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Background: Excessive daytime sleepiness (EDS), which is common in Parkinson’s 
disease (PD), has been reported to exacerbate gait disturbance in patients with 
PD, but there is a lack of objective assessment, as well as an unknown specific 
mechanism. The purpose of our study is to explore the relationship between 
EDS and gait parameters.
Methods: Sixty-one patients with PD were recruited and divided into the EDS 
group (n = 29) and the non-EDS group (n = 32) based on the scores of the 
Epworth Sleepiness Scale (ESS). The gait metrics of the two groups were then 
assessed by wearable devices and compared under various walking scenarios.
Results: Compared with the non-EDS group, the EDS group showed significantly 
shorter step lengths and stride lengths, slower walk speed and gait speed, 
reduced shank-max forward swing and sagittal angular velocity, and increased 
phase coordination indices and mean duration of turns. Pearson correlation 
analysis revealed a significant association between ESS scores and various gait 
parameters. Furthermore, multiple linear regression analysis confirmed that EDS 
is an independent factor influencing gait in patients with PD.
Conclusion: EDS was independently associated with gait disturbances in 
patients with PD, suggesting that EDS symptoms warrant serious attention in 
clinical practice.
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1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder that predominantly 
affects the elderly. It is characterized by motor symptoms, such as bradykinesia, resting 
tremor, and abnormal gait, and non-motor symptoms, including mood disorders, insomnia, 
autonomic dysfunctions, and cognitive impairments (Tanner and Ostrem, 2024). Notably, up 
to 50% of PD patients experience excessive daytime sleepiness (EDS; Abbott et al., 2005), 
which is often associated with disease progression and dopaminergic drugs, especially 
dopaminoagonists (Montastruc et al., 2001). It refers to the significant episodes during the 
day when patients struggle to remain awake and alert, resulting in an uncontrollable need for 
sleep or inadvertent lapses into sleep (Sateia, 2014). Furthermore, gait disruption is one of 
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the most prevalent motor complaints among PD patients, which can 
be exacerbated by EDS (Höglund et al., 2015; Chen et al., 2025). 
Previous studies on the relationship between EDS and gait have used 
scales to assess gait. Currently, none of the objective research focuses 
on the relationship between EDS and gait abnormalities. Recent 
advances in wearable sensor technology have enabled researchers to 
measure various aspects of gait, including speed and movement 
patterns (Liu et al., 2022). This makes it possible to objectively assess 
and record gait impairment in PD patients (Pulliam et  al., 2018; 
Hinchliffe et al., 2024; Borzì et al., 2025).

In this study, a wearable device equipped with inertial sensors was 
employed to measure the temporal and spatial gait characteristics of 
PD patients with and without EDS during the Timed Up and Go 
(TUG) paradigm and 5-meter straight walking paradigm, aiming at 
investigating the relationship between EDS and gait parameters.

2 Materials and methods

2.1 Participants

Sixty-one patients with PD were recruited at the outpatient 
clinic of the Department of Neurology at the Third Affiliated 
Hospital of Xinxiang Medical University between April 1, 2023, 
and February 1, 2025. The diagnosis was made according to the 
MDS criteria for PD (Postuma et al., 2015). The patients with PD 
included were those at the Hoehn-Yahr (HY) stage ranging from 1 
to 2.5. All participants provided written informed consent prior to 
enrollment in the study. Patients who cannot complete the gait test 
and those with secondary Parkinsonism syndrome or other 
superimposed syndromes will be excluded. The study conforms to 
the ethical guidelines set forth by the Declaration of Helsinki. The 
study was authorized by the Ethics Committee of the Third 
Affiliated Hospital of Xinxiang Medical University (approval 
number K2022-072-01).

