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Background: Excessive daytime sleepiness (EDS), whichiscommonin Parkinson’s
disease (PD), has been reported to exacerbate gait disturbance in patients with
PD, but there is a lack of objective assessment, as well as an unknown specific
mechanism. The purpose of our study is to explore the relationship between
EDS and gait parameters.

Methods: Sixty-one patients with PD were recruited and divided into the EDS
group (n = 29) and the non-EDS group (n = 32) based on the scores of the
Epworth Sleepiness Scale (ESS). The gait metrics of the two groups were then
assessed by wearable devices and compared under various walking scenarios.
Results: Compared with the non-EDS group, the EDS group showed significantly
shorter step lengths and stride lengths, slower walk speed and gait speed,
reduced shank-max forward swing and sagittal angular velocity, and increased
phase coordination indices and mean duration of turns. Pearson correlation
analysis revealed a significant association between ESS scores and various gait
parameters. Furthermore, multiple linear regression analysis confirmed that EDS
is an independent factor influencing gait in patients with PD.

Conclusion: EDS was independently associated with gait disturbances in
patients with PD, suggesting that EDS symptoms warrant serious attention in
clinical practice.

KEYWORDS

Parkinson'’s disease, excessive daytime sleepiness, gait, gait assessment, wearable
sensors

1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder that predominantly
affects the elderly. It is characterized by motor symptoms, such as bradykinesia, resting
tremor, and abnormal gait, and non-motor symptoms, including mood disorders, insomnia,
autonomic dysfunctions, and cognitive impairments (Tanner and Ostrem, 2024). Notably, up
to 50% of PD patients experience excessive daytime sleepiness (EDS; Abbott et al., 2005),
which is often associated with disease progression and dopaminergic drugs, especially
dopaminoagonists (Montastruc et al., 2001). It refers to the significant episodes during the
day when patients struggle to remain awake and alert, resulting in an uncontrollable need for
sleep or inadvertent lapses into sleep (Sateia, 2014). Furthermore, gait disruption is one of
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the most prevalent motor complaints among PD patients, which can
be exacerbated by EDS (Hoglund et al.,, 2015; Chen et al., 2025).
Previous studies on the relationship between EDS and gait have used
scales to assess gait. Currently, none of the objective research focuses
on the relationship between EDS and gait abnormalities. Recent
advances in wearable sensor technology have enabled researchers to
measure various aspects of gait, including speed and movement
patterns (Liu et al., 2022). This makes it possible to objectively assess
and record gait impairment in PD patients (Pulliam et al., 2018;
Hinchliffe et al., 2024; Borzi et al., 2025).

In this study, a wearable device equipped with inertial sensors was
employed to measure the temporal and spatial gait characteristics of
PD patients with and without EDS during the Timed Up and Go
(TUG) paradigm and 5-meter straight walking paradigm, aiming at
investigating the relationship between EDS and gait parameters.

2 Materials and methods
2.1 Participants

Sixty-one patients with PD were recruited at the outpatient
clinic of the Department of Neurology at the Third Affiliated
Hospital of Xinxiang Medical University between April 1, 2023,
and February 1, 2025. The diagnosis was made according to the
MDS criteria for PD (Postuma et al., 2015). The patients with PD
included were those at the Hoehn-Yahr (HY) stage ranging from 1
to 2.5. All participants provided written informed consent prior to
enrollment in the study. Patients who cannot complete the gait test
and those with secondary Parkinsonism syndrome or other
superimposed syndromes will be excluded. The study conforms to
the ethical guidelines set forth by the Declaration of Helsinki. The
study was authorized by the Ethics Committee of the Third
Affiliated Hospital of Xinxiang Medical University (approval
number K2022-072-01).

