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Postoperative delirium (POD) is a common and severe neuropsychiatric complication 
affecting older adults after surgery. POD is characterized by fluctuating cognitive 
disturbances, impaired attention, and altered consciousness, resulting in increased 
morbidity and mortality, prolonged hospital stays, and higher healthcare costs. 
Systemic inflammation induced by surgical trauma is implicated in the pathophysiology 
of POD, although the subsequent mechanisms that produce blood–brain barrier 
(BBB) dysfunction, neuroinflammation, and interactions with underlying dementia 
neuropathology have not been resolved. Recent advances in biomarker research 
have shed light on predictive and diagnostic tools for POD. Biomarkers linked to 
dementia neuropathology (e.g., hyperphosphorylated tau, amyloid beta), neuronal 
injury (e.g., total tau, neurofilament light chain), glial activation (e.g., glial fibrillary 
acidic protein), and systemic inflammation (e.g., interleukin-6) have shown promise. 
The feasibility of measuring the above biomarkers in easy-to-obtain biofluids such 
as blood is enhanced by technologies like single-molecule array immunoassays, 
enabling sensitive detection of central nervous system markers at femtomolar 
concentrations. Emerging evidence highlights associations between POD risk and 
these biomarkers, although findings often vary due to cohort heterogeneity and 
methodological differences. This review critically examines the existing literature 
on POD biomarkers, focusing on their relevance to dementia neuropathology, 
neuronal injury, neuroinflammation, and BBB integrity. While significant strides 
have been made, gaps in knowledge persist, emphasizing the need for larger, 
more standardized studies. Developing robust biomarkers could transform POD 
prediction, diagnosis, and management, ultimately improving outcomes for 
vulnerable surgical populations.
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1 Introduction

Postoperative delirium (POD) is an acute neuropsychiatric syndrome characterized by 
fluctuating cognitive disturbances, impaired attention, altered levels of consciousness, and 
disrupted thinking that commonly affects older surgical patients, who are usually considered 
to be over 60 years of age. POD represents a significant clinical concern due to its association 
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with poor postoperative patient outcomes (Gleason et al., 2015; Jin 
et al., 2020; Moskowitz et al., 2017). Despite its clinical importance, 
significant gaps in understanding the pathophysiological mechanisms 
underlying POD remain. The systemic inflammatory response 
induced by surgical trauma plays a major role (Saxena and Maze, 
2018). Through poorly understood mechanisms, peripheral 
inflammatory factors cause endothelial dysfunction and increased 
permeability of the blood–brain barrier (BBB) (Devinney et al., 2023; 
Yang et al., 2017), facilitating infiltration of peripheral immune cells 
into the brain and subsequent neuroinflammation (Degos et al., 2013; 
Saxena et al., 2019; Subramaniyan and Terrando, 2019; Terrando et al., 
2011; Vacas et  al., 2013; Wang et  al., 2020; Yang et  al., 2020) and 
ultimately dysfunction of brain networks that underly cognition 
(Ditzel et  al., 2023; Tanabe et  al., 2020), resulting in delirium. 
Especially in elderly patients, there may also be complex interactions 
between POD pathophysiology and underlying dementia such as 
Alzheimer’s disease (Kunicki et al., 2023; Sun et al., 2024). Pre-existing 
cognitive impairment or dementia is known to increase the risk for 
POD (Dasgupta and Dumbrell, 2006; Sadeghirad et al., 2023), and the 
neuroinflammation caused by surgery may also accelerate underlying 
dementia (Kant et al., 2023; Lingehall et al., 2017).

Given the association of POD with increased morbidity, mortality, 
healthcare costs, and postoperative neurocognitive disorders, the 
search for biomarkers to improve the prediction, diagnosis, and 
management of POD is being actively pursued (Figueiredo and 
Devezas, 2024; Gonçalves et al., 2025; Marshall et al., 2025; Moazzen 
et al., 2024; O’Gara et al., 2021; Reekes et al., 2025). A biomarker is a 
“defined characteristic that is measured as an indicator of normal 
biological processes, pathogenic processes or responses to an exposure 
or intervention” (FDA-NIH Biomarker Working Group, 2016). In 
most cases, diagnostic biomarkers are analytes from biological 
specimens, usually biofluids, that can be measured to yield predictive 
information on the subsequent development of a pathological process. 
As we will discuss in this review, biomarkers of underlying dementia, 
neuronal injury, glial activation, and neuroinflammation have 
demonstrated significant associations with POD onset and severity in 
recent clinical studies (Table 1). Additionally, pre-clinical research 
highlights the relevance of endothelial dysfunction and BBB 
disruption in the development of POD, and clinical studies focusing 
on biomarkers of these pathophysiological mechanisms are emerging 
(Table 1).

