assessed by the whole body three-
dimensional gait and motion analysis system (Jiangsu Neucognic 
Medical Co., Ltd). The patient wore the measuring device and 
walked 10 m until the assessment steps were fully mastered before 
starting the formal test. The walking velocity, stride rate, stride 
length, gait cycle, and double support percentage of the two groups 
before and after intervention were measured. 

Assessment of RMT: We used single-pulse TMS with a double-
cone coil to stimulate the M1 leg area and gradually decreased 
the stimulation intensity until RMT was confirmed, defined as 
eliciting an MEP of at least 50 µV amplitude in the relaxed tibialis 
anterior muscle of the unaected side in a minimum of 5 out of 10 
trials (Lefaucheur et al., 2020). Assessment of MEP: First, the MEP 
status on the aected side was determined. The double-cone coil 
was placed over the M1 leg area, and suprathreshold stimulation 
at 120% RMT intensity was delivered. MEPs were recorded from 
the tibialis anterior muscle on the aected side. If MEPs with 
normal amplitude and consistent latency were observed in at least 
10 single-pulse TMS stimuli, the result was considered MEP+. 
Otherwise, it was MEP−. After confirming MEP + status, MEPs 
elicited by 10 single-pulse TMS stimuli were recorded, and their 
average latency and amplitude were calculated (Burke et al., 2019). 

2.6 Blinding and randomization 

Computer-generated random sequences were used, and the 
random numbers were hidden in opaque numbered envelopes 
and opened in numerical order by an uninvolved researcher. 
Fifty participants were randomly allocated to 2 groups in a 1:1 
ratio and received either dTMS or rTMS. Recruitment personnel, 
data collectors, and statistical analysts were blinded to the group 
allocation, with a designated researcher being responsible for 
intervention based on the group assignments. 

2.7 Statistical analysis 

The normality of distribution was assessed using the Shapiro-
Wilk normality test. Measurement data that follow a normal 

distribution are expressed as mean ± standard deviation (SD). 
Count data are presented as numbers (n) and percentages (%). 
Pearson’s chi-squared test or Fisher’s exact test was used to compare 
the count data. The independent samples t-test was applied to 
compare the measurement data of the subjects in the two groups 
before the intervention. When the data met the assumptions 
of normality and homogeneity of variances, two-way repeated 
measures ANOVA was used to investigate the eects of group 
(dTMS vs. rTMS) and time (pre-test vs. post-test) on lower 
extremity motor ability, balance function, gait parameters, and 
cerebral cortical excitability. If there was an interaction, a simple 
eects post hoc analysis was further carried out. Statistical analyses 
were performed using SPSS (version 26.0; IBM, Armonk, NY, 
USA). The significance level (α) was set at 0.05, and the eect 
size was represented by η2 . The Pearson correlation analysis was 
conducted to identify whether there were correlations between 
lower extremity motor function and cerebral cortical excitability at 
4 weeks after interventions. 

3 Results 

3.1 Study participation 

From January to November 2024, a total of 63 patients were 
screened for participation in this study. Among them, 11 people 
did not meet the inclusion criteria, and the other 2 people refused 
to participate in the study for personal reasons. Finally, a total of 50 
patients were included in this study and randomly assigned to the 
dTMS group (n = 25) and the rTMS group (n = 25) in a 1:1 ratio. 
Three patients in the dTMS group withdrew: one patient withdrew 
from the study due to emotion problem, one patient decided to be 
discharged from the hospital for personal reasons, and one patient 
withdrew from the study due to head tightness caused by a large 
head circumference. Two patients in the rTMS group withdrew: 
one patient withdrew from the study due to low motivation, and 
the other patient decided to be discharged from the hospital for 
personal reasons. The remaining patients (n = 45) completed the 
study as expected (Figure 2). 

Finally, the dTMS group included 18 males and 4 females, with 
an average age of 60.32 ± 11.30 years. The rTMS group included 17 
males and 6 females, with an average age of 61.91 ± 10.63 years. No 
significant dierences in demographic characteristics were found 
between the groups (p > 0.05) (Table 1). During the study, there 
were no serious adverse events in all patients, with one patient 
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FIGURE 2 

Flow diagram of the randomized controlled trial. 

TABLE 1 Demographic characteristics at baseline. 