2.2 Demographic information and clinical
evaluations

The demographic data collected included gender, age, height,
education, levodopa equivalent daily dose (LEDD), disease duration,
past illness, and surgical history. The severity of motor symptoms was
evaluated by the MDS-Unified Parkinson’s Disease Rating Scale Part
3 (MDS-UPDRS-III). The severity of EDS was assessed by the
Epworth Sleepiness Scale (ESS), ranging from 0 to 24, with higher
scores indicating more severe EDS. EDS patients are defined as
patients with an ESS score of more than 10 points (Johns, 1991). The
psychological conditions and cognitive functions of the patients were
assessed by the Hamilton Anxiety Scale (HAMA), Hamilton
Depression Scale (HAMD) and Minimum Mental State Examination
(MMSE), respectively. The patients’ quality of life (QoL) was
evaluated by the Parkinson’s Disease Questionnaire-39 (PDQ-39),
and the QoL burden was reflected by the PDQ-39 summary index
(PDSI) (Jenkinson et al., 1997). The fatigue level was evaluated by the
fatigue severity scale (FSS). The balance was evaluated by the Berg
Balance Scale (BBS).
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2.3 Gait assessments

Gait analysis was performed using the GYENNO MATRIX
Wearable Movement and Gait Quantitative Evaluation System, as
previously validated (Cai et al., 2023). Sensors are mounted on 10
regions of the body, specifically the chest, waist, left and right wrists,
left and right thighs, left and right calves, and left and right feet, and
are employed to collect motion data, including trajectories,
accelerations, and angular velocities, from these regions, as well as for
the detection of the balance index in the walking state: Phase
coordination index (PCI; Plotnik et al., 2007; Plotnik et al., 2009). This
system is helpful for clinicians to assess movement with objective data.
This system has two detecting modes: TUG and 5-meter straight
walking. Participants were instructed to walk at a normal speed during
the TUG test and at their maximum walking speed for the 5-meter
straight walking test, which were used to represent both normal and
rapid gait patterns in daily life. These gait measurements have been
widely used in previous studies, and presented well efficiency (Gildner
et al,, 2019; Wang and Zou, 2022). Gait measurements were carried
out during the “on-period;,” and assessors ensured the safety of
participants while they completed the gait tasks.

2.4 Statistical analysis

Continuous variables conforming to a normal distribution were
presented as mean + standard deviation (SD), while non-normally
distributed variables were characterized by median values
accompanied by interquartile range (IQR). Continuous variables were
analysed between groups with Student’s t-test for parametric data and
Mann-Whitney U test for nonparametric data, determined through
distribution normality assessments. Categorical variables were
evaluated using chi-square or Fisher’s exact tests. To account for
multiple testing, two-sided p values were adjusted using the
Benjamini-Hochberg (B/H) method to control the false discovery rate
(FDR). An association was considered statistically significant if the
corresponding B/H-adjusted p value was less than 0.05, indicating an
FDR of 5%. The relationship between ESS ratings and gait metrics was
examined by Pearson correlation. In the multiple linear regression
analysis, the EDS (categorical variable) was set as the independent
variable and the gait parameters as the dependent variable, adjusting
for the factors of age, sex, disease duration, LEDD and ESS scores. The
difference was statistically significant when p < 0.05. The statistical
analysis was performed with IBM SPSS Statistics 27.0.

3 Results

3.1 Demographic information and clinical
characteristics

Twenty-nine of the 61 patients with PD (47.5%) were classsified
into the EDS group. No statistically significant difference was found
in age and education years between the two groups. In our study,
males were more likely to have EDS which is also in accordance with
previous reports (Feng et al., 2021). The patients in the EDS group had
a longer duration of the disease, and took more medication than the
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TABLE 1 Baseline participant Clinicodemographic characteristics with different EDS statuses.

