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Background: MicroRNAs (miRNAs), small and highly conserved non-coding 
RNA molecules, have emerged as promising molecular biomarkers due to their 
regulatory roles in gene expression and stability in blood.

Methods: We used measurements of 64 plasma miRNAs from 145 participants 
in the Alzheimer’s disease Neuroimaging Initiative cohort, including 74 probable 
AD patients and 71 cognitively normal (CN) older adults. We performed principal 
component analysis (PCA) with factor rotation for dimension reduction to 
identify AD-associated principal components (PCs) and their key miRNAs 
with factor loadings higher than 0.8. We  investigated their association with 
amyloid/tau/neurodegeneration (A/T/N) biomarkers and cognition. After 
identifying the candidate target genes of key miRNAs, we performed pathway 
enrichment analysis. We  conducted mediation analyses to assess the effect 
of the associations between miRNAs and A/T/N biomarkers on AD diagnosis 
and cognition. Finally, we used a machine learning approach to evaluate the 
performance of key miRNAs for AD classification.

Results: PCA identified one PC as significantly associated with AD. The PC 
was also significantly associated with CSF p-tau levels, hippocampal volume, 
and cognition. Two key miRNAs (miR-423-5p and miR-92a-3p) in the PC 
were associated with AD. Lower levels of miR-423-5p and miR-92a-3p were 
associated with reduced hippocampal volume and worse cognition, and lower 
levels of miR-423-5p were associated with higher brain amyloid deposition. 
Pathway enrichment analysis identified several significant biological processes, 
including memory, protein phosphorylation, and the phosphatidylinositol-3-
phosphate biosynthetic process. Mediation analysis revealed that miR-423-
5p, but not miR-92a-3p, had indirect effects on AD diagnosis and memory 
performance through brain amyloid deposition and brain atrophy. Machine 
learning analysis demonstrated that incorporating two key miRNAs improved 
the performance of demographic information for AD classification.

Conclusion: Plasma miR-423-5p and miR-92a-3p are implicated in AD 
pathology and cognitive decline, providing insights into their roles in disease 
mechanisms. This study suggests the potential of these miRNAs as blood-based 
molecular biomarkers for AD.

OPEN ACCESS

EDITED BY

Andy P. Tsai,  
Stanford University, United States

REVIEWED BY

Michela Alessandra Denti,  
University of Trento, Italy
Madhav Mantri,  
Stanford University, United States

*CORRESPONDENCE

Young Ho Park  
 kumimesy@snubh.org  

Kwangsik Nho  
 knho@iu.edu

RECEIVED 29 May 2025
ACCEPTED 08 July 2025
PUBLISHED 22 July 2025

CITATION

Han S-W, Park YH, Pyun J-M, Bice PJ, Kim S, 
Saykin AJ and Nho K (2025) miR-423-5p and 
miR-92a-3p in Alzheimer’s disease: 
relationship with pathology and cognition.
Front. Aging Neurosci. 17:1637368.
doi: 10.3389/fnagi.2025.1637368

COPYRIGHT

© 2025 Han, Park, Pyun, Bice, Kim, Saykin 
and Nho. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 22 July 2025
DOI 10.3389/fnagi.2025.1637368

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2025.1637368&domain=pdf&date_stamp=2025-07-22
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1637368/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1637368/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1637368/full
mailto:kumimesy@snubh.org
mailto:knho@iu.edu
https://doi.org/10.3389/fnagi.2025.1637368
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2025.1637368


Han et al. 10.3389/fnagi.2025.1637368

Frontiers in Aging Neuroscience 02 frontiersin.org

KEYWORDS

Alzheimer’s disease, cognitive decline, machine learning, MicroRNAs, miR-423-5p, 
miR-92a-3p

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder that stands as a common cause of dementia among older 
adults (Long and Holtzman, 2019). AD manifests through a 
constellation of neuropathological features, including the extracellular 
accumulation of amyloid-β (Aβ) plaques along with intracellular 
neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau 
protein aggregates (Long and Holtzman, 2019). Despite extensive 
research efforts, the pathogenesis of AD remains elusive, largely due 
to its complex neurochemical and genetic landscape (Hampel 
et al., 2010).

Significant advancements have been made in antemortem 
diagnosis of AD through the use of biomarkers obtained from 
cerebrospinal fluid (CSF) or visualized via positron emission 
tomography (PET) imaging (Long and Holtzman, 2019; Schindler 
et al., 2024). These biomarkers have proven to be highly effective in 
identifying the pathological hallmarks of the disease (Hampel et al., 
2018; Long and Holtzman, 2019; Schindler et al., 2024). However, the 
invasive nature of CSF collection and the high costs of PET imaging 
pose significant limitations to their widespread application in routine 
clinical practice (Hampel et  al., 2018; Schindler et  al., 2024). 
Consequently, there is a critical need for the identification of more 
accessible and less invasive biomarkers, such as blood-based ones, for 
AD diagnosis.

In recent years, microRNAs (miRNAs), which are non-coding 
RNA molecules approximately 20–23 nucleotides long, have emerged 
as potential biomarkers for AD (Wang et al., 2019; Kou et al., 2020). 
These miRNAs are involved in AD pathogenesis, playing important 
roles in post-transcriptional gene expression regulation by binding the 
3′-untranslated regions of messenger RNAs (mRNAs) (Bartel, 2004; 
Winter et  al., 2009; Wang et  al., 2019; Kou et  al., 2020). Notably, 
alterations in the levels of specific miRNAs in peripheral blood have 
been reported in AD patients, suggesting their potential utility as 
non-invasive biomarkers for AD (Kou et al., 2020; Guévremont et al., 
2022). Given the stability of miRNAs in circulation and their 
detectability in various biological fluids including plasma, they 
represent promising candidates for the development of blood-based 
diagnostic biomarkers for AD (Weber et  al., 2010; Turchinovich 
et al., 2011).