Ideally, biomarkers for POD should be  sourced from easy-to-
obtain biofluids such as blood or urine. Although cerebrospinal fluid 
(CSF) biomarkers provide direct insights into central nervous system 
(CNS) pathologies, the invasive nature of CSF sampling limits its 
clinical utility outside of research settings. Recent technological 
advances, such as single-molecule array (Simoa) immunoassays with 
exquisite detection sensitivity, have made it possible to reliably 
measure ultra-low levels of CNS-derived analytes in blood or urine 
(Dong et  al., 2024), beyond what was achievable with traditional 
immunoassays. Consequently, peripherally circulating biomarkers for 
POD have gained attention due to their ease of collection, potential 
for repeated measurements over time, and utility.

This review critically evaluates the current evidence on biomarkers 
of POD in older adults, focusing on those pertaining to underlying 
dementia (specifically Alzheimer’s disease), neuronal injury, glial 
activation, neuroinflammation, endothelial dysfunction, and BBB 
integrity (Figure  1; Table  1). Furthermore, this review identifies 

current gaps in knowledge and proposes directions for future research 
aimed at enhancing our understanding and management of this 
complex postoperative complication.

2 Results

2.1 Alzheimer’s disease biomarkers: 
hyperphosphorylated tau (pTau), amyloid 
beta (Aβ)

Poor performance on preoperative cognitive assessments has been 
established as one of the strongest risk factors for the development of 
POD (Barreto Chang et al., 2022, 2023; Cao et al., 2019; Culley et al., 
2017). Even the patient’s subjective experience of cognitive decline has 
some predictive value for POD (Namirembe et  al., 2023), and 
subjective cognitive decline is itself associated with a number of 
negative outcomes, such as depression (Deiner et al., 2019; Zapater-
Fajarí et al., 2024).

Although cognitive decline can occur for many reasons, the most 
common cause of mild cognitive impairment is Alzheimer’s disease, 
which is also the leading cause of dementia worldwide (Barreto Chang 
et  al., 2023; Brookmeyer et  al., 2007). Importantly, the 
neuropathological underpinnings of Alzheimer’s disease—the 
accumulation of amyloid beta (Aβ) deposits and hyperphosphorylated 
tau (pTau) tangles in the brain—occur well before the onset of clinical 
manifestations (Sperling et  al., 2011), with pTau accumulation 
occurring earlier, possibly decades prior to clinical cognitive decline 
(Braak and Del Tredici, 2011). Increased concentration of Aβ or pTau 
in the CSF or blood reflects progression of Alzheimer’s neuropathology 
while the appearance of neurofilament light chain (NfL) indicates 
subsequent neuronal injury and loss (Jack et  al., 2016). Recent 
advances in immunoassays for pTau have made it possible to reliably 
quantify pTau in the blood, with the newest blood pTau217 assays 
having excellent diagnostic performance superior to many blood 
pTau181 assays (Janelidze et al., 2023).

If the presence of Alzheimer’s disease neuropathology increases 
the risk for POD, it should be possible to risk stratify elderly patients 
for POD based on measurement of pTau or Aβ concentration in the 
blood or CSF. A number of studies have attempted to test this 
hypothesis, which we  will discuss below, first focusing on pTau 
(pTau217 and pTau181), then on Aβ.

To our knowledge, only two cohort studies have examined 
pTau217 in surgical patients. Liang et al. (2023) conducted a study 
involving a cohort of 139 orthopedic (knee, hip and spine) surgical 
patients and demonstrated that elevated plasma levels of pTau181 and 
pTau217 were associated with fourfold and twofold increase in POD 
risk, respectively, which remained significant after controlling for age, 
education and preoperative cognition (Mini-mental State 
Examination); also, the severity of POD was associated with the 
preoperative levels of each of the blood-based pTau biomarkers. In a 
smaller cohort of cardiac surgery patients (n  = 38), McKay et  al. 
(2022) found significant postoperative elevations of both serum total 
tau and pTau (both pTau181 and pTau217), but only total tau was 
associated with POD.