10.3389/fnagi.2025.1626247

Characteristic Total (n = 61) EDS (n = 29) non-EDS (n = 32)

Sex (M/F) 33/28 23/6 10/22 <0.001%***
Age 65.1 £8.1 67.1+8.3 632+7.6 0.06
Education (years) 8.8+3.3 92+27 8.5+3.8 0.354
Disease duration (years) 52+35 6.3+3.5 42+3.1 0.016%*
LEDD (mg) 487.3 £207.3 566.7 +£192.4 415.3 £196.2 0.004%*
MDS-UPDRS-IIT 39 (27,48) 42 (34,53.5) 31(23.5,42.8) 0.003%*
MMSE 26 (24,28) 27 (26,28) 28 (25,29) 0.630
HAMD 62147 6.9+4.6 56+4.7 0.259
HAMA 8.4+53 8.8+5.6 8.1+5.1 0.643
PDSI 0.88 (0.25,1.31) 1.25 (0.44,5.44) 0.75 (0.03,1) 0.006%*
ESS 36 (15,63) 59 (37,63) 15 (9,38) <0.001 %%+
BBS 51 (47,55) 49 (45,51) 54 (51,56) <0.001%%

Data are shown as mean +standard deviation or median (P25, P75). EDS Patients with EDS, non-EDS Patients without EDS, LEDD, Levodopa Equivalent Daily Dose; MDS-UPDRS-III,
Movement Disorders Society Unified Parkinson’s Disease Rating Scale part 3; MMSE, Brief Mental State Examination; HAMA, The Hamilton Anxiety Scale; HAMD, Hamilton Depression
Scale; PDSI, Parkinson’s disease summary index; FSS, fatigue severity scale; BBS, Berg Balance Scale. *p < 0.05, **p < 0.01, ***p < 0.001.

non-EDS group. Moerover, the MDS-UPDRS-III score, PDSI score,
FSS score, and BBS score of patients in the EDS group were
significantly higher than those in the non-EDS group (Table 1).

3.2 Gait parameters in different walking
paradigms

In the task of TUG, the patients in the EDS group had shorter step
length and stride length, slower walk speed and more reduced
shank-max forward swing, shank-max sagittal angular velocity and
mean angular velocity, compared to non-EDS group (Table 2 and
Figure 1).

In the 5-meter straight walking, EDS group had shorter step
length, stride length, smaller shank-max forward swing, shank-max
sagittal angular velocity and shank—swing speed compared to
non-EDS group, consistent with the TUG paradigm (Table 3 and
Figure 2).

3.3 The correlation of EDS with gait
parameters

There was a significant correlation between the TUG gait
parameters and the 5-meter straight walking parameters and ESS
scores in PD patients. In TUG, ESS scores were negatively correlated
with step length (r=-0.26, p <0.05), stride length (r=-0.26,
p<0.05), shank-max forward swing (r=-0.341, p<0.0l),
shank-max sagittal angular velocity (r = —0.273, p < 0.05), and mean
angular velocity (r = —0.358, p < 0.01) and positively correlated with
phase coordination index (r = 0.253, p < 0.05). In 5-meter straight
walking, the ESS scores were also associated with step length
(r=-0.319, p < 0.05), walk speed (r = —0.355, p < 0. 01), gait speed
(r=-0.375, p < 0.01), stride length (r = —0.326, p < 0. 05), shank-max
forward swing (r = —0.331, p < 0.05), shank-max sagittal angular
velocity (r = —0.353, p < 0.01), and shank-swing speed (r = —0.431,
p<0.01).
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3.4 The multiple linear regression analysis
of EDS and gait parameters

To investigate the relationship between EDS and individual gait
parameters and control for the effects of confounding factors
(including age, sex, disease duration, LEDD, and FSS score), multiple
linear regression analysis were performed in this study. The
unadjusted crude model showed that EDS had a significant effect on
step length (B =-9.507, p=0.002), walk speed (B=-0.188,
p =0.006) and stride length (B = —18.201, p = 0.002)in TUG, and
step length (B=—-12.266, p <0.001), walk speed (B=—0.265,
p <0.001), and stride length (B = —22.681, p < 0.001) in the 5-meter
straight walking, were all significant. Furthermore, after adjusting for
age, disease duration, gender, LEDD and FSS score, EDS still had a
significant effect on step length (B = —10.417, p = 0.009), walk speed
(B =—0.232, p = 0.01) and stride length (B = —20.162, p = 0.01) in
TUG, and step length (B=-12.195 p=0.007), walk speed
(B=-0.219, p = 0.018) and stride length (B = —21.858, p = 0.008) in
the 5-meter straight walking, remained significant (Table 4).