2.2 Demographic information and clinical 
evaluations

The demographic data collected included gender, age, height, 
education, levodopa equivalent daily dose (LEDD), disease duration, 
past illness, and surgical history. The severity of motor symptoms was 
evaluated by the MDS-Unified Parkinson’s Disease Rating Scale Part 
3 (MDS-UPDRS-III). The severity of EDS was assessed by the 
Epworth Sleepiness Scale (ESS), ranging from 0 to 24, with higher 
scores indicating more severe EDS. EDS patients are defined as 
patients with an ESS score of more than 10 points (Johns, 1991). The 
psychological conditions and cognitive functions of the patients were 
assessed by the Hamilton Anxiety Scale (HAMA), Hamilton 
Depression Scale (HAMD) and Minimum Mental State Examination 
(MMSE), respectively. The patients’ quality of life (QoL) was 
evaluated by the Parkinson’s Disease Questionnaire-39 (PDQ-39), 
and the QoL burden was reflected by the PDQ-39 summary index 
(PDSI) (Jenkinson et al., 1997). The fatigue level was evaluated by the 
fatigue severity scale (FSS). The balance was evaluated by the Berg 
Balance Scale (BBS).

2.3 Gait assessments

Gait analysis was performed using the GYENNO MATRIX 
Wearable Movement and Gait Quantitative Evaluation System, as 
previously validated (Cai et al., 2023). Sensors are mounted on 10 
regions of the body, specifically the chest, waist, left and right wrists, 
left and right thighs, left and right calves, and left and right feet, and 
are employed to collect motion data, including trajectories, 
accelerations, and angular velocities, from these regions, as well as for 
the detection of the balance index in the walking state: Phase 
coordination index (PCI; Plotnik et al., 2007; Plotnik et al., 2009). This 
system is helpful for clinicians to assess movement with objective data. 
This system has two detecting modes: TUG and 5-meter straight 
walking. Participants were instructed to walk at a normal speed during 
the TUG test and at their maximum walking speed for the 5-meter 
straight walking test, which were used to represent both normal and 
rapid gait patterns in daily life. These gait measurements have been 
widely used in previous studies, and presented well efficiency (Gildner 
et al., 2019; Wang and Zou, 2022). Gait measurements were carried 
out during the “on-period,” and assessors ensured the safety of 
participants while they completed the gait tasks.

2.4 Statistical analysis

Continuous variables conforming to a normal distribution were 
presented as mean ± standard deviation (SD), while non-normally 
distributed variables were characterized by median values 
accompanied by interquartile range (IQR). Continuous variables were 
analysed between groups with Student’s t-test for parametric data and 
Mann–Whitney U test for nonparametric data, determined through 
distribution normality assessments. Categorical variables were 
evaluated using chi-square or Fisher’s exact tests. To account for 
multiple testing, two-sided p values were adjusted using the 
Benjamini-Hochberg (B/H) method to control the false discovery rate 
(FDR). An association was considered statistically significant if the 
corresponding B/H-adjusted p value was less than 0.05, indicating an 
FDR of 5%. The relationship between ESS ratings and gait metrics was 
examined by Pearson correlation. In the multiple linear regression 
analysis, the EDS (categorical variable) was set as the independent 
variable and the gait parameters as the dependent variable, adjusting 
for the factors of age, sex, disease duration, LEDD and FSS scores. The 
difference was statistically significant when p < 0.05. The statistical 
analysis was performed with IBM SPSS Statistics 27.0.

3 Results

3.1 Demographic information and clinical 
characteristics

Twenty-nine of the 61 patients with PD (47.5%) were classsified 
into the EDS group. No statistically significant difference was found 
in age and education years between the two groups. In our study, 
males were more likely to have EDS which is also in accordance with 
previous reports (Feng et al., 2021). The patients in the EDS group had 
a longer duration of the disease, and took more medication than the 
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non-EDS group. Moerover, the MDS-UPDRS-III score, PDSI score, 
FSS score, and BBS score of patients in the EDS group were 
significantly higher than those in the non-EDS group (Table 1).

3.2 Gait parameters in different walking 
paradigms

In the task of TUG, the patients in the EDS group had shorter step 
length and stride length, slower walk speed and more reduced 
shank-max forward swing, shank-max sagittal angular velocity and 
mean angular velocity, compared to non-EDS group (Table 2 and 
Figure 1).

In the 5-meter straight walking, EDS group had shorter step 
length, stride length, smaller shank-max forward swing, shank-max 
sagittal angular velocity and shank—swing speed compared to 
non-EDS group, consistent with the TUG paradigm (Table 3 and 
Figure 2).

