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Introduction: Frontotemporal dementia (FTD) encompasses heterogeneous 
clinical syndromes, and distinguishing its subtypes using imaging remains 
challenging.
Methods: We developed a deep learning model to quantify brain atrophy by 
measuring cerebrospinal fluid (CSF) volumes in key regions of interest (RoIs) on 
standard MRI scans. In a retrospective study, we analyzed 3D T1-weighted MRI 
data from 1,854 individuals, including cognitively unimpaired (CU) controls, patients 
with dementia of the Alzheimer type (DAT), and FTD subtypes: behavioral variant 
FTD (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and semantic 
variant PPA (svPPA). The model quantified CSF volumes in 14 clinically relevant RoIs 
and generated age- and sex-adjusted W-scores to express regional atrophy.
Results: Each FTD subtype exhibited a distinct, lateralized atrophy pattern: 
bvFTD showed widespread bilateral frontal and right-predominant parietal 
and temporal atrophy; nfvPPA showed left-predominant frontal and parietal 
atrophy; and svPPA exhibited marked left-lateralized temporal and hippocampal 
atrophy. All FTD subtypes demonstrated significantly greater CSF expansion in 
these characteristic regions compared to DAT and CU.
Discussion: This deep learning approach provides a simple, interpretable 
measure of brain atrophy that differentiates FTD subtypes, requiring only 
standard MRI with minimal preprocessing, and offers clinical utility.
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Introduction

Neurodegenerative disease is a common pathological hallmark underlying various types 
of dementia, including Alzheimer’s disease (AD) and frontotemporal dementia (FTD) (Rosen 
et al., 2002; Whitwell et al., 2007; Erkkinen et al., 2018). Brain atrophy is a key feature of these 
diseases, characterized by progressive neuronal loss, cortical thinning, and sulcal widening 
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(Im et al., 2008). These structural changes are closely associated with 
cognitive and behavioral decline, making the quantification of brain 
atrophy crucial for early diagnosis, progression monitoring, and 
therapeutic evaluation (Brambati et al., 2009; Marino et al., 2019).

Frontotemporal dementia (FTD) comprises several clinical 
subtypes, including behavioral variant FTD (bvFTD), semantic 
variant primary progressive aphasia (svPPA), and non-fluent variant 
primary progressive aphasia (nfvPPA), each with distinct 
neuroanatomical atrophy patterns that differ markedly from those 
observed in AD (Risacher and Saykin, 2013; Ghosh and Lippa, 2015; 
Erkkinen et al., 2018; Yu et al., 2021; Eldaief et al., 2023; Taylor et al., 
2025). While AD is typically associated with atrophy in the 
hippocampus and medial temporal regions (Ferreira et al., 2017), 
FTD more often presents with frontal and anterior temporal lobe 
degeneration, with variability in regional involvement depending on 
the clinical subtype (Lu et al., 2013; Planche et al., 2023). Identifying 
and characterizing these subtype-specific patterns of atrophy is 
critical for improving the differential diagnosis between AD 
and FTD.

Traditional methods for assessing brain atrophy, such as visual 
atrophy scales by clinicians, rely on subjective ratings of atrophy based on 
visual inspection of structural MRI scans (Scheltens et al., 1995; Kipps 
et al., 2007). While these methods remain prevalent in clinical practice, 
they are limited by their labor-intensive, time-consuming, susceptibility 
to inter-rater variability, and lack sensitivity to subtle anatomical changes 
(Duara et al., 2010; Cavallin et al., 2012; Choe et al., 2024). To overcome 
these limitations, advanced techniques, such as the measurement of 
cortical thickness (Fischl and Dale, 2000; Chu et al., 2024) and voxel-
based morphometry (VBM) (Ashburner and Friston, 2000; Rosen et al., 
2002) have been introduced, offering automated and more quantitative 
assessments of atrophy. However, these methods often struggle with 
segmentation inaccuracy due to the subtle intensity differences between 
gray-white matter boundary, leading to inconsistencies across imaging 
protocols and scanners (Leung et al., 2010; Pagnozzi et al., 2019), and they 
typically require complex preprocessing pipelines and spatial 
normalization steps that can impede their clinical utility due to high 
computational demands (Tustison et al., 2019; Bhagwat et al., 2021; Zhou 
et al., 2022).