4 Discussion

In this study, nearly half of the patients with PD exhibited EDS,
and male patients and those with a longer disease duration were more
likely to present with EDS. These results are consistent with previous
reports (Mengdie et al., 2022; Chahine et al., 2017; Liu et al., 2021).
The LEDD of patients in the EDS group was significantly higher than
patients in the non-EDS group, which is common in reports related
to EDS. EDS is more common in PD patients taking higher doses of
Dopaminoagonists and levodopa (Liu et al., 2022). Even most
antiparkinsonian medications (Koller et al., 2005; Hauser et al., 2014)
can induce or aggravate EDS due to their sedative effects (Arnulf and
Leu-Semenescu, 2009). However, some drugs can also improve EDS,
such as piribedil (Eggert et al., 2014) and selegiline (Gallazzi et al.,
2021). Therefore, it is very important to carefully assess EDS and select
reasonable drugs for patients.
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TABLE 2 Comparison of gait parameters with different EDS statuses in the TUG.

10.3389/fnagi.2025.1626247

Characteristic Total (n = 61) EDS (n = 29) non-EDS (n = 32) p value
Step length (cm) 50.3+£12.2 453 +12.0 54.9 +£10.7 0.005%*
Walk speed (m/s) 0.97 (0.78,1.11) 0.90 (0.71,1.06) 1.01 (0.93,1.17) 0.026%
Stride length (cm) 102.90 (86.89,114.42) 92.62 (78.42,109.65) 110.20 (96.02,123.04) 0.005%*
stride duration (s) 1.08 £0.11 1.08 £0.11 1.08 £0.11 0.904
Cadence (steps/min) 113.44 +11.84 113.92 +11.84 113.01 + 11.06 0.875
Double support (%) 19.47 (16.95,23.46) 19.03 (16.38,23.11) 20.13 (17.61,22.91) 0.604
Stance (%) 59.32 (57.71,61.04) 58.74 (57.59,61.02) 59.46 (58.33,61.29) 0.604
Swing (%) 40.68 (38.96,42.29) 41.27 (38.98,42.41) 40.54 (38.71,41.67) 0.604
Shank-max forward swing (°) 1829 +7.43 15.07 + 6.96 21.11+6.71 0.004%*
Shank-max backward swing (°) 45.13 (42.87,47.40) 44.34 (40.62,46.02) 45.99 (43.75,47.76) 0.052
Shank-max sagittal angular velocity (°/s) 316.66 £ 56.75 292.92 £ 56.75 338.17 £42.18 0.004**
Stride velocity difference (m/s) 0.049 £ 0.018 0.048 £ 0.013 0.050 £+ 0.021 0.847
Mean phase difference (%) 2.99 (2.37,4.12) 3.25(2.57,4.52) 2.92(1.97,3.67) 0.904
Phase coordination index (%) 5.65 (4.45,7.70) 6.53 (5.32,9.66) 5.12(3.71,6.75) 0.009%*
Mean duration of turn (s) 2.73(2.20,3.34) 2.99 (2.53,3.69) 2.42(1.97,2.84) 0.004%*
Mean angular velocity (°/s) 69.10 + 21.30 59.60 +17.14 77.71 £21.26 0.004**

Data are shown as mean + standard deviation, median (P25, P75). *p < 0.05, **p < 0.01, **¥p < 0.001. EDS, Patients with EDS, non-EDS Patients without EDS. Multiple comparison
correction was performed using Benjamini/Hochberg (BH), the p value is the adjusted p value based on BH.
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TABLE 3 Comparison of gait parameters with different EDS statuses in the 5-meter straight walking.