As for pTau181, studies analyzing the large Perioperative 
Neurocognitive Disorder And Biomarker Lifestyle (PNDABLE) 
cohort (orthopedic surgery—hip or knee arthroplasty) in China have 
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TABLE 1  An overview of the literature on emerging biomarkers of POD pertaining to Figure 1.

Biomarker Biofluid Study Surgery type (cohort) Sample size Associated with POD?

pTau217
Plasma Liang et al. (2023) Orthopedic n = 139 Y

Serum McKay et al. (2022) Cardiac n = 38 N

pTau181

CSF Liu et al. (2022) Orthopedic (PNDABLE) n = 1,471 Y

CSF Wang et al. (2022) Orthopedic (PNDABLE) n = 829 Y

CSF Cunningham et al. (2019) Orthopedic n = 282 N

CSF Chan et al. (2021) Orthopedic n = 199 N

CSF Witlox et al. (2011) Orthopedic n = 76 N

CSF Umoh et al. (2025) Orthopedic n = 158 N

CSF Idland et al. (2017) Orthopedic (OOT) n = 129 N

CSF Halaas et al. (2021) Orthopedic (OOT) n = 128 N

CSF Neerland et al. (2020) Orthopedic (OOT) n = 128 N

CSF Henjum et al. (2018) Orthopedic (OOT) n = 120 N

CSF Hov et al. (2017) Orthopedic (OOT) n = 98 N

CSF Wang et al. (2023) Orthopedic n = 138 Y

CSF Fong et al. (2021) Orthopedic n = 59 Y*

CSF Fong et al. (2024) Orthopedic n = 35 matched pairs N

CSF Parker et al. (2022) Vascular n = 53 Y

Aβ

CSF Wang et al. (2022) Orthopedic (PNDABLE) n = 829 Y

CSF Lin et al. (2023) Orthopedic (PNDABLE) n = 825 Y

CSF Lin et al. (2022) Orthopedic (PNDABLE) n = 740 Y

CSF Liu et al. (2022) Orthopedic (PNDABLE) n = 1,471 Y*

CSF Guo et al. (2024) Orthopedic n = 560 Y

CSF Cunningham et al. (2019) Orthopedic n = 282 Y

CSF Xie et al. (2014) Orthopedic n = 153 Y

CSF Wang et al. (2023) Orthopedic n = 138 Y

CSF Witlox et al. (2011) Orthopedic n = 76 Y

CSF Idland et al. (2017) Orthopedic (OOT) n = 129 Y

CSF Halaas et al. (2021) Orthopedic (OOT) n = 128 Y

CSF Neerland et al. (2020) Orthopedic (OOT) n = 128 Y

CSF Chan et al. (2021) Orthopedic n = 199 N

CSF Fong et al. (2024) Orthopedic n = 35 matched pairs N

CSF Parker et al. (2022) Vascular n = 53 N

Total tau

CSF Wang et al. (2022) Orthopedic (PNDABLE) n = 829 Y

CSF Lin et al. (2023) Orthopedic (PNDABLE) n = 825 Y

CSF Lin et al. (2022) Orthopedic (PNDABLE) n = 740 Y

CSF Liu et al. (2022) orthopedic (PNDABLE) n = 1,471 N

CSF Guo et al. (2024) Orthopedic n = 560 Y

CSF Parker et al. (2022) Vascular n = 53 Y

CSF Idland et al. (2017) Orthopedic (OOT) n = 129 Y

CSF Halaas et al. (2021) Orthopedic (OOT) n = 128 Y

CSF Neerland et al. (2020) Orthopedic (OOT) n = 128 Y

CSF Cunningham et al. (2019) Orthopedic n = 282 N

CSF Fong et al. (2020) Mixed n = 108 N

CSF Witlox et al. (2011) Orthopedic n = 76 N

Plasma Ballweg et al. (2021) Mixed n = 114 Y

Urine Baek et al. (2023) Orthopedic n = 91 Y

(Continued)
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consistently found a significant positive association between 
preoperative CSF pTau181 levels and POD risk, for example in Liu 
et al. (2022) (n = 1,471) and Wang S. et al. (2022) (n = 829).