To address these challenges, cerebrospinal fluid (CSF) volumetry 
offers a practical alternative: its strong intensity contrast with 
surrounding tissues enables robust segmentation across sites, and 
focusing on sulcal and ventricular CSF provides a reliable proxy for 
cortical atrophy (Kochunov et al., 2008; Im et al., 2008; De Vis et al., 
2016). Building on this rationale, we employed a previously proposed 
deep learning–based segmentation model (Lim et  al., 2025) to 
automatically quantify CSF volumes in 3D T1-weighted MRI scans. 
This approach serves as a proxy for sulcal widening and ventricular 
enlargement—key markers of neural tissue loss—while providing a 
practical and scalable solution aligned with routine clinical workflows. 
It facilitates intuitive interpretation, rapid clinical integration, and 
consistent application across diverse imaging settings.

In this study, regional CSF volume measures derived from the 
model were used to evaluate differences in brain atrophy patterns 
across three clinical subtypes of frontotemporal dementia (FTD), 
cognitively unimpaired (CU) individuals, and patients with 
Alzheimer’s disease (DAT). We hypothesized that each FTD subtype 
would exhibit distinct CSF volume-based regional atrophy patterns 
that could be  statistically distinguished from those of DAT and 
CU individuals.

Materials and methods

Participants

A total of 1,954 MRI scans for this study were retrospectively 
collected between 2016 and 2023 from the Korea-Registries to 
Overcome dementia and Accelerate Dementia Research (K-ROAD) 
project (Jang et  al., 2024). The K-ROAD project was conducted 
between 2016 and 2023 in collaboration with 25 university-affiliated 
hospitals across South Korea. Its goal was to establish a genotype–
phenotype cohort to advance the development of innovative 
diagnostic and therapeutic approaches for neurodegenerative diseases, 
particularly Alzheimer’s disease and related dementias. The 
participants in the FTD subtypes included those clinically diagnosed 
with bvFTD, nfvPPA, or svPPA. bvFTD was defined according to 
established diagnostic criteria (Rascovsky et al., 2011), while nfvPPA 
and svPPA were diagnosed based on diagnostic criteria for primary 
progressive aphasia (Gorno-Tempini et al., 2011). All FTD diagnoses 
were made through a comprehensive evaluation that included clinical 
course, neurological examination, neuropsychological testing, and 
brain imaging. CU individuals exhibited no subjective cognitive 
complaints or functional impairments, with cognitive performance 
confirmed to be  within normal limits through detailed 
neuropsychological assessments. The diagnosis of DAT was 
established based on the NIA-AA criteria (McKhann et al., 2011), 
requiring evidence of substantial cognitive decline, including memory 
impairment, that compromised independent daily functioning and 
aligned with Alzheimer’s disease etiology. Of these, 72 participants 
with follow-up scans and 28 participants with structural brain lesions 
were excluded from the analysis (Figure 1). Structural lesions were 
defined based on the presence of any of the following: (1) white matter 
hyperintensities due to radiation injury, (2) hydrocephalus; (3) 
traumatic brain injury; (4) territorial infarction; (5) stroke; and (6) 
brain tumor.

The study protocol received approval from the Institutional 
Review Board (IRB) of SMC (IRB No. 2021–02-135). Written 
informed consent was obtained from each participant, and all 
procedures were conducted in accordance with the 
approved guidelines.

Acquisition of 3D T1 images

All participants underwent brain MRI at each participating center 
using a standardized imaging protocol for three-dimensional (3D) 
T1-weighted turbo field echo sequences acquired on 3.0 T MRI 
scanners. All images were subsequently centralized and processed at 
Samsung Medical Center.