Characteristic

Total (n = 54)

EDS (n = 24)

10.3389/fnagi.2025.1626247

non-EDS (n = 30)

p value

Step length (cm) 54.74 (47.46,63.55) 49.46 (43.04,57.32) 59.56 (52.53,68.76) 0.0027%*
Walk speed (m/s) 1.04 £ 0.28 0.90 +0.28 1.16 £ 0.22 0.001%*
Gait speed (m/s) 0.99 +0.26 0.85+0.25 1.10 £ 0.20 0.001%*
Stride length (cm) 103.16 (88.64,118.91) 94.87 (80.28,105.85) 114.37 (97.90,129.34) 0.002%*
Stride duration (s) 1.06 £0.11 1.09£0.13 1.04 £ 0.09 0.204
Cadence (step/min) 115.73 £ 12.72 113.63 + 15.46 117.40 + 9.99 0.369
Double support (%) 20.60 (18.48,23.55) 21.39 (16.72,25.15) 20.60 (18.51,23.00) 0.903
Swing (%) 40.16 (38.11,41.24) 40.19 (37.24,42.51) 40.16 (38.57,41.11) 0.903
Stance (%) 59.84 (58.77,61.89) 59.81 (57.49,62.76) 59.84 (58.89,61.43) 0.903
Shank-max forward swing (°) 19.77 +7.98 15.99 +7.95 22.79+6.71 0.002%*
Shank-max backward swing (°) 46.10 (43.03,48.31) 44.17 (42.15,47.66) 46.66 (44.27,48.84) 0.114
Shank-max sagittal angular velocity (°/s) 327.17 £63.25 295.86 + 65.94 352.23 +49.02 0.002%*
Shank-Swing Speed (m/s) 2.42(2.16,3.06) 2.17 (2.03,2.43) 2.84(2.33,3.40) <0.001 %%

Data are shown as mean + standard deviation, median (P25, P75). *p < 0.05, **p < 0.01, ***p < 0.001. EDS Patients with EDS, non-EDS Patients without EDS. Multiple comparison correction
was performed using Benjamini/Hochberg (BH), the p value is the adjusted P value based on BH.
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TABLE 4 Multiple linear regression analysis of EDS and gait parameters before and after model adjustment.

Gait parameters

unadjusted
B(95%Cl)

Adjusted
B(95%Cl)

Step length' —9.507 (—15.306 ~ —3.709) —0.393 0.002%* —10.417 (—18.166 ~ —2.667) —0.430 0.009%*
Walk speed' —0.188 (—0.320 ~ —0.056) —0.349 0.006%* —0.232 (—0.407 ~ —0.058) —0.431 0.01%*
Stride length' —18.201 (—29.537 ~ —6.864) —0.386 0.002%* —20.162 (—35.285 ~ —5.039) —0.427 0.01*
Step length’ —12.266 (—19.029 ~ —5.504) —0.451 <0.0017%7#%* —12.195 (—20.828 ~ —3.562) —0.448 0.007%*
Walk speed? —0.265 (—0.403 ~ —0.128) —0.473 <0.0017%7#%* —0.219 (—0.399 ~ —0.040) —0.391 0.018*
Stride length? —22.681 (—34.841 ~ —10.521) —0.461 <0.001 %% —21.858 (—37.661 ~ —6.055) —0.444 0.008%*

B regression coefficient, CI confidence interval, f standardized regression coefficient. *p < 0.05, **p < 0.01, ***p < 0.001.