3.3 The correlation of EDS with gait 
parameters

There was a significant correlation between the TUG gait 
parameters and the 5-meter straight walking parameters and ESS 
scores in PD patients. In TUG, ESS scores were negatively correlated 
with step length (r = −0.26, p < 0.05), stride length (r = −0.26, 
p < 0.05), shank-max forward swing (r = −0.341, p < 0.01), 
shank-max sagittal angular velocity (r = −0.273, p < 0.05), and mean 
angular velocity (r = −0.358, p < 0.01) and positively correlated with 
phase coordination index (r = 0.253, p < 0.05). In 5-meter straight 
walking, the ESS scores were also associated with step length 
(r = −0.319, p < 0.05), walk speed (r = −0.355, p < 0. 01), gait speed 
(r = −0.375, p < 0.01), stride length (r = −0.326, p < 0. 05), shank-max 
forward swing (r = −0.331, p < 0.05), shank-max sagittal angular 
velocity (r = −0.353, p < 0.01), and shank-swing speed (r = −0.431, 
p < 0.01).

3.4 The multiple linear regression analysis 
of EDS and gait parameters

To investigate the relationship between EDS and individual gait 
parameters and control for the effects of confounding factors 
(including age, sex, disease duration, LEDD, and FSS score), multiple 
linear regression analysis were performed in this study. The 
unadjusted crude model showed that EDS had a significant effect on 
step length (B = −9.507, p = 0.002), walk speed (B = −0.188, 
p = 0.006) and stride length (B = −18.201, p = 0.002)in TUG, and 
step length (B = −12.266, p < 0.001), walk speed (B = −0.265, 
p < 0.001), and stride length (B = −22.681, p < 0.001) in the 5-meter 
straight walking, were all significant. Furthermore, after adjusting for 
age, disease duration, gender, LEDD and FSS score, EDS still had a 
significant effect on step length (B = −10.417, p = 0.009), walk speed 
(B = −0.232, p = 0.01) and stride length (B = −20.162, p = 0.01) in 
TUG, and step length (B = −12.195, p = 0.007), walk speed 
(B = −0.219, p = 0.018) and stride length (B = −21.858, p = 0.008) in 
the 5-meter straight walking, remained significant (Table 4).

4 Discussion

In this study, nearly half of the patients with PD exhibited EDS, 
and male patients and those with a longer disease duration were more 
likely to present with EDS. These results are consistent with previous 
reports (Mengdie et al., 2022; Chahine et al., 2017; Liu et al., 2021). 
The LEDD of patients in the EDS group was significantly higher than 
patients in the non-EDS group, which is common in reports related 
to EDS. EDS is more common in PD patients taking higher doses of 
Dopaminoagonists and levodopa (Liu et  al., 2022). Even most 
antiparkinsonian medications (Koller et al., 2005; Hauser et al., 2014) 
can induce or aggravate EDS due to their sedative effects (Arnulf and 
Leu-Semenescu, 2009). However, some drugs can also improve EDS, 
such as piribedil (Eggert et al., 2014) and selegiline (Gallazzi et al., 
2021). Therefore, it is very important to carefully assess EDS and select 
reasonable drugs for patients.

TABLE 1  Baseline participant Clinicodemographic characteristics with different EDS statuses.