Stimulation methods dTMS group (n = 22) rTMS group (n = 23) Effect size p-value 

Age, (years) 60.32 ± 11.30 61.91 ± 10.63 −0.488 0.628 

Gender, n (%) 0.780 

Male 18 (81.82) 17 (73.91) 

Female 4 (18.18) 6 (26.09) 

Course of the disease, (days) 56.05 ± 24.52 51.22 ± 23.09 0.680 0.453 

Stroke type, n (%) 0 1.000 

Ischemic 19 (86.36) 20 (86.96) 

Haemorrhagic 3 (13.64) 3 (13.04) 

Lesion side, n (%) 0.218 0.641 

Left 13 (59.09) 12 (52.17) 

Right 9 (49.91) 11 (47.83) 

HR (bpm) 75.68 ± 9.76 80.57 ± 7.61 −1.877 0.067 

SBP (mmHg) 134.86 ± 13.79 135.48 ± 16.44 −0.136 0.893 

DBP (mmHg) 78.73 ± 10.99 77.57 ± 9.82 0.374 0.710 

Drinking, n (%) 15 (68.18) 14 (60.87) 0.262 0.608 

Smoking, n (%) 8 (36.36) 4 (17.39) 2.070 0.150 

Comorbidities 

Hypertension, n (%) 19 (86.36) 20 (86.96) 0 1.000 

Hyperlipemia, n (%) 13 (59.09) 17 (73.91) 1.112 0.292 

Diabetes, n (%) 8 (36.36) 15 (65.22) 3.611 0.057 

dTMS, deep transcranial magnetic stimulation; rTMS, repetitive transcranial magnetic stimulation; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure. 

reporting mild nausea in the dTMS group and one reporting 

mild headache in the rTMS group. After a short day of rest, the 

discomfort in both patients was relieved. No statistically significant 
dierence in side eects was found between the two groups 
(p > 0.05). 

3.2 Lower extremity motor ability 

The two-way repeated measures ANOVA revealed a significant 
interaction eect between group and time for FMA-LE (F = 35.534, 
p < 0.001, η2 = 0.452, Table 2) and 10 m MWS (F = 16.156, 
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TABLE 2 Changes in clinical outcome measures. 

Variables dTMS group (n = 22) rTMS group (n = 23) Time × group 

Pre Post Pre Post F p η 2 

Lower extremity motor ability 

FMA-LE 19.50 ± 5.23 24.14 ± 4.92 ∗# 19.04 ± 5.00 20.96 ± 4.66∗ 35.534 <0.001 0.452 

10 m MWS, cm/s 53.55 ± 11.56 64.80 ± 9.10 ∗# 52.80 ± 15.60 56.66 ± 11.47∗ 16.156 <0.001 0.273 

Balance function 

BBS 22.59 ± 6.98 29.00 ± 6.99∗ 22.26 ± 7.55 25.56 ± 6.93∗ 26.757 <0.001 0.384 

TUGT, s 34.66 ± 8.24 26.04 ± 6.26 ∗# 34.96 ± 11.07 31.99 ± 9.91∗ 22.756 <0.001 0.346 

Gait parameters 

Walking velocity, cm/s 39.32 ± 9.86 49.81 ± 7.85 ∗# 38.69 ± 12.87 42.30 ± 12.07∗ 34.830 <0.001 0.448 

Stride rate, steps/min 68.32 ± 13.74 76.83 ± 14.92∗ 68.08 ± 16.24 72.17 ± 19.70 3.182 0.082 0.069 

Stride length, cm 65.97 ± 14.41 75.14 ± 13.63∗ 65.59 ± 18.18 69.63 ± 17.80∗ 7.525 0.009 0.149 

Gait cycle, s 1.83 ± 0.37 1.62 ± 0.32∗ 1.88 ± 0.52 1.80 ± 0.55 5.349 0.026 0.111 

Double support percentage,% 38.40 ± 11.77 32.39 ± 9.00∗ 39.26 ± 13.03 36.27 ± 11.06∗ 6.010 0.018 0.123 

Cortical excitability 

RMT,% 63.09 ± 9.77 56.55 ± 8.74∗ 64.09 ± 10.59 59.22 ± 9.34∗ 3.280 0.077 0.071 

FMA-LE, Fugl-Meyer Assessment of Lower Extremity; 10 m MWS, 10-meter Maximum Walking Speed; BBS, Berg Balance Scale; TUGT, Timed Up and Go Test; RMT, Resting Motor 
Threshold; MEP, motor evoked potential. #Indicates significant dierences between groups after 4 weeks of intervention. *Indicates significant dierences within groups (p < 0.05). 