A critical step in analyzing high-dimensional biological data, such 
as miRNA expression data, is dimension reduction. This step is 
essential for simplifying complex datasets to enhance data 
interpretability while retaining the biological significance of the data 
(Meng et al., 2016). Principal component analysis (PCA) is a widely 
utilized method for dimension reduction, enabling the identification 
of underlying patterns in data that may not be  apparent in high-
dimensional space (Ringnér, 2008; Meng et al., 2016). Through the 
application of PCA, essential features are extracted from an extensive 
set of miRNAs, which helps elucidate the specific roles of miRNAs in 
AD and deepens understanding of their dysregulated expression in 
the context of the disease (Ringnér, 2008; Jolliffe and Cadima, 2016; 
Meng et al., 2016).

In this study, we  investigated the association of circulating 
miRNAs with central AD biomarkers and their potential as candidate 
blood-based molecular biomarkers for AD using expression data from 
64 individually measured plasma miRNAs from 145 participants in 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. 
We performed PCA to identify AD-associated principal components 
(PCs) and their key miRNAs. Subsequently, we also investigated their 
association with amyloid/tau/neurodegeneration (A/T/N) biomarkers 
and cognitive function, aiming to contribute to the identification of 
potential blood-based molecular biomarkers for AD. After identifying 
the candidate target genes of these miRNAs, we investigated their 
involvement in biological pathways to provide insights into the 
molecular mechanisms underpinning AD. Furthermore, 
we performed mediation analysis to assess the effect of the associations 
between miRNAs and A/T/N biomarkers on AD diagnosis and 
cognitive function. Finally, we  conducted a machine learning 
approach to evaluate the performance of miRNAs for the 
classification of AD.

2 Materials and methods

2.1 Study samples

The ADNI was launched in 2003 through a collaborative effort 
including the National Institute on Aging, National Institute of 
Biomedical Imaging and Bioengineering, Food and Drug 
Administration, private pharmaceutical companies, and nonprofit 
organizations. The initial phase, ADNI-1 (Petersen et al., 2010), aimed 
to assess the feasibility of using serial magnetic resonance imaging 
(MRI), PET scans, various biological markers, and clinical and 
neuropsychological assessments as reliable indicators of AD 
pathogenesis. This was followed by subsequent phases—ADNI-GO 
(Aisen et al., 2010), ADNI-2 (Aisen et al., 2015), and ADNI-3 (Weiner 
et al., 2017)—which expanded on the initial phase by allowing for the 
continuous follow-up of existing participants and incorporating new 
enrollments. Detailed information on ADNI, including latest updates, 
eligibility criteria, protocols for clinical and neuroimaging evaluations, 
and an outline of diagnostic criteria is available at https://www.adni-
info.org. The ADNI Laboratory of Neuro Imaging (LONI) website1 
provided access to demographic and clinical information, raw 
neuroimaging data, CSF biomarker data, apolipoprotein E (APOE) ε4 
genotyping, and cognitive scores. All participants provided written 
informed consent at the time of enrollment, which included consent 
for data analysis and sharing. The study received approval from the 
Institutional Review Board at each participating site. Participants 
diagnosed with probable AD and cognitively normal (CN) were 
followed up prospectively with clinical data, neuroimaging studies, 
and biological samples for molecular biomarker measurements, as 

1 http://adni.loni.usc.edu
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previously described (Aisen et al., 2010; Petersen et al., 2010; Aisen 
et al., 2015; Weiner et al., 2017). Diagnostic classifications were based 
on assessments including the Logical Memory from the Wechsler 
Memory Scale—Revised (Wechsler, 1987), Mini-Mental State 
Examination (MMSE) (Folstein et al., 1975), and Clinical Dementia 
Rating scale (Morris, 1993).

2.2 miRNA expression data

To assess concordance of miRNA expression between CSF and 
plasma, the same RT-qPCR workflow was applied to both biofluids 
using a custom TaqMan Advanced Human miRNA Low-Density Array 
(TLDA) card containing 64 preselected miRNAs. These miRNAs were 
selected based on prior literature demonstrating their detectability in 
CSF (Lusardi et al., 2016; Saugstad et al., 2017; Wiedrick et al., 2019; 
Sandau et al., 2020b; Sandau et al., 2022) and plasma (Sandau et al., 
2020a) and their established relevance to AD. RNA isolation was 
conducted in 24-sample batches, including matched CSF and plasma 
samples to mitigate batch effects. Total RNA was extracted from 250 μL 
each of CSF and plasma using the miRNA Purification kit, following 
the manufacturer’s protocol (Abdalla et al., 2011). A 3 pM concentration 
of the exogenous spike-in cel-miR-39-3p was added following the lysis 
step. RNA elution was performed with 30 μL of nuclease-free water for 
CSF samples and 50 μL for plasma samples. Quantification of miRNA 
was performed using the Qubit miRNA Assay kit and Qubit 4.0 
fluorometer (Scientific, 2017). For reverse transcription quantitative 
polymerase chain reaction, miRNA was reverse transcribed to 
complementary DNA (cDNA) using the TaqMan Advanced miRNA 
cDNA Synthesis kit according to the manufacturer’s instructions 
(TaqMan, 2011). This process included poly-adenylation and adaptor 
ligation, followed by reverse transcription, and a universal 14-cycle 
miRNA amplification. The diluted miRNA amplification reaction 
mixture was combined with TaqMan Fast Advanced master mix and 
then loaded onto a custom TLDA card for assay on a QuantStudio 7 
Flex. Data analysis included a detailed examination of quantification 
cycle (Cq) values for artifacts and quality control (QC) using array card 
well-level statistics. For both CSF and plasma samples, Cq values were 
normalized using the exogenous spike-in control cel-miR-39-3p and 
the endogenous reference hsa-miR-16-5p (Moldovan et  al., 2014). 
Handling of censored values (Cq > 34) was performed through 
censoring-aware methods, as previously described in detail (Wiedrick 
et al., 2019; Sandau et al., 2024).