Deep learning-based segmentation 
method for CSF regions

For the automated segmentation of cerebrospinal fluid (CSF) 
regions, we  employed the 2D nnU-Net framework with a 
PlainConvUNet architecture (Isensee et  al., 2021). The network 
follows a self-configuring six-stage encoder–decoder U-Net design, in 
which the encoder progressively reduced spatial resolution while 
increasing feature dimensionality, and the decoder reconstructed 
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spatial details through transposed convolutions. Multi-scale feature 
fusion is achieved through skip connections between corresponding 
encoder and decoder levels. Each stage consists of two plain 
convolutional layers with a kernel size of 3 × 3, followed by instance 
normalization and a leaky rectified linear unit. The nnU-Net 
framework automatically configures preprocessing, data 
augmentation, training schedules, and postprocessing pipelines based 
on the dataset’s properties, ensuring robust and reproducible 
segmentation performance without extensive manual tuning.

MR images used for model training and testing were obtained 
from multiple sources, including SMC; the Alzheimer’s Disease 
Neuroimaging Initiative (Petersen et  al., 2010); the International 
Consortium for Brain Mapping (Mazziotta et  al., 2001); the 
Information eXtraction from Images project; and the Open Access 
Series of Imaging Studies (LaMontagne et  al., 2019) (see 
Supplementary Table 1 for details). All scans were converted to 3D 
NIfTI format and processed using the SynthSeg in FreeSurfer (version 
7.4.2) (Billot et  al., 2023), which simultaneously generated silver-
standard segmentation masks and resampled the images to isotropic 
1mm3 × 1mm3 × 1 mm3 voxel spacing, resulting in standardized 3D 
volumes for supervised training. The silver standard masks defined 
the following regions as RoIs: CSF adjacent to the cortical gray matter 
in the bilateral frontal (L_Frontal, R_Frontal), occipital (L_Occipital, 
R_Occipital), parietal (L_Parietal, R_Parietal), and temporal 

(L_Temporal, R_Temporal) lobes, as well as ventricular spaces such as 
the bilateral anterior lateral ventricles (L_Anterior_LV, R_Anterior_
LV), posterior lateral ventricles (L_Posterior_LV, R_Posterior_LV), 
and the CSF surrounding the left and right hippocampal regions (L_
Hippocampal, R_Hippocampal).

Segmentation was performed using 5-fold cross-validation. Model 
training was performed over 200 epochs with a batch size of 64, using 
stochastic gradient descent as the optimizer, a composite loss function 
combining Dice and cross-entropy losses, a learning rate of 1 × 10−2, 
and weight decay of 3 × 10−5. Model performance was assessed using 
the Dice similarity coefficient (DSC), a measure of spatial overlap 
between the prediction and the silver-standard mask, as follows:

	
×

=
× + +

2
2

TPDSC
TP FP FN

where TP, FP, and FN represent true positives, false positives, and 
false negatives, respectively.

Quantification of brain atrophy based on 
regional CSF volume

To assess brain atrophy, cerebrospinal fluid (CSF) volumes were 
obtained from 14 predefined regions of interest (RoIs) segmented on 
each participant’s raw T1-weighted MRI scans using our automated 
processing pipeline, which includes the segmentation model, as 
detailed in Supplementary Figure 1. For each participant, the CSF 
volume of each RoI (denoted as RoI_CSF_Vol) was normalized by 
intracranial volume (ICV) to account for individual variability in head 
size. To further normalize these values across participants, normalized 
RoI_CSF_Vol measures were converted to W-scores using multiple 
linear regression models that included age and sex as covariates (La 
Joie et al., 2012). The W-score is calculated as follows:

	

( )
σ
−

− = − _

_
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where ( )_ ,W ROIE A S  is expected CSF_Vol for a given RoI in 
W-score model with age (A) and sex (S), ROIV is the participant’s 
CSF_Vol of RoI derived from segmentation model, and σ _W ROI is the 
standard deviation of the residuals in W-score model. Given that 
increased CSF volume is indicative of brain atrophy, the W-score was 
inverted to align with this biological interpretation (Lim, Park et al., 
2025). Finally, the spatial distribution of brain atrophy was visualized 
by projecting average W-score maps of each FTD subtype onto a 
cortical surface.