Inconsistent findings have been reported from smaller sized studies 
that have examined pTau181 in the CSF. Examining similar orthopedic 
surgery cohorts (hip or knee arthroplasty), Cunningham et al. (2019) 
(n = 282), Chan et al. (2021) (n = 199), Witlox et al. (2011) (n = 76), and 
Umoh et  al. (2025) (n  = 158) reported no significant association of 
preoperative CSF pTau181 with POD. Analyses of the Oslo 
Orthogeriatrics Trial cohort reported similar negative findings for 
preoperative CSF pTau181 as well [Idland et al., 2017 (n = 129), Halaas 
et al., 2021 (n = 128), Neerland et al., 2020 (n = 128), Henjum et al., 2018 
(n  = 120), Hov et  al., 2017 (n  = 98)]. However, Wang et  al. (2023) 
(n = 138) did find a significant association in orthopedic patients with 
pTau181. The lack of consistency even extends to the same investigators: 
Fong et al. (2021) (n = 59) found a trend towards statistically significantly 
increased delirium incidence in orthopedic patients meeting amyloid, 
tau, and neurodegeneration (ATN) classification of AD, but in a separate 
case–control study (n = 35 matched pairs) failed to find a significant 
association of preoperative plasma or CSF pTau181 with POD (Fong 
et al., 2024). In a cohort of vascular surgery patients (thoracoabdominal 
aortic aneurysm repair), however, Parker et al. (2022) (n = 53) found that 
preoperative CSF pTau181 was associated with POD.

Given the consistent significant positive association between 
pTau181 with POD in the large PNDABLE studies, the lack of 
consistency among smaller sized studies may simply reflect lack of 
statistical power, although the heterogeneity of patient cohorts also 
needs to be considered, as the PNDABLE cohort is based in China 

whereas the other studies are based in the United States or Europe. 
The findings from Han Chinese patient cohorts may not generalize to 
predominantly Caucasian cohorts, and there may be environmental 
and sociocultural differences between China and Western countries 
that contribute as well. Overall, further studies in more diverse patient 
cohorts are needed to establish whether preoperative pTau is useful 
for POD risk prediction, especially using the newer, more-sensitive, 
blood-based assays measuring pTau217, which have superior 
diagnostic performance.

With respect to Aβ, analyses of the PNDABLE cohort for the most 
part found a significant association of lower CSF Aβ42 with POD 
[Wang et al., 2022 (n = 829), Lin et al., 2023 (n = 825), Lin et al., 2022 
(n = 740)], although the p value in Liu et al. (2022) (n = 1,471) was 
borderline (p = 0.06). In other orthopedic cohorts, Guo et al. (2024) 
(n  = 560), Cunningham et  al. (2019) (n  = 282), Xie et  al. (2014) 
(n = 153), Wang et al. (2023) (n = 138), Witlox et al. (2011) (n = 76), 
and analyses of the Oslo Orthogeriatrics Trial [Idland et al., 2017 
(n = 129), Halaas et al., 2021 (n = 128), Neerland et al., 2020 (n = 128)] 
have consistently reported similar findings. However, there were 
several studies which reported no significant association: Chan et al. 
(2021) (n = 199, orthopedic), Fong et al. (2024) (n = 53 matched pairs, 
orthopedic), and Parker et al. (2022) (n = 53, vascular).

Overall, the preponderance of evidence favors lower CSF Aβ42 as 
predictive of increased risk for POD, in agreement with lower CSF 
Aβ42 as a biomarker of Alzheimer’s disease. Again, the inconsistency 
among the smaller-sized studies may be  due to lack of statistical 
power; differences in the assays used to detect Aβ42 may have 
also contributed.

TABLE 1  (Continued)

Biomarker Biofluid Study Surgery type (cohort) Sample size Associated with POD?