All 64 miRNAs passed predefined QC thresholds and were 
retained for downstream analysis. A total of 64 miRNAs were analyzed 
from 80 probable AD patients and 80 CN individuals. Participants 
who lacked one or more miRNA expression data were excluded for 
subsequent PCA, resulting in 74 probable AD patients and 71 CN 
individuals included for further analysis.

2.3 Neuroimaging data

Brain MRI scans were obtained from participants using 3 T 
scanners, following the ADNI standardized protocol for 3D 
Magnetization Prepared Rapid Gradient Echo sequences. The scans 
were processed through the longitudinal pipeline of FreeSurfer version 
5.3, as previously described (Jack et  al., 2008; Jack et  al., 2010), 

enabling the extraction of critical regions of interest, such as the 
bilateral hippocampal volumes and total intracranial volume.

Additionally, preprocessed [18F] florbetapir PET scans were 
sourced from the ADNI database via the LONI platform (see text 
footnote 1, respectively) and were acquired in line with the protocols 
established by previous studies (Jagust et al., 2010; Jagust et al., 2015). 
The quantification of amyloid burden was conducted by analyzing the 
standard uptake value ratio (SUVR) values from [18F] florbetapir PET 
scans, which is essential for evaluating amyloid deposits in the brain. 
These SUVR values were normalized to the intensity measurements 
from the cerebellum, which served as a reliable reference region (Joshi 
et al., 2012). To correct for skewness in the distribution of florbetapir 
PET SUVR data, a logarithmic transformation was applied.

2.4 CSF biomarkers

CSF samples were collected through lumbar puncture in the 
morning, following an overnight fast. These samples were frozen 
within 1 h of collection and transported to the ADNI Biomarker Core 
Laboratory at the University of Pennsylvania Medical Center, 
according to the ADNI protocol (Kang et al., 2015). Concentrations of 
Aβ42 and phosphorylated tau181 (p-tau) in CSF were measured using 
the Roche Elecsys Aβ42 and p-tau CSF immunoassays, respectively, as 
previously outlined (Bittner et al., 2016; Hansson et al., 2018). The CSF 
biomarker data were accessed and downloaded from the ADNI LONI 
website (see text footnote 1, respectively). To correct for data skewness, 
a logarithmic transformation of the CSF biomarker data was performed.

2.5 Comprehensive neuropsychological 
assessment

Domain-specific cognitive composite scores were calculated for 
memory and executive function. The composite score for memory 
integrated results from the Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (Mohs et  al., 1997), the Rey Auditory Verbal 
Learning Test (Rey, 1983), the memory components of the MMSE 
(Folstein et al., 1975), and the Logical Memory task (Wechsler, 1987). 
For executive function, the composite score included assessments 
from the Wechsler Adult Intelligence Scale–Revised Digit Symbol 
Substitution task (Wechsler and De Lemos, 1981) and the Digit Span 
backward task (Wechsler, 1987), the Trail Making Test Parts A and B 
(Reitan and Wolfson, 1985), category fluency (animals and vegetables) 
(Morris et  al., 1989), and five clock drawing tasks. To ensure 
comparability and consistency across individuals within the ADNI 
cohorts, these composite scores were standardized to a mean value of 
0 and a standard deviation of 1.

2.6 A/T/N biomarkers

We used CSF Aβ42 levels and global cortical amyloid deposition 
measured from amyloid PET scans as biomarkers of Aβ (A), CSF 
p-tau levels as a biomarker of tau (T), and structural hippocampal 
atrophy on brain MRI as a biomarker of neurodegeneration (N), as 
described in the National Institute on Aging–Alzheimer’s Association 
Research Framework (Jack et al., 2024).
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2.7 Dimension reduction in miRNA 
expression analysis using PCA

The procedure for PCA commenced with the extraction of PCs 
followed by an orthogonal rotation to maximize the variance 
explained by each PC, thus streamlining the data structure while 
preserving critical biological information (Jolliffe, 2002; Ringnér, 
2008). The selection process for PCs was based on rigorous criteria, 
only retaining components with eigenvalues over 1. This threshold is 
widely accepted for ensuring the inclusion of PCs representing 
significant variance and relevance (Jolliffe, 2002; Peres-Neto et al., 
2005). A factor loading threshold exceeding 0.8 was applied to identify 
the key miRNAs for each rotated PC, thereby focusing exclusively on 
miRNAs that have a substantial impact on the PCs. This selective 
approach aligns with methodologies that aim to improve data 
interpretability and significance (Fabrigar et  al., 1999), excluding 
miRNAs with lower loadings from further analysis.

2.8 Identification of target genes for key 
miRNAs in AD-associated PCs

To understand the biological implications of the key miRNAs 
identified in the PCs associated with AD, their target genes were 
predicted using two well-known databases: TargetScan (Lewis 
et al., 2005) and miRDB (Wong and Wang, 2015). These databases 
are pivotal in the field of miRNA research, offering a 
comprehensive collection of both predicted and experimentally 
validated interactions that outline the relationships between 
miRNAs and their corresponding target genes. To ensure the 
robustness of our analysis, we  applied a rigorous selection 
criterion for further analysis, focusing only on target genes 
consistently identified in both databases.

2.9 Pathway-based enrichment analysis of 
target genes

To explore intricate molecular pathways and biological 
processes implicated by the target genes of AD-associated key 
miRNAs, a gene-set enrichment analysis was performed using the 
Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) online resource (Huang et al., 2009). DAVID is widely 
recognized for its comprehensive analytical framework, enabling 
the systematic identification of functionally related gene groups 
and their associated biological pathways. We specifically focused 
on the Gene Ontology (GO) - particularly the Biological Processes 
(BP) category (Ashburner et  al., 2000). To adjust for multiple 
testing, Bonferroni correction (Dunn, 1961) was applied by 
dividing the significance threshold by the number of GO-BP terms 
tested within this specific category.