Characteristic Total (n = 61) EDS (n = 29) non-EDS (n = 32) p value

Sex (M/F) 33/28 23/6 10/22 <0.001***

Age 65.1 ± 8.1 67.1 ± 8.3 63.2 ± 7.6 0.06

Education (years) 8.8 ± 3.3 9.2 ± 2.7 8.5 ± 3.8 0.354

Disease duration (years) 5.2 ± 3.5 6.3 ± 3.5 4.2 ± 3.1 0.016*

LEDD (mg) 487.3 ± 207.3 566.7 ± 192.4 415.3 ± 196.2 0.004**

MDS-UPDRS-III 39 (27,48) 42 (34,53.5) 31 (23.5,42.8) 0.003**

MMSE 26 (24,28) 27 (26,28) 28 (25,29) 0.630

HAMD 6.2 ± 4.7 6.9 ± 4.6 5.6 ± 4.7 0.259

HAMA 8.4 ± 5.3 8.8 ± 5.6 8.1 ± 5.1 0.643

PDSI 0.88 (0.25,1.31) 1.25 (0.44,5.44) 0.75 (0.03,1) 0.006**

FSS 36 (15,63) 59 (37,63) 15 (9,38) <0.001***

BBS 51 (47,55) 49 (45,51) 54 (51,56) <0.001***

Data are shown as mean ±standard deviation or median (P25, P75). EDS Patients with EDS, non-EDS Patients without EDS, LEDD, Levodopa Equivalent Daily Dose; MDS-UPDRS-III, 
Movement Disorders Society Unified Parkinson’s Disease Rating Scale part 3; MMSE, Brief Mental State Examination; HAMA, The Hamilton Anxiety Scale; HAMD, Hamilton Depression 
Scale; PDSI, Parkinson’s disease summary index; FSS, fatigue severity scale; BBS, Berg Balance Scale. *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 2  Comparison of gait parameters with different EDS statuses in the TUG.

Characteristic Total (n = 61) EDS (n = 29) non-EDS (n = 32) p value

Step length (cm) 50.3 ± 12.2 45.3 ± 12.0 54.9 ± 10.7 0.005**

Walk speed (m/s) 0.97 (0.78,1.11) 0.90 (0.71,1.06) 1.01 (0.93,1.17) 0.026*

Stride length (cm) 102.90 (86.89,114.42) 92.62 (78.42,109.65) 110.20 (96.02,123.04) 0.005**

stride duration (s) 1.08 ± 0.11 1.08 ± 0.11 1.08 ± 0.11 0.904

Cadence (steps/min) 113.44 ± 11.84 113.92 ± 11.84 113.01 ± 11.06 0.875

Double support (%) 19.47 (16.95,23.46) 19.03 (16.38,23.11) 20.13 (17.61,22.91) 0.604

Stance (%) 59.32 (57.71,61.04) 58.74 (57.59,61.02) 59.46 (58.33,61.29) 0.604

Swing (%) 40.68 (38.96,42.29) 41.27 (38.98,42.41) 40.54 (38.71,41.67) 0.604

Shank-max forward swing (°) 18.29 ± 7.43 15.07 ± 6.96 21.11 ± 6.71 0.004**

Shank-max backward swing (°) 45.13 (42.87,47.40) 44.34 (40.62,46.02) 45.99 (43.75,47.76) 0.052

Shank-max sagittal angular velocity (°/s) 316.66 ± 56.75 292.92 ± 56.75 338.17 ± 42.18 0.004**

Stride velocity difference (m/s) 0.049 ± 0.018 0.048 ± 0.013 0.050 ± 0.021 0.847

Mean phase difference (%) 2.99 (2.37,4.12) 3.25 (2.57,4.52) 2.92 (1.97,3.67) 0.904

Phase coordination index (%) 5.65 (4.45,7.70) 6.53 (5.32,9.66) 5.12 (3.71,6.75) 0.009**

Mean duration of turn (s) 2.73 (2.20,3.34) 2.99 (2.53,3.69) 2.42 (1.97,2.84) 0.004**

Mean angular velocity (°/s) 69.10 ± 21.30 59.60 ± 17.14 77.71 ± 21.26 0.004**

Data are shown as mean ± standard deviation, median (P25, P75). *p < 0.05, **p < 0.01, ***p < 0.001. EDS, Patients with EDS, non-EDS Patients without EDS. Multiple comparison 
correction was performed using Benjamini/Hochberg (BH), the p value is the adjusted p value based on BH.

FIGURE 1

Comparison of gait parameters with significant differences in the TUG between different EDS states. EDS Patients with EDS, non-EDS Patients without 
EDS. *p < 0.05, **p < 0.01, ***p < 0.001. Multiple comparison correction was performed using Benjamini/Hochberg (BH).
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Longitudinal studies on PD have identified several risk factors 
for EDS, including age, gender, and disease duration (Zhu et al., 
2016; Tholfsen et al., 2015). Additionally, we found that there was a 

significant difference in FSS scores between the two groups at 
baseline. So we  adjusted these risk factors that might affect the 
outcome. By quantifying gait parameters more objectively, we found 

TABLE 3  Comparison of gait parameters with different EDS statuses in the 5-meter straight walking.