p < 0.001, η2 = 0.273, Table 2). Post hoc analyses demonstrated 
that compared to baseline, the dTMS group showed significant 
improvements in FMA-LE (p < 0.001, Figure 3A) and 10 m MWS 
(p < 0.001, Figure 3B) post-intervention, while the rTMS group 
also exhibited significant enhancements in FMA-LE (p < 0.001, 
Figure 3A) and 10 m MWS (p = 0.010, Figure 3B). After 4 weeks of 
intervention, significant between-group dierences were observed 
in FMA-LE (p = 0.031, Figure 3A) and 10 m MWS (p = 0.012, 
Figure 3B), favoring the dTMS group. 

3.3 Balance function 

The two-way repeated measures ANOVA revealed a significant 
interaction eect between group and time for BBS (F = 26.757, 
p < 0.001, η2 = 0.384, Table 2) and TUGT (F = 22.756, 
p < 0.001, η2 = 0.346, Table 2). Post hoc analyses demonstrated 
that compared to baseline, the dTMS group showed significant 
improvements in BBS (p < 0.001, Figure 3C) and TUGT (p < 0.001, 
Figure 3D) post-intervention, while the rTMS group also exhibited 
significant enhancements in BBS (p < 0.001, Figure 3C) and TUGT 
(p = 0.001, Figure 3D). After 4 weeks of intervention, a significant 
between-group dierence was observed in TUGT (p = 0.021, 
Figure 3D), favoring the dTMS group. However, no significant 
between-group dierences were detected in BBS (p > 0.05, 
Figure 3C). 

3.4 Gait parameters 

The two-way repeated measures ANOVA revealed no 
significant interaction eect between group and time for stride 
rate (p > 0.05, Table 2). However, significant interactions were 

observed for walking velocity (F = 34.830, p < 0.001, η2 = 0.448, 
Table 2), stride length (F = 7.525, p = 0.009, η2 = 0.149, Table 2), 
gait cycle (F = 5.349, p = 0.026, η2 = 0.111, Table 2), and double 
support percentage (F = 6.010, p = 0.018, η2 = 0.123, Table 2). Post 
hoc analyses indicated that compared to baseline, the dTMS group 
showed significant improvements in walking velocity (p < 0.001, 
Figure 4A), stride rate (p < 0.001, Figure 4B), stride length 
(p < 0.001, Figure 4C), gait cycle (p < 0.001, Figure 4D), and double 
support percentage (p < 0.001, Figure 4E) post-intervention. The 
rTMS group also showed improvements in walking velocity 
(p < 0.001, Figure 4A), stride length (p = 0.003, Figure 4C), and 
double support percentage (p = 0.002, Figure 4E). After 4 weeks 
of intervention, a significant between-group dierence was found 
only in walking velocity (p = 0.018, Figure 4A), favoring the dTMS 
group. 

3.5 Nervous system function 

The two-way repeated measures ANOVA revealed no 
significant interaction eect between group and time for resting 
motor threshold (RMT) (p > 0.05, Table 2), but a significant main 
eect of time was observed (p < 0.001). Within-group analyses 
revealed significant post-intervention improvements in RMT for 
both the dTMS and rTMS groups compared to baseline (p < 0.001, 
Figure 3E). Prior to intervention, MEPs (hemiplegic side) were 
elicitable in 4 subjects in the dTMS group and 3 subjects in the 
rTMS group, with no between-group dierence in MEP elicitation 
rates (p > 0.05). After 4 weeks of intervention, MEPs were elicitable 
in 8 subjects (18.18% increase) in the dTMS group and 5 subjects 
(8.70% increase) in the rTMS group. However, no significant 
between-group dierence in post-intervention MEP elicitation 
rates was observed (p > 0.05). 
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FIGURE 3 

Effects of dTMS and rTMS on lower extremity motor ability, balance function, and cerebral cortical excitability. (A) Fugl-Meyer Assessment of Lower 
Extremity (FMA-LE); (B) 10-meter Maximum Walking Speed (10 m MWS); (C) Berg Balance Scale (BBS); (D) Timed Up and Go Test (TUGT); (E) Resting 
Motor Threshold (RMT). # indicates significant differences between groups after 4 weeks of intervention. * indicates significant differences within 
groups (p < 0.05). ** indicates significant differences within groups (p < 0.01). *** indicates significant differences within groups (p < 0.001). 