NfL

CSF Halaas et al. (2018) Orthopedic (OOT) n = 314 Y

CSF Umoh et al. (2025) Orthopedic n = 158 Y

CSF Fong et al. (2020) Mixed n = 108 Y

CSF Parker et al. (2022) Vascular N = 53*** Y

CSF Zhou et al. (2022) Neurosurgery n = 40 Y

CSF Liu et al. (2023) Mixed n = 32 Y**

Plasma Ballweg et al. (2021) Mixed n = 114 N

Urine Baek et al. (2023) Orthopedic n = 91 N

GFAP CSF Fong et al. (2024) Orthopedic n = 35 matched pairs Y*

CSF Cape et al. (2014) Orthopedic n = 43 N

Urine Baek et al. (2023) Orthopedic n = 91 N

Plasma Ballweg et al. (2021) Mixed n = 114 N

Plasma Liu et al. (2023) Mixed n = 32 Y

Plasma Fong et al. (2020) Mixed n = 108 Y*

Plasma Anderson et al. (2018) Lung transplant n = 155 N

Plasma Gailiušas et al. (2019) Cardiac n = 44 Y

CPAR Plasma, CSF Devinney et al. (2023) Mixed non-cardiac n = 207 Y

vWF, VCAM1 Plasma Moazzen et al. (2024) Mixed n = 788 N

CCL2 Plasma Kaźmierski et al. (2021) Cardiac n = 177 Y

Plasma Menzenbach et al. (2021) Mixed n = 118 Y

PNDABLE, Perioperative Neurocognitive Disorder And Biomarker Lifestyle. OOT, Oslo Orthogeriatrics Trial.  
*p value > 0.05 but trending towards statistical significance. **Emergence delirium. ***Excluding patients with spinal cord ischemia.
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2.2 Markers of neuronal injury: total tau, 
NfL

While pTau is specific for Alzheimer’s disease, total tau in 
CSF or blood more likely reflects non-specific neuronal injury, as 
tau is an abundant microtubule binding protein in neurons. 
Similarly, neurofilament light chain (NfL) is a neuron-specific 
cytoskeleton protein that is elevated in the CSF or blood in the 
setting of neuronal injury. With respect to POD, pre-existing 
neuronal injury (e.g., from underlying Alzheimer’s disease) 
would likely increase the risk for POD, and certain types of 
surgery may induce neuronal injury (e.g., microscopic emboli or 
microcirculatory dysfunction in the brain from cardiopulmonary 
bypass), which could further increase the risk for POD and long-
term cognitive impairment. Interestingly, in patients who have 
undergone cardiac surgery, the presence of POD increases the 
risk for developing subsequent dementia within 5 years (Davis 
et al., 2012; Goldberg et al., 2020; Lingehall et al., 2017).

A number of studies have examined neuronal injury markers 
such as total tau or NfL in the blood or CSF in surgical cohorts. For 

total tau, most studies examined CSF collected preoperatively and 
reported increased tau as a predictor of POD. Analyses of the 
PNDABLE cohort for the most part have demonstrated increased 
preoperative CSF tau as a risk factor, with Wang S. et  al. (2022) 
(n = 829), Lin et al. (2023) (n = 825), and Lin et al. (2022) (n = 740) 
reporting a significant association, whereas Liu et  al. (2022) 
(n = 1,471) did not. In other orthopedic cohorts, Guo et al. (2024) 
(n  = 560), Parker et  al. (2022) (n = 53), and analyses of the Oslo 
Orthogeriatrics Trial (Idland et al., 2017 (n = 129), Halaas et al., 2021 
(n  = 128), Neerland et  al., 2020 (n  = 128)) also reported an 
association. However, Cunningham et  al. (2019) (n = 282, 
orthopedic), Fong et al. (2020) (n = 108, mixed surgical cases), and 
Witlox et al. (2011) (n = 76, orthopedic) did not find a statistically 
significant association.

There are only a few studies that have examined total tau in other 
biofluids besides CSF as a potential non-invasive biomarker. Ballweg 
et al. (2021) (n = 114, mixed surgical cases) measured total tau in 
plasma at multiple time points and reported that the change in 
plasma total tau was greater in patients with POD and correlated with 
delirium severity. Baek et al. (2023) (n = 91, orthopedic) measured 

FIGURE 1

An overview of postoperative delirium pathophysiology and its potential biomarkers. MCI: mild cognitive impairment, BBB: blood–brain barrier.
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total tau in urine extracellular vesicles (from urine collected 
postoperatively) and found that total tau was higher in patients who 
developed POD vs. those who did not.

As for NfL, the majority of studies have reported increased blood 
or CSF NfL as a risk factor for POD. Halaas et al. (2018) (n = 314, 
orthopedic), Umoh et al. (2025) (n = 158, orthopedic), Fong et al. 
(2020) (n = 108, mixed surgical cases), Parker et al. (2022) (vascular, 
excluding patients with putative spinal cord ischemia), and Zhou et al. 
(2022) (n = 40, DBS implant neurosurgery in patients with Parkinson’s 
disease) reported that increased CSF NfL preoperatively was 
associated with POD. Liu et al. (2023) (n = 32, mixed surgical cases) 
reported an association with emergence delirium. In contrast, Ballweg 
et al. (2021) (n = 114, mixed surgical cases) did not find an association 
between POD and plasma NfL, and Baek et  al. (2023) (n  = 91, 
orthopedic) did not find differences in urine extracellular vesicle NfL 
in patients with POD vs. those without.