2.10 Statistical analysis

For the PCs of miRNAs, logistic regression models were used 
to evaluate the association of the PCs and key miRNAs with AD 
diagnosis to identify the AD-associated PCs and key miRNAs. 

Linear regression models were used to assess the association of the 
AD-associated PCs and key miRNAs with global cortical amyloid 
deposition, hippocampal volume, and CSF biomarkers for AD, 
including Aβ42 and p-tau. Moreover, linear regression models 
were used to investigate the association of the AD-associated PCs 
and key miRNAs with baseline composite scores for memory and 
executive function, while linear mixed effects models were used to 
evaluate their association with longitudinal changes in the 
composite scores of memory and executive function. In all 
association analyses, age and sex were consistently included as 
covariates. Additional covariates included years of education for 
cognitive performance, APOE ε4 carrier status for global cortical 
amyloid deposition, CSF Aβ42, and CSF p-tau, and intracranial 
volume for hippocampal volume. For the association analysis of 
PCs with AD diagnosis, the false discovery rate (FDR) correction 
with the Benjamini-Hochberg procedure was used to adjust for 
multiple testing (Benjamini and Hochberg, 1995).

To assess the potential modifying effects of sex on the 
associations between miRNAs and A/T/N biomarkers, 
we conducted stratified linear regression analyses separately in 
males and females. The stratification variable sex was not 
included as a covariate in the sex-stratified analyses. Covariate-
adjusted regression coefficients were transformed into sample 
size-weighted standardized effect sizes (Cohen’s d) to formally 
compare the strength of associations between subgroups 
(Paternoster et  al., 1998). A two-sided p-value was calculated 
from the t-statistic using a standard normal distribution to assess 
sex-specific differences in A/T/N biomarkers based on 
standardized effect sizes. Additionally, we  quantified the 
magnitude of effect heterogeneity between subgroups using the 
I2 statistic (Higgins and Thompson, 2002). An I2 value above 50% 
was considered indicative of substantial heterogeneity. To 
complement the subgroup difference analyses, we also included 
an interaction term between sex and miRNA in the pooled linear 
regression model. The p value for the interaction term was 
calculated to evaluate whether the association between each 
miRNA and A/T/N biomarkers significantly differed between 
male and female subgroups. In accordance with previously 
established methodology (Arnold et  al., 2020), we  classified 
miRNA-A/T/N biomarker associations into homogeneous effects 
if miRNAs showed very similar effects in their association to the 
biomarker for both sexes (i.e., estimated heterogeneity p > 0.05), 
and heterogeneous effects if miRNAs showed different effects in 
both sexes leading to significant heterogeneity (i.e., estimated 
heterogeneity p < 0.05) and/or the interaction between sex and 
miRNA. Effects that were significant in only one sex with either 
significant effect heterogeneity between males and females or 
significant interaction between sex and miRNA were considered 
sex-specific.

For the key miRNAs, we performed Pearson correlation analyses 
of their expression levels between plasma and CSF in participants with 
paired biofluid samples.

We performed mediation analysis on the key miRNAs 
demonstrating a significant correlation with AD diagnosis and a 
composite score of memory, following established methodologies 
(Hayes, 2009). Our investigation aimed to determine whether the 
identified relationships could be  mediated by biomarkers for 
AD. For these analyses, we used the Mediation R package, which 
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allowed for the evaluation of indirect effects through a 
bootstrapping approach (Tingley et al., 2014).

To investigate the classification performance of AD-associated key 
miRNAs in distinguishing AD patients from CN individuals, 
we applied the STREAMLINE tool (Urbanowicz et al., 2023), using an 
extreme gradient boosting machine learning approach. This machine 
learning approach is selected for integrating multi-view biological data 
and heterogeneous feature sets for the analysis of complex biological 
systems (Li et al., 2018). The dataset was randomly partitioned into 
70% for training the model and 30% for testing, with a 5-fold cross-
validation process to enhance the robustness and reliability of model 
evaluation. The classification performance of two different models in 

differentiating AD from CN was assessed through the receiver 
operating characteristic (ROC) curve and the area under the receiver 
operating characteristic curve (AUC). In terms of feature selection, 
Model 1 included age, sex, and APOE ε4 carrier status, while Model 2 
incorporated all features from Model 1 and additionally included 
AD-associated key miRNAs, aiming to investigate their additional 
classification performance values in distinguishing AD from CN.

All statistical analyses were performed using R software, 
version 4.2.2. We  defined statistical significance at a p value 
threshold of less than 0.05, incorporating adjustments for 
multiple comparisons. The workflow of all analysis steps used in 
this study is shown in Figure 1.

FIGURE 1

Schematic overview of the workflow of our analysis. A/T/N, amyloid/tau/neurodegeneration; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative; CN, cognitively normal; miRNA, microRNA; mRNA, messenger RNA; PC, principal component; RT-qPCR, reverse transcription 
quantitative polymerase chain reaction.
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3 Results

3.1 Demographic and clinical 
characteristics

We used miRNA expression data from 145 ADNI participants, 
including 74 probable AD patients and 71 CN individuals, as 
detailed in Table 1. The median age was 74.5 years, with 56.3% 
being females. No significant differences were observed in sex 
distribution and age across the diagnostic groups. However, a 
substantial difference in APOE ε4 carrier status was noted, with a 
higher prevalence in AD patients compared to CN individuals. For 
the A/T/N biomarkers, CSF Aβ42 and hippocampal volume were 
significantly lower, and CSF p-tau levels and global cortical 
amyloid deposition were significantly higher in AD patients 
compared to CN individuals. Furthermore, composite scores for 
memory and executive function were significantly lower in AD 
patients compared to CN individuals.

3.2 Principal component analysis for 
dimension reduction of miRNA expression 
data

PCA was performed on 64 miRNAs in 74 probable AD 
patients and 71 CN individuals from the ADNI cohort. 
Dimension reduction with PCA resulted in 13 PCs with 
eigenvalues > 1 (Supplementary Table S1). After selecting key 
miRNAs with a factor loading ≥ 0.8 in each principal component, 
7 of 13 PCs remained for further analysis (Supplementary Table S2).