FIGURE 4 

Effects of dTMS and rTMS on gait parameters. (A) Walking velocity; (B) stride rate; (C) stride length; (D) gait cycle; (E), double support percentage. # 
indicates significant differences between groups after 4 weeks of intervention. **Indicates significant differences within groups (p < 0.01). *** 
indicates significant differences within groups (p < 0.001). 

3.6 Correlation analysis between the 
lower extremity motor function and the 
cerebral cortical excitability 

The correlation between lower extremity motor function and 

motor cortex excitability at 4 weeks post-intervention was explored. 

Statistical analysis showed that RMT was significantly negatively 

correlated with FMA-LE (R = −0.458, p = 0.002, Figure 5A), 10 m 

MWS (R = −0.354, p = 0.017, Figure 5B), BBS (R = −0.301, 
p = 0.045, Figure 5C), and walking velocity (R = −0.356, p = 0.016, 
Figure 5E). RMT was positively correlated with TUGT (R = 0.391, 
p = 0.008, Figure 5D). 
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FIGURE 5 

The scatter plot shows the correlation analysis between the lower extremity motor function (FMA-LE, 10 m MWS, BBS, TUGT, walking velocity) and 
the cerebral cortical excitability (RMT) after 4 weeks of intervention. (A) FMA-LE and RMT; (B) 10 m MWS and RMT; (C) BBS and RMT; (D) TUGT and 
RMT; (E) Walking velocity and RMT. 

4 Discussion 

This is the first randomized controlled trial comparing the 
eÿcacy of dTMS and rTMS in treating lower extremity motor 
dysfunction in subacute stroke patients. The results showed that 
both dTMS and rTMS improved lower extremity motor ability, 
balance function, gait parameters, and cerebral cortical excitability 
in subacute stroke patients compared to baseline. However, dTMS 
provided more facilitative and accelerative eects than rTMS in 
improving FMA-LE, TUGT, 10 m MWS, and walking velocity. 
Consistent with previous findings (Chieo et al., 2014, 2021), 
no serious side eects were observed during dTMS intervention, 
indicating its safety and eectiveness. 

Under normal circumstances, the two cerebral hemispheres 
regulate each other’s excitability through connections via the 
corpus callosum, thereby maintaining a balance between them 
(Duque et al., 2005). However, in stroke patients, there is an 
imbalance in interhemispheric inhibition (Xu et al., 2019), which 
leads to impaired excitability in the motor cortex of the aected 
hemisphere and impacts limb movement (Liepert et al., 2000). 
The potential mechanism of rTMS improving motor function 
in stroke patients is based on the interhemispheric competition 
(IHC) model (Nowak et al., 2009). However, it is important 
to note that the applicability of the IHC model to post-stroke 
lower limb functional recovery has recently been questioned. 
This is due to significant dierences between post-stroke 
lower and upper limb hemiparesis that involve the control of 
nerve fibers. Thus, directly extrapolating the IHC model from 
upper limb rehabilitation to lower limb rehabilitation may not 
be justified. Studies have found that, in healthy individuals, 
approximately 90% or more of upper extremity motor function 
is innervated by neural fibers from the contralateral hemisphere. 
However, 70%–80% of lower extremity motor function is 
governed by neural fibers from the contralateral hemisphere, 

while the remaining 20%–30% is controlled by nerve fibers 
from the ipsilateral hemisphere (Luft et al., 2002). Therefore, the 
lower extremity representation in the M1 of the contralesional 
hemisphere contributes to motor functional recovery of the 
aected lower extremity after stroke. Additionally, Enzinger 
et al. using functional magnetic resonance imaging (fMRI), 
observed that improvements in walking function are associated 
with increased brain activation in bilateral M1, the cingulate 
motor area, the caudate nucleus, and the thalamus on the 
aected side. Therefore, these studies collectively suggest 
that the “bilateral facilitation model” for the lower extremity 
representation in the M1 seems more scientific. At the same 
time, excitatory stimulation targeting the lower extremity 
representation in bilateral M1 has demonstrated potential 
eÿcacy in enhancing gait (Kakuda et al., 2013; Chieo et al., 
2014, 2021). Accordingly, the M1 leg area stimulation protocol 
employed in this study was based on the protocol described by 
Chieo et al. (2021). 