Overall, the preponderance of evidence favors markers of 
neuronal injury being predictive of POD risk, although it remains to 
be determined whether total tau or NfL is superior. Small sample sizes 
and differences in the patient demographics of the clinical cohorts and 
the immunoassays used likely contribute to the discrepancy of 
study findings.

It should be noted that other markers have been used as surrogates 
of neuronal injury. For example, ubiquitin carboxyl-terminal 
hydrolase L1 (UCH-L1) has been used in studies on traumatic brain 
injury (Blyth et al., 2011; Brophy et al., 2011) and has been repurposed 
as a possible biomarker for POD, for example, in Lopez et al., where 
higher postoperative levels of UCH-L1 was associated with increased 
POD risk (Lopez et al., 2020).

2.3 Markers of reactive astrocytes: glial 
fibrillary acidic protein (GFAP)

In many contexts, neuroinflammation causes reactive astrogliosis, 
a hallmark of which is increased expression of GFAP, a protein specific 
to astrocytes in the adult brain. Increased expression of GFAP in the 
CNS would then lead to increased concentration of GFAP in the CSF 
and also blood, presumably through increased permeability of the 
blood–brain barrier in the setting of neuroinflammation. For example, 
patients with severe COVID-19 have elevated plasma GFAP (Cooper 
et al., 2020; Sahin et al., 2022), which was associated with subsequent 
mild cognitive impairment (Bark et al., 2023), and blood GFAP is also 
becoming recognized as a biomarker for Alzheimer’s disease (Ally 
et al., 2023; Chatterjee et al., 2021; Pereira et al., 2021; Sánchez-Juan 
et al., 2024). Thus, given that neuroinflammation is a well-established 
part of POD pathophysiology, it would be reasonable to hypothesize 
that there would be  postoperative reactive astrogliosis and hence 
elevated concentration of GFAP in the CSF or blood. Indeed, reactive 
astrogliosis is seen in mouse models of POD (Hua et al., 2023), and 
reactive astrogliosis has been reported in post-mortem samples from 
patients with delirium (van Munster et al., 2011), although it was 
unclear whether the cases reflected medical delirium or 
POD. Alternatively, pre-existing reactive astrogliosis, for example in 
reaction to underlying Alzheimer’s neuropathology, may also increase 
the risk for POD.

A number of studies have examined CSF or blood GFAP in 
POD. However, studies have reported conflicting findings regarding 

the association between GFAP and POD. For example, examining 
orthopedic patients, Fong et al. (2024) (n = 35 matched pairs, Simoa 
assay) found that both preoperative plasma and CSF GFAP were 
nearly twofold higher in patients with POD and was associated with 
increased POD risk, but the results only trended towards statistical 
significance. In a separate orthopedic cohort, Cape et  al. (2014) 
(n = 43, traditional immunoassay) did not find an association between 
CSF GFAP and POD. Baek et  al. (2023) (n  = 91, Simoa assay) 
examined GFAP in postoperative urine samples from orthopedic 
patients and did not find an association with POD.

With respect to mixed surgical cohorts, Ballweg et  al. (2021) 
(n = 114, Simoa assay) did not find any association between plasma 
GFAP and POD, whereas Liu et  al. (2023) (n = 32, traditional 
immunoassay) found that the increase in plasma GFAP postoperatively 
compared to preoperatively was associated with increased POD risk, 
and Fong et al. (2020) (n = 108, Simoa assay) reported a trend towards 
statistically significant association of preoperative and postoperative 
plasma GFAP with POD risk.

As for surgeries involving cardiopulmonary bypass, Anderson 
et al. (2018) (n = 155, traditional immunoassay) examined GFAP in 
lung transplant patients and did not find an association between 
postoperative plasma GFAP and POD, but GFAP was not consistently 
detected, presumably due to the limits of the traditional GFAP 
immunoassay used in that study. Gailiušas et  al. (2019) (n  = 44, 
traditional immunoassay) found a significant increase in plasma 
GFAP after surgery as well as higher plasma GFAP in patients with 
POD in cardiac surgery patients.