Association analysis of the 7 PCs with AD diagnosis identified 
PC2 as significantly associated with AD after multiple comparison 
correction (odds ratio (OR) = 0.59, FDR-corrected p = 0.038; Figure 2; 
Supplementary Table S3).

3.3 Association of AD-associated PC2 with 
A/T/N biomarkers

The PC2 was investigated to assess its associations with central 
A/T/N biomarkers for AD. Lower PC2 scores were significantly 
associated with higher levels of CSF p-tau (β = −0.035 ± 0.016, 
p = 0.033) and reduced hippocampal volume (β = 90.105 ± 39.647, 
p = 0.025; Figures 3A,B; Supplementary Table S4).

FIGURE 2

Association analysis results of PC2 with AD diagnosis Violin and box 
plots represent the PC2 component score for AD diagnosis. AD, 
Alzheimer’s disease; CN, cognitively normal; PC, principal 
component. Note: significance stars indicating the p values of the 
correlations * p-value < 0.05.

TABLE 1 Demographic information of participants from the ADNI cohort.

CN (n = 71) AD (n = 74) Total (n = 145) p valueb

Male (%) 36 (50.7) 44 (59.5) 80 (55.2) 0.289

Age, yearsa 73.7 (69.7–78.8) 75.7 (69.1–80.7) 74.5 (69.6–79.7) 0.335

Education, yearsa 16 (14–18) 16 (13–16) 16 (14–18) 0.011

APOE ε4 carrier (%) 21 (29.6) 50 (67.6) 71 (49.0) <0.001

CSF Aβ42, pg/mLa 1255.5 (826.5–1800.5) 650.2 (482.7–814.0) 809.7 (577.6–1411.0) <0.001

CSF p-tau, pg/mLa 19.2 (16.7–24.2) 33.6 (27.4–47.5) 26.5 (18.7–36.7) <0.001

Amyloid PET global SUVRa 1.04 (0.98–1.19) 1.46 (1.32–1.58) 1.24 (1.03–1.47) <0.001

Hippocampal volume, mm3a 3,753 (3,520 – 4,000) 3,020 (2,794 – 3,266) 3,385 (2,974 – 3,777) <0.001

Intracranial volume, mm3a
1,481,766 (1,366,350 – 

1,633,833)

1,458,122 (1,371,248 – 

1,592,867)

1,469,878 (1,369,858 – 1,629,653) 0.899

Baseline memory, Z scoresa 0.93 (0.56–1.23) −0.75 (−1.00 – −0.58) −0.07 (−0.75–0.88) <0.001

Baseline executive function, Z 

scoresa

0.68 (0.42–1.07) −0.39 (−0.97–0.07) 0.24 (−0.46–0.73) <0.001

Values are n (%), unless indicated otherwise. aData are presented as median followed by (interquartile range). bThe Mann–Whitney U test or chi-square test was used to determine the p value 
for comparisons between AD and CN groups, as appropriate. Aβ, amyloid-β; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CN, 
cognitively normal; CSF, cerebrospinal fluid; p-tau, phosphorylated tau; PET, positron emission tomography; SUVR, standard uptake value ratio.
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3.4 Association of AD-associated PC2 with 
cognition at baseline and longitudinal 
change of cognition

The PC2 was investigated to assess its associations with composite 
scores for memory and executive function at baseline and longitudinal 
changes of composite scores for memory and executive function. 
Higher PC2 scores were associated with better baseline composite 
scores for memory (β = 0.222 ± 0.074, p = 0.003) and executive function 
(β = 0.135 ± 0.064, p = 0.038; Figures 3C,D; Supplementary Table S5), 
and slower longitudinal decline of composite scores for memory 
(β = 0.234 ± 0.086, p = 0.008; Figure 4; Supplementary Table S5).

3.5 Association of key miRNAs in the 
AD-associated PC2 with AD diagnosis and 
A/T/N biomarkers

In the AD-associated PC2, two miRNAs, miR-423-5p and 
miR-92a-3p, with a factor loading higher than 0.8 were identified as key 
miRNAs (Supplementary Table S2). Further analyses were performed 
to investigate the association of these two key miRNAs with AD 
diagnosis and A/T/N biomarkers for AD. Expression levels of 
miR-423-5p and miR-92a-3p were significantly lower in AD patients 

compared to CN individuals (miR-423-5p, β = −44.438 ± 15.286, 
p = 0.004; miR-92a-3p, β = −41.606 ± 13.018, p = 0.001; Figures 5A,B). 
Lower expression levels of miR-423-5p and miR-92a-3p were 
significantly associated with reduced hippocampal volume (miR-423-5p, 
β = 8.162 × 103 ± 3.279 × 103, p = 0.014; miR-92a-3p, β = 6.366 × 
103 ± 2.632 × 103, p = 0.017), and lower expression levels of miR-423-5p 
were associated with higher global cortical amyloid deposition 
(β = −1.118 ± 0.561, p = 0.048; Figures 5C, 6A).

We conducted sex-stratified association analyses and subsequently 
assessed heterogeneity in effect estimates between males and females. 
Figure 6 details the results of miRNA associations with A/T/N biomarkers, 
including sex-by-miRNA interaction analyses. We identified a significant 
homogeneous association between miR-423-5p and global cortical 
amyloid deposition. In contrast, both miR-423-5p and miR-92a-3p 
exhibited male-specific associations with reduced hippocampal volume.