Statistical analysis

To compare participant characteristics across group, 
Chi-square tests were applied to categorical variables, while 
one-way analysis of variance (ANOVA) was used for continuous 
variables, including age, years of education, Mini-Mental State 
Examination (MMSE) scores, and ICV. When significant group 
differences were found, Bonferroni-adjusted post hoc analyses were 

FIGURE 1

Flowchart of participant inclusion and exclusion. A total of 1,954 
participants underwent brain MRI as part of the K-ROAD study 
between 2016 and 2023. After excluding 100 participants with 
follow-up scans or structural brain lesions, 1,854 participants were 
included for analysis. Participants were categorized into the 
Alzheimer’s disease cognitive impairment group (CU, n = 845; DAT, 
n = 667) and the frontotemporal dementia group (bvFTD, n = 137; 
nfvPPA, n = 70; svPPA, n = 135). CU, cognitively unimpaired; DAT, 
dementia of Alzheimer’s type; bvFTD, behavioral variant 
frontotemporal dementia; nfvPPA, nonfluent variant primary 
progressive aphasia; svPPA, semantic variant primary progressive 
aphasia.
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conducted separately to compare each FTD subtype with CU 
individuals and patients with DAT. For regional brain atrophy 
analysis, W-score distributions for each RoI were visualized using 
boxplots. Group differences in RoI W-scores were assessed using 
one-way ANOVA, followed by Bonferroni-corrected post hoc 
comparisons between each FTD subtype and both CU and DAT 
groups. To quantify the magnitude of group-level differences, 
Cohen’s d effect sizes were calculated for each RoI. All statistical 
analyses were performed using R software, version 4.4.2.1

Results

Participant characteristics

The demographic characteristics of participants are presented in 
Table 1. The cohort consisted of 1,854 participants: 845 CU, 667 DAT, 
and 342 FTD subtypes (137 bvFTD, 70 nfvPPA, and 135 svPPA). The 
mean age of the entire cohort was 71.1 ± 8.3 years, with females 
comprising 58.3%. The mean MMSE score was 23.7 ± 6.2. The average 
years of education was 11.6 ± 4.7, and the mean intracranial volume 
(ICV) was 1,481.4 ± 131.4 mL.

Regional variations in W-scores among 
diagnostic groups

The boxplots in Figure 2 illustrate the distribution of W-scores 
across RoIs for each diagnostic group. CU individuals generally 
exhibited W-scores indicative of minimal atrophy, while all FTD 
subtypes demonstrated significantly lower W-scores across all 
RoIs, except for the right occipital region. Comparisons between 
DAT and FTD subtypes revealed distinct, region-specific patterns. 
Specifically, bvFTD showed marked atrophy in the bilateral frontal, 
parietal, and temporal lobes, as well as in the anterior LVs and 
hippocampal regions. The patients with nfvPPA demonstrated 
predominant atrophy in the bilateral frontal, left parietal lobes, and 
left anterior LV. In contrast, svPPA was characterized by significant 

1  http://www.r-project.org

degeneration in the left frontal, bilateral temporal lobes, and 
hippocampal regions.

Effect sizes and spatial distributions of 
regional atrophy patterns

Figure 3 illustrates the effect sizes of W-scores across RoIs for 
three pairwise comparisons: each FTD subtype versus CU individuals 
(Figure 3A), and each FTD subtype versus DAT patients (Figure 3B). 
When compared with CU individuals, most RoIs—except the right 
occipital lobe—exhibited medium or larger effect sizes in W-scores. 
In comparison with DAT patients, bvFTD exhibited large effect sizes 
in the bilateral frontal lobes and medium effects in the anterior LVs, 
right temporal lobe, and right hippocampal region. The nfvPPA 
subtype demonstrated large effect sizes in the left frontal lobe, with 
additional medium effects in the right frontal, left parietal lobes, and 
left anterior LV. In the svPPA group, the most notable effect was 
observed in the left hippocampal region, followed by the bilateral 
temporal lobes.