Several studies have individually demonstrated the eÿcacy 
of both dTMS and rTMS in improving lower extremity motor 
function compared to sham stimulation (Chieo et al., 2014, 2021; 
Tung et al., 2019; Fan et al., 2021). In this study, we observed 
significant improvements in FMA-LE and 10 m MWS in both 
groups compared to baseline, with dTMS demonstrating greater 
eÿcacy than rTMS. We hypothesize that the primary reason for 
this phenomenon lies in the anatomical location of the lower 
extremity representation within the M1, which resides deep within 
the interhemispheric fissure (approximately 3–4 cm below the 
scalp surface) and is surrounded by the corpus callosum, cingulate 
gyrus, and falx cerebri. Traditional figure-of-eight coils can only 
stimulate the superficial cortex of the brain (typically reaching only 
2.0–2.5 cm below the scalp surface). In contrast, under identical 
stimulation targets and intensities, H-coils can activate deeper 
motor cortical regions and influence broader neuronal pathways 
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(Levkovitz et al., 2015). Furthermore, the dTMS device consists 
of a flexible base that matches the shape of the head and a 
coil element that is tangent to the scalp, which can minimize 
the accumulation of electrostatic charges on the brain surface 
and enhance the penetration of the coil into the deep brain 
(Tofts and Branston, 1991; Eaton, 1992). Roth et al. (2014b) 
compared the H-coil with the figure-of-eight coil and found that 
the H-coil demonstrated superior eÿcacy in activating cortical 
representations of leg muscles. These findings may support our 
results, suggesting that dTMS oers greater advantages over rTMS 
in enhancing lower extremity motor function. 

Compared with healthy people, stroke patients have decreased 
walking velocity, stride rate, and stride length, as well as an 
imbalance between lower limbs (Hsu et al., 2003), resulting 
in abnormal gait that reduces walking and balance ability and 
increases the risk of falling (Wang et al., 2024). This study found 
that after 4 weeks of intervention, intergroup analysis revealed that 
dTMS was significantly superior to rTMS in enhancing walking 
velocity in subacute stroke patients (p < 0.05). The observed 
dierences may be attributed not only to dTMS’s advantages 
in activating the lower extremity representation of the M1 and 
modulating deep neural circuits, as previously explained but also 
to the relatively longer central conduction pathways from the 
cerebral cortex to the lower limbs. This increased anatomical 
length raises the likelihood of temporal dispersion in corticospinal 
impulse waves. Consequently, higher-intensity cortical stimulation 
is required to synchronize motor neuron discharges innervating leg 
muscles, resulting in a higher activation threshold for leg muscles 
compared to hand muscles (Groppa et al., 2012). To achieve this 
goal using traditional figure-of-eight coils, increased stimulation 
intensity would be necessary. However, according to standard TMS 
safety guidelines, such high-intensity stimulation is neither safe nor 
permissible due to the risk of significant adverse eects. In contrast, 
dTMS ensures patient safety while delivering optimal stimulation 
eÿcacy. 

Balance function is closely associated with post-stroke walking 
ability, functional independence, and fall risk. Therefore, restoring 
balance function as early as possible is one of the important 
goals of rehabilitation for stroke patients (Louie and Eng, 2018). 
Human balance is regulated by the brain through the integration 
of multisensory information. As a part of the frontal cortex-basal 
ganglia network, the M1 of the cerebral cortex is considered to be 
related to balance and posture control (Demain et al., 2014). Related 
studies have shown that TMS targeting the M1 not only modulates 
cortical excitability but also enhances neural network connections 
between the M1 and the cerebellum, supplementary motor area 
(SMA), and related functional areas (Tremblay et al., 2016). The 
enhancement of the connections between these dierent brain 
regions is of great significance in improving the balance ability 
and posture control ability of stroke patients. Our study found 
that after 4 weeks of intervention, dTMS was significantly superior 
to rTMS in improving the TUGT in subacute stroke patients 
(p < 0.05). Interestingly, no significant advantage of dTMS over 
rTMS was observed in BBS improvements. We hypothesize that 
this discrepancy may arise because dTMS exhibits greater eÿcacy 
in enhancing dynamic balance (e.g., rising, walking, turning), 
whereas the BBS primarily assesses global balance capacity and is 
less sensitive to subtle changes in specific dynamic functions (e.g., 
turning speed). 