Characteristic Total (n = 54) EDS (n = 24) non-EDS (n = 30) p value

Step length (cm) 54.74 (47.46,63.55) 49.46 (43.04,57.32) 59.56 (52.53,68.76) 0.002**

Walk speed (m/s) 1.04 ± 0.28 0.90 ± 0.28 1.16 ± 0.22 0.001**

Gait speed (m/s) 0.99 ± 0.26 0.85 ± 0.25 1.10 ± 0.20 0.001**

Stride length (cm) 103.16 (88.64,118.91) 94.87 (80.28,105.85) 114.37 (97.90,129.34) 0.002**

Stride duration (s) 1.06 ± 0.11 1.09 ± 0.13 1.04 ± 0.09 0.204

Cadence (step/min) 115.73 ± 12.72 113.63 ± 15.46 117.40 ± 9.99 0.369

Double support (%) 20.60 (18.48,23.55) 21.39 (16.72,25.15) 20.60 (18.51,23.00) 0.903

Swing (%) 40.16 (38.11,41.24) 40.19 (37.24,42.51) 40.16 (38.57,41.11) 0.903

Stance (%) 59.84 (58.77,61.89) 59.81 (57.49,62.76) 59.84 (58.89,61.43) 0.903

Shank-max forward swing (°) 19.77 ± 7.98 15.99 ± 7.95 22.79 ± 6.71 0.002**

Shank-max backward swing (°) 46.10 (43.03,48.31) 44.17 (42.15,47.66) 46.66 (44.27,48.84) 0.114

Shank-max sagittal angular velocity (°/s) 327.17 ± 63.25 295.86 ± 65.94 352.23 ± 49.02 0.002**

Shank-Swing Speed (m/s) 2.42 (2.16,3.06) 2.17 (2.03,2.43) 2.84 (2.33,3.40) <0.001***

Data are shown as mean ± standard deviation, median (P25, P75). *p < 0.05, **p < 0.01, ***p < 0.001. EDS Patients with EDS, non-EDS Patients without EDS. Multiple comparison correction 
was performed using Benjamini/Hochberg (BH), the p value is the adjusted P value based on BH.

FIGURE 2

Comparison of gait parameters with significant differences in the 5-meter straight walking between different EDS states. EDS Patients with EDS, non-
EDS Patients without EDS. *p < 0.05, **p < 0.01, ***p < 0.001. Multiple comparison correction was performed using Benjamini/Hochberg (BH).
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that PD patients with EDS exhibited more severe gait impairment. 
Specifically, EDS may be associated with the deterioration of both 
normal walking gait and fast walking gait in PD patients. Even the 
effect of EDS on gait remained significant after adjusting for 
confounders such as sex, age, disease duration, LEDD and FSS. The 
results are consistent with previous scale-only studies showing that 
EDS is associated with a wider range of motor and nonmotor PD 
features including axial/postural/gait deficits, depression, and pain 
(Höglund et  al., 2015). One reason may be  that EDS is often 
accompanied by cognitive impairments such as poor concentration 
(Bohnen et al., 2012), memory loss and executive dysfunction (Gasa 
et al., 2013). This cognitive dysfunction affects the patient’s gait in 
the early stages of PD (Rochester et  al., 2017). During walking, 
cognitive functions play an important role in gait planning, 
maintenance of balance, and perception of and response to the 
environment. Impaired cognitive function may lead to gait 
abnormalities such as disorientation and delayed reaction time when 
walking, increasing the risk of falls. The observed sensory integration 
delays may arise from attentional deficits associated with sleep 
disturbances. Effective postural control fundamentally relies on the 
central nervous system’s capacity to synchronize visual cues, 
vestibular signals, and proprioceptive feedback in real-time (Teasdale 
and Simoneau, 2001; Ouchi et al., 1999); this sensory integration 
requires a high degree of attention, especially as the efficiency of 
sensory inputs decreases with age, which may affect gait performance 
(Tyagi et  al., 2017). Although previous studies have attributed 
EDS-related gait deficiency to impaired attention or executive 
function, we  found comparable MMSE scores between groups, 
which seems contradictory. However, the MMSE primarily assesses 
general cognition and lacks sensitivity to executive dysfunction in 
specific domains (Hausdorff, 2005). In PD patients, gait control relies 
greatly on prefrontal-mediated processes that cannot be captured by 
the MMSE.