Consistent with these results, surface map visualizations provided 
intuitive spatial representations of the key regional atrophy patterns 
in FTD subtypes (Figure 4). In bvFTD, there was widespread bilateral 
involvement of the frontal lobes, with atrophy extending into the 
parietal, temporal lobes, as well as anterior LVs. The nfvPPA exhibited 
prominent atrophy in the left frontal and parietal lobes, along with the 
anterior LV, aligning with its typical left-hemisphere dominance. In 
contrast, svPPA was marked by focal atrophy predominantly localized 
to the temporal lobes.

Discussion

In this study, regional atrophy patterns among FTD subtypes were 
investigated using a deep learning-based segmentation model that 
quantifies CSF volume. The findings revealed significant differences 
in W-scores among diagnostic groups, demonstrating the algorithm’s 
effectiveness in capturing region-specific atrophy patterns. These 
results confirmed the initial hypothesis that each FTD subtype exhibits 
distinct spatial patterns of brain atrophy. Such precise characterization 
of atrophy may have clinical utility in improving differential diagnosis 
and disease monitoring in patients with FTD.

TABLE 1  Characteristics of participants.

Characteristics CU (N = 845) bvFTD (N = 137) nfvPPA (N = 70) svPPA (N = 135) DAT (N = 667)

Age, mean ± SD, years1 70.7 ± 7.2 66.6 ± 10.7*† 68.8 ± 8.6† 67.0 ± 8.6*† 67.0 ± 8.6

Sex, female, N (%)2 516 (61.1%) 58 (42.3%) 37 (52.9%) 66 (48.9%) 403 (60.4%)

Years of education, mean ± SD1 12.1 ± 4.5 (N = 845) 11.4 ± 4.5 (N = 134‡) 11.5 ± 4.3 (N = 66‡) 11.4 ± 4.4 (N = 131‡) 11.1 ± 5.0

MMSE (Kim et al., 2024), 

mean±SD1

28.3 ± 1.6 (N = 845) 20.5 ± 6.1* (N = 108‡) 20.6 ± 7.0* (N = 53‡) 19.1 ± 8.8* (N = 113‡) 19.5 ± 5.1

ICV, mean ± SD, mL1 1,486.7 ± 131.3 1,505.0 ± 139.9† 1,500.6 ± 108.0 1,482.8 ± 129.1 1,467.0 ± 131.3

Values are expressed as mean ± standard deviation (SD) or number (%) as appropriate. Statistical comparisons for continuous variables1 were performed using analysis of variance (ANOVA) 
followed by Bonferroni post hoc tests. Categorical variables2 were compared using Pearson’s Chi-squared test. A p-value < 0.05 was considered significant. ‡ Sample sizes for Years of education 
and MMSE variables differ from the No. of participants due to missing data: Years of education: bvFTD (n = 134), nfvPPA (n = 66), svPPA (n = 131). MMSE: bvFTD (n = 108), nfvPPA 
(n = 53), svPPA (n = 113). Summary statistics for the overall cohort are provided in the text. Summary statistics for the overall cohort are provided in the text. CU, cognitively unimpaired; 
bvFTD, behavioral variant frontotemporal dementia; nfvPPA, nonfluent variant primary progressive aphasia; svPPA, semantic variant primary progressive aphasia; DAT, dementia of 
Alzheimer’s type; N, number of subjects; SD, Standard deviation; MMSE, Mini–Mental State Examination; ICV, intracranial volume, Asterisk (*), significant difference with cognitively 
unimpaired individuals; Dagger (†), significant difference with dementia of Alzheimer’s type patients.
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The results revealed clear and distinct atrophy patterns across 
FTD subtypes. Compared to DAT, bvFTD showed notably greater 
atrophy prominently in bilateral frontal regions (large effect sizes, 
Cohen’s d > 1.2), with a slightly stronger involvement observed in 
the right hemisphere. Medium-sized effects were also present in 
bilateral parietal and temporal lobes, anterior lateral ventricles, and 
hippocampal regions. Interestingly, parietal lobe involvement in 
bvFTD, although traditionally less emphasized, could reflect more 
advanced disease stages or clinical heterogeneity within this cohort. 