Overall, the evidence for the usefulness of GFAP as a biomarker 
for POD is mixed, likely due to the small number of studies, the 
heterogeneity of surgical cohorts examined, and heterogeneity in the 
GFAP assays employed. Further investigation of GFAP in larger 
cohorts using Simoa-based assays or assays with equal sensitivity 
is warranted.

2.4 Systemic and neuro-inflammation: the 
role of IL-6

IL-6 is a key mediator of the neuroinflammatory cascade following 
aseptic surgical trauma. Tissue injury releases damage-associated 
molecular patterns (e.g., HMGB1), which activate pattern recognition 
receptors such as RAGE on bone marrow-derived monocytes 
(BM-DMs), leading to NF-κB-mediated upregulation of inflammatory 
cytokines, including IL-6 (Cibelli et  al., 2010). This systemic 
inflammatory response can disrupt the blood–brain barrier (BBB), 
allowing peripheral cytokines and immune cells to infiltrate the CNS 
(Degos et al., 2013; Hu et al., 2018). Activated microglia and recruited 
BM-DMs in the hippocampus are capable of releasing IL-6, which 
may disrupt synaptic plasticity and thereby impair memory (Hu 
et al., 2018).

IL-6 operates via two distinct pathways: classic signaling 
through membrane-bound IL-6Rα and trans-signaling via soluble 
IL-6R (sIL-6R). The latter forms an IL-6/sIL-6R complex that 
interacts with gp130 on cells lacking IL-6Rα, thereby expanding 
the range of IL-6’s proinflammatory effects (Barreto Chang and 
Maze, 2022; Rose-John, 2021). Recent preclinical studies 
demonstrate that IL-6 trans-signaling in hippocampal CA1 
neurons is both necessary and sufficient to induce postoperative 
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cognitive impairment (Hu et al., 2022). Post-surgical increases in 
hippocampal IL-6 and CSF sIL-6R correlate with memory deficits 
and Stat3 phosphorylation (Hu et  al., 2022). Pharmacological 
inhibition of trans-signaling with sgp130Fc prevents these 
deficits (Hu et al., 2022), confirming the causal role of IL-6 trans-
signaling in POD pathogenesis.

Clinical meta-analyses show that elevated pre- and postoperative 
IL-6 levels are associated with increased POD risk (Liu et al., 2018; 
Noah et  al., 2021). Advanced age and preexisting cognitive 
impairment, major risk factors for POD, are linked to chronic 
low-grade inflammation (“inflammaging”), which includes elevated 
IL-6 levels (Ferrucci et  al., 1999; Singh-Manoux et  al., 2014; 
Wichmann et al., 2014). Aged mice show increased hippocampal IL-6 
and sIL-6R and heightened microglial sensitivity to IL-6 signaling 
(Burton et  al., 2013; Garner et  al., 2018; Porcher et  al., 2021). 
Interestingly, changes in systemic IL-6 levels over the course of the 
first postoperative year are correlated with changes in executive 
function in patients (Taylor et al., 2023).

2.5 Markers of endothelial and blood brain 
barrier (BBB) dysfunction

Endothelial dysfunction and compromised blood–brain barrier 
(BBB) integrity are increasingly recognized as crucial components in 
the pathophysiology of postoperative delirium. Preclinical 
investigations of POD using mouse models have demonstrated 
increased BBB permeability and ensuing peripheral immune cell 
infiltration into the brain parenchyma after orthopedic surgery 
(Terrando et al., 2011; Yang et al., 2019). However, there are currently 
relatively few clinical studies examining markers of endothelial and 
BBB dysfunction in POD.

Elevated CSF-to-plasma albumin ratio (CPAR) is considered 
a marker of increased BBB permeability, because albumin is 
normally not abundant in CSF compared to plasma. Taylor et al. 
(2022) (n  = 25, mixed surgical cases) reported that surgery 
induced an increase in CPAR and also higher CSF levels of S100β, 
which is also considered a marker of increased BBB permeability. 
Payne et  al. (2024) (n  = 24, aortic aneurysm repair) further 
supported these findings by showing postoperative elevation in 
CPAR, and also found that surgery increased CSF fibrinogen, a 
marker closely linked to BBB integrity impairment and 
neuroinflammation (Ryu et al., 2009). Importantly, in a larger 
cohort, Devinney et  al. (2023) (n  = 207, mixed non-cardiac 
surgical cases) found that a higher CPAR was associated with 
increased incidence of POD after adjusting for clinical covariates. 
Thisayakorn et al. (2024) (n = 59) reported elevated plasma IgG/
IgA antibodies against tight junction proteins (zonulin, occludin, 
claudin), which are integral to BBB integrity, in patients 
with POD.