Improving cerebral cortical excitability is of great significance 
for reconstructing brain networks and facilitating descending 
cortical pathways (Bolognini et al., 2009). In this study, RMT 
was measured to reflect the excitability of the motor cortex. 
After 4 weeks of intervention, we found that both dTMS and 
rTMS could improve the excitability of the cerebral cortex in 
subacute stroke patients. MEP can reflect the conduction function 
and integrity of the corticospinal tract (Welch et al., 2020). In 
this study, because few patients exhibited elicitable MEPs on the 
hemiplegic side before intervention, we used the MEP elicitation 
rate to reflect the recovery of the corticospinal tract. The results 
showed no significant dierence in the MEP elicitation rate 
between the two groups before and after intervention. This may 
be because the reconstruction of neural pathways may be aected 
by many factors, such as growth factors and inflammatory factors 
in the microenvironment and energy parameters and frequency 
parameters of external electromagnetic stimulation (Zheng and 
Xu, 2020). Furthermore, the single-target stimulation protocol 
used in this study may limit the activation of latent or impaired 
neural pathways. In the future, multi-target stimulation of neural 
pathways can be considered to further activate specific cortical 
areas or corticospinal tracts and regulate motor neural pathways 
related to reconstruction. Finally, the intervention period of this 
study is relatively short, and it can be extended in the future to 
explore the eect of dTMS on MEP and its potential mechanism. 

Additionally, we found significant correlations between 
patients’ RMT and multi-dimensional assessments of lower 
extremity motor function (including FMA-LE, 10 m MWS, BBS, 
TUGT, and walking velocity) after 4 weeks of intervention. This 
suggests that cerebral cortical excitability may act as a critical 
mediating factor in the recovery of lower extremity motor 
function. Therefore, greater attention should be paid to changes 
in cerebral cortical excitability during clinical rehabilitation 
for stroke patients. Comparison with prior studies: Rosso and 
Lamy (2018) reported an association between RMT and upper 
limb motor function but did not involve lower limbs. Our 
study extends the predictive value of RMT to lower limb motor 
scenarios. Furthermore, RMT serves only as an indirect indicator 
of cerebral cortical excitability. Future research should integrate 
multimodal neuroimaging techniques, such as Transcranial 
Magnetic Stimulation-Electroencephalography (TMS-EEG) or 
Functional Magnetic Resonance Imaging (fMRI), to validate the 
relationship between brain network-level changes and lower 
extremity motor function. It should be noted that the results of this 
correlation study are exploratory findings, and their significance 
still needs to be interpreted cautiously in conjunction with specific 
clinical contexts. 

This study had several limitations. First, most of the patients 
in this study were male, aged between 50 and 70 years old, 
which may lead to gender and age bias. Second, this study used 
neuroelectrophysiological techniques to observe the excitability of 
the cerebral cortex and the recovery of the central nervous system. 
However, there was still a lack of functional imaging techniques 
to verify. Third, we did not classify ischemic and hemorrhagic 
stroke, so it is unclear whether there are any dierences in the 
eÿcacy of dTMS in patients with dierent stroke subtypes. Fourth, 
this study was evaluated only after the end of the intervention. 
In future studies, long-term follow-up evaluation should be 
added to clarify the persistence and stability of the intervention 
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eect. Finally, since prior studies have confirmed a statistically 
significant dierence in therapeutic eÿcacy between dTMS and 
sham stimulation, this study did not include a sham stimulation 
group. Therefore, it is impossible to directly compare the eÿcacy 
dierences between dTMS and sham stimulation, and between 
rTMS and sham stimulation. 

5 Conclusion 

Both dTMS and rTMS can improve lower extremity motor 
dysfunction in subacute stroke patients. Compared to rTMS, dTMS 
may provide more facilitative and accelerative eects to promote 
FMA-LE, TUGT, 10 m MWS, and walking velocity. Therefore, as an 
adjunct to conventional rehabilitation therapies, dTMS is a valuable 
therapeutic option in stroke rehabilitation programs. 
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