Step length shortening is consistent with the “sequence effect” of 
PD, in which there is a gradual decay in amplitude of movement, 
which is usually associated with basal ganglia dysfunction. EDS may 
exacerbate this phenotype through nigrostriatal dopamine depletion, 
as animal models show that sleep deprivation accelerates the loss of 
dopaminergic neurons (Parhizkar et al., 2023).

Importantly, gait disturbances caused by EDS are a direct 
threat to patient safety and quality of life. Both gait speed and 

stride length, which are predictors of falls in older adults 
(Kyrdalen et al., 2019), are significantly reduced in PD patients 
with EDS, who are at very high risk of falling (Fasano et al., 2017; 
Allen et al., 2013). Falls frequently lead to fractures (Kalilani et al., 
2016), hospitalization (Paul et  al., 2017), functional decline, 
significantly reducing patients’ independence and quality of life 
(Rascol et al., 2015). Therefore, early detection of EDS provides a 
critical window for intervention to mitigate future gait 
deterioration and fall risk. We  recommend emphasizing the 
management of EDS in early PD, including nonpharmacological 
therapies such as repetitive transcranial magnetic stimulation that 
may improve both Sleep problems and motor function (Zhang 
et al., 2022).

While the use of scales and direct observation by clinicians is still 
common in routine assessments, a growing number of studies has 
demonstrated the added value of wearable inertial sensors for 
objective gait analysis in patients with PD (Pulliam et al., 2018; Ricci 
et al., 2020; Isaacson et al., 2019; Dai et al., 2021; Perez-Ibarra et al., 
2020; Rigas et al., 2012; Demrozi et al., 2020; Mariani et al., 2013). On 
this basis, we used the Wearable Movement and Gait Quantitative 
Assessment System to obtain accurate quantitative gait parameters 
during the TUG and the 5-meter straight walking task. We aimed to 
provide an objective and intuitive assessment of how EDS affects gait 
function in patients with PD.

There are certain restrictions on this study. The sample size 
of the study was relatively small. Consequently, the reliability and 
generalizability of the results may be  limited. To enhance the 
statistical significance of the findings, future research should 
consider increasing the sample size. Using only the MMSE as a 
cognitive assessment tool is insufficient, and future research 
could incorporate more tests, especially for specific cognitive 
functions such as attention and integration. This study did not 
analyse patients for the specific type of medication they were 
using and only focused on patients with PD in the early stages of 
the disease, future studies should include detailed medications 
and patients in all periods of time. Additionally, due to the cross-
sectional nature of this study, it was not possible to establish a 
causal relationship between gait impairment and EDS. Future 
investigations could adopt a longitudinal study design to better 
understand the long-term effects of EDS on gait function by 
tracking changes over time.

TABLE 4  Multiple linear regression analysis of EDS and gait parameters before and after model adjustment.

Gait parameters unadjusted Adjusted

B(95%CI) β p value B(95%CI) β p value

Step length1 −9.507 (−15.306 ~ −3.709) −0.393 0.002** −10.417 (−18.166 ~ −2.667) −0.430 0.009**

Walk speed1 −0.188 (−0.320 ~ −0.056) −0.349 0.006** −0.232 (−0.407 ~ −0.058) −0.431 0.01*

Stride length1 −18.201 (−29.537 ~ −6.864) −0.386 0.002** −20.162 (−35.285 ~ −5.039) −0.427 0.01*

Step length2 −12.266 (−19.029 ~ −5.504) −0.451 <0.001*** −12.195 (−20.828 ~ −3.562) −0.448 0.007**

Walk speed2 −0.265 (−0.403 ~ −0.128) −0.473 <0.001*** −0.219 (−0.399 ~ −0.040) −0.391 0.018*

Stride length2 −22.681 (−34.841 ~ −10.521) −0.461 <0.001*** −21.858 (−37.661 ~ −6.055) −0.444 0.008**

B regression coefficient, CI confidence interval, β standardized regression coefficient. *p < 0.05, **p < 0.01, ***p < 0.001.
1TUG.
25-meter straight walking.
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