Although the above studies supported postoperative BBB 
dysfunction, Moazzen et  al. (2024) (n  = 788, mixed surgical 
cases) examined preoperative plasma levels of markers of 
endothelial dysfunction (including asymmetric and symmetric 
dimethylarginine, ICAM-1, VCAM-1, vWF) and did not find an 
association with POD risk, suggesting that the link between 
endothelial and BBB dysfunction with POD may be dynamic. For 
example, baseline preoperative levels of endothelial dysfunction 

markers alone may not be  predictive of POD, whereas the 
preoperative to postoperative change may be predictive.

Interestingly, a number of studies have associated proteins 
involved in immune cell recruitment, e.g., chemokines and cell 
adhesion molecules, with POD. For example, both preoperative 
(Kaźmierski et  al., 2021) (n = 177, cardiac) and postoperative 
(Menzenbach et al., 2021) (n = 118, mixed surgical cases) blood 
CCL2 (chemokine) levels are positively associated with POD risk. 
Mietani et al. (2019) (n = 117, mixed surgical cases) found that 
postoperative plasma P-selectin (endothelial adhesion molecule 
for immune cells) levels were associated with elevated plasma 
concentration of phosphorylated neurofilament heavy chain 
(pNfH), which was used as a biomarker of POD (sensitivity of 
56% and specificity of 90%). The results above lend support to 
the preclinical evidence demonstrating a role for peripheral 
immune cell infiltration into the brain in the pathophysiology of 
POD (D’Mello et al., 2009; Degos et al., 2013; Xu et al., 2017), and 
preliminary clinical studies have corroborated this as well (Berger 
et al., 2019).

Overall, further investigation of markers of endothelial and BBB 
dysfunction in POD is needed, especially studies that follow these 
markers both preoperatively and postoperatively. Correlating the 
markers with the cognitive trajectories of these patients before and 
after surgery will yield insights into how different patient intrinsic 
characteristics and the immune response to surgical trauma may 
contribute to different outcomes.

3 Discussion

3.1 Limitations of our mini-review

Our mini-review aims to bring increased attention to emerging 
biomarkers of POD pertaining to our understanding of its 
pathophysiology. Although a systematic review and meta-analysis of 
the existing literature on biomarkers of POD [e.g. (Lozano-Vicario 
et al., 2023)] would certainly benefit the field of POD research, we feel 
that such an endeavor is premature for many of the topics discussed 
here apart from IL-6 and AD biomarkers, for which there are several 
excellent meta-analyses available (Geng et  al., 2024; Wang 
S. et al., 2022).

3.2 Future directions

Several crucial avenues remain to be explored in future research 
to deepen our understanding of postoperative delirium and enhance 
its management.

First, elucidating the detailed molecular and cellular mechanisms 
linking pro-inflammatory cytokines, particularly IL-6, to neuronal 
injury and subsequent elevation of neurodegenerative biomarkers 
such as tau, pTau, and NfL is essential. Clarifying these pathways 
could significantly advance our understanding of POD 
pathophysiology, identify other possible biomarkers, and guide 
targeted anti-inflammatory therapeutic strategies.

Second, further investigation into how endothelial dysfunction and 
increased blood–brain barrier (BBB) permeability contributes to POD 
initiation and progression is warranted. Detailed characterization of 
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the vascular changes and molecular pathways involved in BBB 
disruption (see Figure 1) could inform targeted interventions aimed at 
preserving endothelial integrity and mitigating delirium risk.

Finally, longitudinal studies tracking biomarker changes 
preoperatively, perioperatively, and postoperatively are necessary to better 
understand temporal biomarker dynamics and their predictive accuracy 
for POD. With further investigations of the biomarkers discussed in this 
review and larger clinical cohorts, we envision that a multi-modal POD 
prediction score integrating baseline patient demographics, preoperative 
cognitive evaluation, clinical metadata, and plasma biomarkers is a tool 
that could feasibly be developed in the near future, potentially with the aid 
of machine learning or artificial intelligence, for early identification of 
patients at risk.
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