'TUG.
?5-meter straight walking.

that PD patients with EDS exhibited more severe gait impairment.
Specifically, EDS may be associated with the deterioration of both
normal walking gait and fast walking gait in PD patients. Even the
effect of EDS on gait remained significant after adjusting for
confounders such as sex, age, disease duration, LEDD and FSS. The
results are consistent with previous scale-only studies showing that
EDS is associated with a wider range of motor and nonmotor PD
features including axial/postural/gait deficits, depression, and pain
(Hoglund et al., 2015). One reason may be that EDS is often
accompanied by cognitive impairments such as poor concentration
(Bohnen et al., 2012), memory loss and executive dysfunction (Gasa
et al,, 2013). This cognitive dysfunction affects the patient’s gait in
the early stages of PD (Rochester et al., 2017). During walking,
cognitive functions play an important role in gait planning,
maintenance of balance, and perception of and response to the
environment. Impaired cognitive function may lead to gait
abnormalities such as disorientation and delayed reaction time when
walking, increasing the risk of falls. The observed sensory integration
delays may arise from attentional deficits associated with sleep
disturbances. Effective postural control fundamentally relies on the
central nervous system’s capacity to synchronize visual cues,
vestibular signals, and proprioceptive feedback in real-time (Teasdale
and Simoneau, 2001; Ouchi et al., 1999); this sensory integration
requires a high degree of attention, especially as the efficiency of
sensory inputs decreases with age, which may affect gait performance
(Tyagi et al, 2017). Although previous studies have attributed
EDS-related gait deficiency to impaired attention or executive
function, we found comparable MMSE scores between groups,
which seems contradictory. However, the MMSE primarily assesses
general cognition and lacks sensitivity to executive dysfunction in
specific domains (Hausdorff, 2005). In PD patients, gait control relies
greatly on prefrontal-mediated processes that cannot be captured by
the MMSE.

Step length shortening is consistent with the “sequence effect” of
PD, in which there is a gradual decay in amplitude of movement,
which is usually associated with basal ganglia dysfunction. EDS may
exacerbate this phenotype through nigrostriatal dopamine depletion,
as animal models show that sleep deprivation accelerates the loss of
dopaminergic neurons (Parhizkar et al., 2023).

Importantly, gait disturbances caused by EDS are a direct
threat to patient safety and quality of life. Both gait speed and
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stride length, which are predictors of falls in older adults
(Kyrdalen et al., 2019), are significantly reduced in PD patients
with EDS, who are at very high risk of falling (Fasano et al., 2017;
Allen et al., 2013). Falls frequently lead to fractures (Kalilani et al.,
2016), hospitalization (Paul et al., 2017), functional decline,
significantly reducing patients’ independence and quality of life
(Rascol et al., 2015). Therefore, early detection of EDS provides a
critical window for intervention to mitigate future gait
deterioration and fall risk. We recommend emphasizing the
management of EDS in early PD, including nonpharmacological
therapies such as repetitive transcranial magnetic stimulation that
may improve both Sleep problems and motor function (Zhang
et al.,, 2022).

While the use of scales and direct observation by clinicians is still
common in routine assessments, a growing number of studies has
demonstrated the added value of wearable inertial sensors for
objective gait analysis in patients with PD (Pulliam et al., 2018; Ricci
et al., 2020; Isaacson et al., 2019; Dai et al., 2021; Perez-Ibarra et al.,
2020; Rigas et al., 2012; Demrozi et al., 2020; Mariani et al., 2013). On
this basis, we used the Wearable Movement and Gait Quantitative
Assessment System to obtain accurate quantitative gait parameters
during the TUG and the 5-meter straight walking task. We aimed to
provide an objective and intuitive assessment of how EDS affects gait
function in patients with PD.

There are certain restrictions on this study. The sample size
of the study was relatively small. Consequently, the reliability and
generalizability of the results may be limited. To enhance the
statistical significance of the findings, future research should
consider increasing the sample size. Using only the MMSE as a
cognitive assessment tool is insufficient, and future research
could incorporate more tests, especially for specific cognitive
functions such as attention and integration. This study did not
analyse patients for the specific type of medication they were
using and only focused on patients with PD in the early stages of
the disease, future studies should include detailed medications
and patients in all periods of time. Additionally, due to the cross-
sectional nature of this study, it was not possible to establish a
causal relationship between gait impairment and EDS. Future
investigations could adopt a longitudinal study design to better
understand the long-term effects of EDS on gait function by
tracking changes over time.
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