In contrast, the nfvPPA subtype demonstrated significant atrophy 
predominantly in the left frontal (Cohen’s d > 1.2) and left parietal 
regions, consistent with known left hemisphere-dominant language 
impairments. Similarly, svPPA showed pronounced left-dominant 
atrophy in temporal lobes and hippocampal regions, with the left 
hippocampal region exhibiting notably large effect sizes (Cohen’s 
d > 1.2). Such marked left-sided hippocampal involvement in svPPA 
aligns closely with previous findings, highlighting medial temporal 
lobe involvement beyond classic AD pathology. These observations 

FIGURE 2

Boxplots of W-scores for cerebrospinal fluid volume of each region of interest. An asterisk (*) indicates significant difference with CU individuals and 
dagger (†) indicates significant difference with DAT patients. For visual convenience, W-scores beyond ±3 standard deviations were excluded from the 
boxplots, without affecting the underlying statistical analysis. CU, cognitively unimpaired; bvFTD, behavioral variant frontotemporal dementia; nfvPPA, 
nonfluent variant primary progressive aphasia; svPPA, semantic variant primary progressive aphasia; DAT, dementia of Alzheimer’s type; CSF, 
cerebrospinal fluid; L_Anterior_LV, left anterior lateral ventricle; R_Anterior_LV, right anterior lateral ventricle; L_Posterior_LV, left posterior lateral 
ventricle; R_Posterior_LV, right posterior lateral ventricle; L_Hippocampal, left hippocampal; R_Hippocampal, right hippocampal; L_Frontal, left frontal; 
R_Frontal, right frontal; L_Temporal, left temporal; R_Temporal, right temporal; L_Parietal, left parietal; R_Parietal, right parietal; L_Occipital, left 
occipital; R_Occipital, right occipital; Global, sum of all cerebrospinal fluid regions of interest.
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FIGURE 4

Surface maps visualizing W-score based brain atrophy patterns across FTD subtypes. The surface maps show group-averaged W-scores for each FTD 
subtype, projected onto a standardized cortical surface, illustrating the spatial distribution of brain atrophy based on CSF volume. FTD, Frontotemporal 
dementia; bvFTD, behavioral variant frontotemporal dementia; nfvPPA, nonfluent variant primary progressive aphasia; svPPA, semantic variant primary 
progressive aphasia.

FIGURE 3

Forest plots presenting the effect size on W-scores of the cerebrospinal fluid volume of each region of interest. The plots show the effect sizes for 
comparisons between CU individuals and FTD subtypes in (A), as well as DAT patients in (B). This highlights the magnitude of differences in the 
distribution of W-scores across the group comparison. The dots in plot represent Cohen’s d values, and the values on both sides represent 95% 
confidence intervals. Cohen’s d values less than 0.2 are considered “very small,” less than 0.5 “small,” less than 0.8 “Medium,” less than 1.2 “large,” and 
greater than or equal to 1.2 “very large.” CU, cognitively unimpaired; FTD, frontotemporal dementia; bvFTD, behavioral variant frontotemporal 
dementia; nfvPPA, nonfluent variant primary progressive aphasia; svPPA, semantic variant primary progressive aphasia; DAT, dementia of Alzheimer’s 
type; CSF, cerebrospinal fluid; L_Anterior_LV, left anterior lateral ventricle; R_Anterior_LV, right anterior lateral ventricle; L_Posterior_LV, left posterior 
lateral ventricle; R_Posterior_LV, right posterior lateral ventricle; L_Hippocampal, left hippocampal; R_Hippocampal, right hippocampal; L_Frontal, left 
frontal; R_Frontal, right frontal; L_Temporal, left temporal; R_Temporal, right temporal; L_Parietal, left parietal; R_Parietal, right parietal; L_Occipital, 
left occipital; R_Occipital, right occipital; Global, sum of all cerebrospinal fluid regions of interest.
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are consistent with previously reported subtype-specific atrophy 
patterns (Risacher and Saykin, 2013; Ghosh and Lippa, 2015; Eldaief 
et al., 2023; Taylor et al., 2025), further reinforcing the validity and 
clinical relevance of the proposed approach (see 
Supplementary Table 2).