3.6 Association of key miRNAs in the 
AD-associated PC2 with cognition at baseline 
and longitudinal change of cognition

The two key miRNAs, miR-423-5p and miR-92a-3p, were investigated 
to assess their associations with composite scores for memory and 
executive function at baseline and longitudinal changes of composite 

FIGURE 3

Association analysis results of PC2 with CSF p-tau, hippocampal volume, and cognitive function The scatter plot represents a correlation of the PC2 
component score with CSF p-tau (A), hippocampal volume (B), baseline composite score for executive function (C), and baseline composite score for 
memory (D). The gray zone around the linear regression line represents the 95% confidence interval. Hippocampal volume was measured in cubic 
millimeters (mm3). CSF biomarker concentrations were log-transformed and reported in picograms per milliliter (pg/mL). Cognitive scores were 
standardized as Z-scores. AD, Alzheimer’s disease; CN, cognitively normal; CSF, cerebrospinal fluid; p-tau, phosphorylated tau; PC, principal component.
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scores for memory and executive function. Higher expression levels of 
miR-423-5p and miR-92a-3p were significantly associated with better 
baseline composite scores for memory (miR-423-5p, β = 20.164 ± 6.098, 
p = 0.001; miR-92a-3p, β = 13.652 ± 4.941, p = 0.006) and executive 
function (miR-423-5p, β = 13.348 ± 5.317, p = 0.013; miR-92a-3p, 
β = 9.624 ± 4.280, p = 0.026; Figure 5C; Supplementary Table S6). Higher 
expression levels of miR-423-5p and miR-92a-3p were also significantly 
associated with slower longitudinal decline of composite scores for 
memory (miR-423-5p, β = 21.573 ± 7.133, p = 0.003; miR-92a-3p, 
β = 15.684 ± 5.775, p = 0.007), and lower expression levels of miR-423-5p 
were associated with slower longitudinal decline of composite scores for 
executive function (β = 12.483 ± 5.927, p = 0.037; Figures  5C, 7; 
Supplementary Table S6).

3.7 Correlation between miRNA expression 
in plasma and CSF

The two key miRNAs, miR-423-5p and miR-92a-3p, were further 
investigated to evaluate their correlation between plasma and CSF 

samples. The correlation analysis between plasma and CSF expression 
levels of miR-423-5p showed a significant correlation (r = 0.236, 
p = 0.004), while the significant correlation was not observed with 
miR-92a-3p (Figure 8).

3.8 Predicted target genes for two key 
miRNAs and their pathway enrichment 
analysis

Target genes for the two miRNAs, miR-423-5p and 
miR-92a-3p, were obtained from the miRDB and TargetScan 
databases, resulting in 700 and 985 genes from the miRDB 
database, and 232 and 1,041 genes from the TargetScan database, 
respectively. 106 and 701 overlapping target genes for miR-423-5p 
and miR-92a-3p were then identified between the two databases 
(Supplementary Additional file). The GO analysis of the target 
genes for miR-423-5p and miR-92a-3p revealed significant 
enrichment in BP pathway related to positive regulation of 
transcription from RNA polymerase II promoter, negative 

FIGURE 4

Association analysis results of PC2 with longitudinal changes of cognition (A, B) The x-axis represents years after the initial clinical evaluation, while the 
y-axis indicates composite scores for executive function (A) and memory (B). The two lines represent the different slopes of changes in composite 
scores for subjects with 1st quartile (green color) versus 4th quartile (red color) stratified by PC2 component score. Cognitive scores were standardized 
as Z-scores. PC, principal component.
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regulation of transcription from RNA polymerase II promoter, 
brain development, protein phosphorylation, intracellular signal 
transduction, negative regulation of transcription, peptidyl-
serine phosphorylation, nervous system development, neuron 
migration, memory, palate development, negative regulation of 
cytoplasmic translation, ventricular septum morphogenesis, cell 
migration, peptidyl-threonine phosphorylation, positive 
regulation of transcription, regulation of transcription from RNA 
polymerase II promoter, phosphatidylinositol-3-phosphate 
biosynthetic process, and cellular response to amino acid 
stimulus (Table 2).

3.9 Mediation analysis of two key miRNAs 
on AD or composite scores for memory

Mediation analysis revealed that miR-423-5p expression 
levels had both direct and indirect effects on AD through global 
cortical amyloid deposition (direct effect: β = −2.61 × 10−10; 
p = 0.04; indirect effect: β = −2.61 × 10−10; p = 0.02), while 
miR-423-5p expression levels had only indirect effects on AD 

through hippocampal volume (direct effect: β = −9.86 × 10−16; 
p = 0.16; indirect effect: β = −9.86 × 10−16; p = 0.02; Figure  9; 
Supplementary Table S7). Additionally, miR-423-5p expression 
levels were found to affect composite scores for memory through 
both direct and indirect effects mediated by global cortical 
amyloid deposition (direct effect: β = 10.29; p = 0.02; indirect 
effect: β = 4.44; p = 0.04) and hippocampal volume (direct effect: 
β = 8.52; p = 0.02; indirect effect: β = 7.80; p = 0.02) (Figure 9; 
Supplementary Table S7). However, miR-92a-3p expression levels 
had no indirect effects on AD or composite scores for memory 
through hippocampal volume (Supplementary Table S7).

3.10 Machine learning analysis for AD 
classification

A machine learning approach, extreme gradient boosting, for the 
classification of AD patients from CN individuals was used to evaluate 
two different classification models. Results of the 5-fold cross-
validation are presented in Figure 10. Model 1, including age, sex, and 
APOE ε4 carrier status, achieved a mean AUC value of 0.708. The 

FIGURE 5

Association analysis results of miR-423-5p and miR-92a-3p with amyloid, tau, and neurodegeneration (A/T/N) biomarkers as well as cognition (A, B) 
Violin and box plots represent the miR-423-5p (A) and miR-92a-3p expression levels (B) for AD diagnosis (C). Heatmap of association of miR-423-5p 
and miR-92a-3p expression levels with the “A/T/N” biomarkers for AD and cognition. p values were estimated from linear regression analyses. Circle 
color indicates the direction of the regression coefficient (β), while circle size and color intensity reflect the significance level of the association, 
quantified as –log (p value). The color bar represents –log (p value) × Sign(β). Red colors represent positive associations, and blue colors denote 
negative associations. The darker the color and larger the circle, the stronger the association. Hippocampal volume was measured in cubic millimeters 
(mm3). CSF biomarker concentrations were log-transformed and reported in picograms per milliliter (pg/mL). Cognitive scores were standardized as 
Z-scores. Aβ, amyloid-β; AD, Alzheimer’s disease; CN, cognitively normal; CSF, cerebrospinal fluid; miR, microRNA; p-tau, phosphorylated tau; PET, 
positron emission tomography. Note: significance stars indicating the p values of the correlations adjustment for multiple comparisons * p-value < 
0.05. ** p-value < 0.01.
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mean AUC value of Model 2, obtained by adding two AD-associated 
key miRNAs, miR-423-5p and miR-92a-3p, to Model 1, increased 
to 0.757.