The 3D surface maps also provided compelling visual validation 
of these subtype-specific patterns, clearly demonstrating left-
lateralized atrophy in nfvPPA and svPPA and widespread, anterior-
predominant atrophy in bvFTD. These visualizations enhance the 
interpretability and clinical relevance of the observed structural 
differences, emphasizing the spatial specificity achievable by 
this method.

To further ensure the robustness of these findings, an 
additional propensity score matching (PSM) analysis was 
conducted using age, sex, and education as matching factors. After 
excluding cases with missing education data, 331 CU and 331 DAT 
participants were matched to 342 FTD participants with complete 
data (Supplementary Table 3). This adjustment reduced group size 
disparities and allowed for more balanced comparisons. Some 
regional differences that were previously significant (e.g., left 
temporal region in bvFTD, right frontal and left parietal regions in 
nfvPPA, and left frontal region in svPPA) were no longer observed 
after matching (Supplementary Figure  2) and the overall effect 
sizes were somewhat reduced (Supplementary Figure 3). However, 
the spatial patterns of atrophy remained largely consistent with the 
primary analysis.

These findings extend previous work conducted in Alzheimer’s 
disease, where stage-specific atrophy patterns—particularly in bilateral 
temporal lobes, lateral ventricles, and hippocampal regions—were 
demonstrated across a cognitive continuum from cognitively 
unimpaired individuals to patients with mild cognitive impairment 
and DAT. In the current study, quantitative CSF-based measures 
derived from the algorithm revealed significant hemispheric 
asymmetries—particularly within the left hemisphere—across FTD 
subtypes when compared with CU and DAT groups. Importantly, 
these findings were achieved using a quantification approach distinct 
from conventional methods (Scheltens et al., 1995; Ashburner and 
Friston, 2000; Fischl and Dale, 2000; Rosen et al., 2002; Kipps et al., 
2007), yet consistently capturing relevant structural disease signatures. 
The ability to detect such detailed patterns highlights this method’s 
potential as a robust structural biomarker, particularly valuable for 
clinical evaluations in cases involving focal atrophy of the frontal and 
temporal lobes. This ensures reliable, scalable analysis across different 
clinical settings and patient groups. Given its reliance on standard 
clinical imaging modalities, this approach could be easily integrated 
into routine neuroimaging workflows, supporting clinicians in the 
early and differential diagnosis of dementia subtypes. With further 
validation, the algorithm may also offer potential benchmarks for 
future adaptations to more accessible imaging modalities, such as 2D 
MRI or even CT scans.

A major strength of this study is the practical capability of the 
deep learning-based method to quantify brain atrophy directly 
from routine MRI scans without complex preprocessing. 
However, several limitations should be  acknowledged. The 
analysis relied solely on CSF volume, age, and sex, without 
incorporating additional factors (Sakka et al., 2011; Zhang et al., 
2022) or direct measures of neurodegeneration such as cortical 
thickness or voxel-based morphometry. To complement the 
primary analyses, cortical thickness data in a subset of 

participants were also examined, which revealed broadly 
consistent and biologically plausible regional patterns with 
CSF-based measures (see Supplementary Figures 4, 5). Future 
work may examine the combined use of CSF- and GM-based 
features to improve both anatomical specificity and clinical 
interpretability. Additionally, the lack of clinical and cognitive 
data limits structure–function interpretations, and the cross-
sectional design prevents assessment of longitudinal changes. 
Finally, the single-center design restricts generalizability, 
highlighting the need for external validation. Nonetheless, our 
findings demonstrate robust subtype-specific atrophy patterns, 
underscoring the method’s clinical relevance and value for 
dementia research.

In summary, this study demonstrated significant differences in 
regional atrophy patterns across FTD subtypes using a CSF-based 
deep learning algorithm. By focusing on clinically relevant RoIs, this 
simple and practical approach facilitates intuitive interpretation, rapid 
clinical integration, and consistent application across diverse settings. 
With further validation, this method holds significant potential as a 
robust structural biomarker for enhancing differential diagnosis and 
monitoring disease progression.
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