4 Discussion

This study highlights the association of circulating miRNAs with 
central biomarkers for AD and their potential utility as blood-based 
molecular biomarkers for AD. Using PCA, we identified one PC that 
showed significant associations with AD, CSF p-tau levels, 
hippocampal volume, and both baseline levels and longitudinal 
changes in cognition. Among the miRNAs that contributed 
significantly to the PC, miR-423-5p and miR-92a-3p were identified 
as key miRNAs. Both miRNAs were found to be  significantly 

downregulated in AD patients compared to CN individuals, and their 
lower expression levels were associated with central biomarkers of AD, 
including reduced hippocampal volume and higher global cortical 
amyloid deposition. Furthermore, lower levels of these miRNAs were 
correlated with worse cognitive performance and a faster rate of 
cognitive decline, indicating their potential role not only as diagnostic 
biomarkers but also as indicators of disease progression.

Accumulating evidence indicates that miRNAs play important 
roles in AD pathogenesis through the regulation of genes involved in 
amyloid processing, tau phosphorylation, and neurodegeneration 
(Wang et al., 2019; Kou et al., 2020; Guévremont et al., 2022). Our 
findings align with this evidence by demonstrating associations of 
lower plasma levels of miR-423-5p and miR-92a-3p with higher global 
cortical amyloid deposition, reduced hippocampal volume, and worse 
cognitive performance. Moreover, our study showed a significant 

FIGURE 6

Association analysis results and sex-based effect heterogeneity of miR-423-5p and miR-92a-3p with amyloid, tau, and neurodegeneration (A/T/N) 
biomarkers (A) Linear regression results examining the associations between miRNAs and A/T/N biomarkers are presented for the full sample and 
stratified by sex, along with estimates of effect heterogeneity and p value for sex-by-miRNA interaction terms. Scatter plots display Z-scores of effect 
estimates for the associations of the miR-423-5p (B) and miR-92a-3p (C) with A/T/N biomarkers in males (x-axis) and females (y-axis). Homogeneous 
effects, defined as associations with comparable effect size in both sexes, appear along the diagonal. Heterogeneous effects appear along the anti-
diagonal. Sex-specific effects are located near the x-axis (male-specific) or y-axis (female-specific effects). Homogeneous and overall significant 
results are indicated by diamonds, while effects significant in only one sex are represented as triangles. Sex-specific effects are further visualized using 
a color scale (purple for males; green for females). Hippocampal volume was measured in cubic millimeters (mm3). CSF biomarker concentrations 
were log-transformed and reported in picograms per milliliter (pg/mL). Aβ, amyloid-β; CSF, cerebrospinal fluid; miR, microRNA; p-tau, phosphorylated 
tau; PET, positron emission tomography; SE, Standard Error; SUVR, standardized uptake value ratio.
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correlation between plasma and CSF expression levels of miR-423-5p, 
but not for miR-92a-3p. This suggests that miR-423-5p may have 
potential as a blood-based molecular biomarker reflective of central 
nervous system changes.

Lower expression levels of miR-423-5p were associated with AD 
in human cerebral white matter (Wang et al., 2011; Bhattacharyya and 
Bandyopadhyay, 2013), aligning with findings of our study. 
Importantly, our study uniquely demonstrates an association between 
plasma miR-423-5p levels and AD and cognitive function, which has 
not been previously reported. Furthermore, overexpression of 
miR-423-5p has been found to enhance cell proliferation, migration, 
and angiogenesis, and to reduce apoptosis in vivo (Li S. et al., 2017). 
Lower expression levels of plasma miR-92a-3p have been associated 
with AD (Peña-Bautista et al., 2022; Piscopo et al., 2023), supporting 
the findings of our study. Higher expression levels of plasma 
miR-92a-3p were also found to be significantly associated with better 
cognitive function (Yaqub et al., 2023; Melas et al., 2024), reinforcing 
the results of our study. Notably, miR-92a-3p is involved in 
maintaining blood–brain barrier integrity by regulating tight junctions 
and endothelial cell function, often compromised in AD (Lu et al., 
2021). Additionally, miR-92a plays a critical role in regulating Aβ 
clearance, accumulation of tau protein, synaptic and gamma-
aminobutyric acid-ergic dysfunction in AD (Li X. et  al., 2017; 
Siedlecki-Wullich et  al., 2019; Peña-Bautista et  al., 2022). 
Overexpression of miR-92a-3p, one of the miRNAs identified to 
interact with microtubule-associated protein tau mRNAs, significantly 
reduced tau protein levels in neuroblastoma cell lines (Piscopo et al., 

2023). We observed significant effect heterogeneity between males and 
females for the key miRNAs, miR-423-5p and miR-92a-3p, indicating 
that sex may influence miRNA-related hippocampal atrophy. Our 
results demonstrate the importance of stratified analyses in uncovering 
AD-related neurodegeneration that appear to be male-specific.

Pathway enrichment analyses conducted in this study provided 
insights into the significant biological processes that may be influenced 
by the target genes of the two AD-associated key miRNAs. Notably, 
dysregulation in cell migration, proliferation, and differentiation plays 
a significant role in both AD and Parkinson’s disease, underscoring 
the importance of these pathways in neurodegeneration (Awuson-
David et  al., 2023). Furthermore, pathways such as protein 
phosphorylation, including peptidyl-serine and peptidyl-threonine 
phosphorylation, are critical, as hyperphosphorylation of tau at these 
residues contributes to its aggregation into NFTs, a hallmark of AD 
pathology (Wegmann et  al., 2021). Lastly, a deficiency in 
phosphatidylinositol-3-phosphate was identified as a contributing 
factor to AD pathogenesis by disrupting amyloid precursor protein 
trafficking and processing (Morel et al., 2013).

The mediation analysis of our study suggests potential roles of 
miR-423-5p and miR-92a-3p in AD and cognitive function. 
Specifically, miR-423-5p had both direct and indirect effects on AD 
through global cortical amyloid deposition and hippocampal volume, 
while miR-92a-3p did not demonstrate any significant indirect effects. 
These findings underscore the potential role of miR-423-5p in 
modulating brain Aβ deposition and neurodegeneration, suggesting 
its involvement in the molecular mechanisms underlying AD. The lack 

FIGURE 7

Association analysis results of miR-423-5p and miR-92a-3p with longitudinal changes of cognition The x-axis represents years after the initial clinical 
evaluation, while the y-axis indicates composite scores for executive function (A,C) and memory (B,D). The two lines represent the different slopes of 
changes in composite scores for subjects with 1st quartile (green color) versus 4th quartile (red color) stratified by miR-423-5p (A,B) and miR-92a-3p 
expression levels (C,D). Cognitive scores were standardized as Z-scores. miR, microRNA.
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of significant mediation effects for miR-92a-3p suggests that its 
contribution to AD might involve alternative pathways or mechanisms 
not addressed in our analysis, which requires further exploration to 
fully understand its role.

The machine learning analysis for differentiating AD patients 
from CN individuals demonstrated that incorporating miR-423-5p 
and miR-92a-3p improved the classification performance of 
demographic information and APOE ε4 carrier status for AD 
classification from the mean AUC value of 0.708 to that of 0.757. 
This enhancement underscores the potential of miR-423-5p and 
miR-92a-3p as blood-based molecular biomarkers for AD diagnosis. 
Integrating these miRNA expression data with demographic 
information could pave the way for personalized medicine by 
supporting the development of strategies that account for individual 
differences in miRNA expression. The clinical relevance of miRNAs 
extends beyond their role as diagnostic biomarkers, as they are 
involved in the regulation of molecular pathways implicated in AD 
pathogenesis. This mechanistic involvement has led to growing 
interest in miRNA-based therapeutic strategies, including the use 
of synthetic miRNA mimics and anti-miRNA oligonucleotides 
aimed at modulating multiple gene expressions and disrupting 
pathological pathways (Miya Shaik et  al., 2018; Bhatnagar 
et al., 2023).

FIGURE 8

Correlation plot between plasma and CSF expression levels of miR-
423-5p and miR-92a-3p (A,B) The scatter plot represents a 
correlation between plasma and CSF expression levels of miR-423-
5p (A) and miR-92a-3p (B). The gray zone around the linear 
regression line represents the 95% confidence interval. CSF, 
cerebrospinal fluid; miR, microRNA.

TABLE 2 Gene ontology analysis of target genes of miR-423-5p and miR-
92a-3p.

Biological 
process

Number of 
genes from 
study data/
Number of 

genes in the 
pathway 

(Population 
Hits)

Fold 
enrichment

p 
valuea

Positive regulation of 

transcription from 

RNA polymerase II 

promoter

98/1232 2.088 <0.001

Negative regulation of 

transcription from 

RNA polymerase II 

promoter

78/1016 2.015 <0.001

Brain development 31/264 3.083 <0.001

Protein 

phosphorylation

40/444 2.365 <0.001

Intracellular signal 

transduction

41/462 2.330 <0.001

Negative regulation of 

transcription, DNA-

templated

48/591 2.132 <0.001

Peptidyl-serine 

phosphorylation

23/184 3.282 <0.001

Nervous system 

development

37/425 2.285 0.002

Neuron migration 17/124 3.599 0.006

Memory 14/89 4.130 0.010

Palate development 12/66 4.773 0.012

Negative regulation of 

cytoplasmic 

translation

6/12 13.126 0.017

Ventricular septum 

morphogenesis

9/37 6.386 0.020

Cell migration 26/278 2.455 0.022

Peptidyl-threonine 

phosphorylation

12/72 4.375 0.027

Positive regulation of 

transcription, DNA-

templated

50/728 1.803 0.027

Regulation of 

transcription from 

RNA polymerase II 

promoter

97/1736 1.467 0.039

Phosphatidylinositol-

3-phosphate 

biosynthetic process

7/22 8.353 0.044

Cellular response to 

amino acid stimulus

11/64 4.512 0.047

aAdjusted P value for Bonferroni correction. AD, Alzheimer’s dementia; miRNAs, 
microRNAs; mRNA, messenger RNAs.
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While this study provides a comprehensive analysis of 
circulating miRNA expression data with central A/T/N biomarkers 
and cognitive function within a well-characterized cohort, several 
limitations need to be  addressed in future studies. The modest 
sample size and lack of external datasets may restrict 
generalizability, underscoring the need for replication in future 
large-scale studies. This limitation also affects the clinical 
applicability of our miRNA-based diagnostic model, which 
demonstrated the modest classification performance. Moreover, 

information on comorbid conditions and medication use was not 
available in the ADNI dataset, limiting our ability to adjust for 
these potential confounders. Future longitudinal studies 
incorporating repeated miRNA measurements will be essential to 
elucidate the temporal dynamics underlying the observed 
associations and to establish causality through mediation. Finally, 
functional studies are crucial to unravel the specific roles of 
miR-423-5p and miR-92a-3p in AD pathogenesis and to validate 
their potential as therapeutic targets.

FIGURE 9

Mediation analysis results of miR-423-5p on AD diagnosis and composite scores for memory through global cortical amyloid deposition and 
hippocampal volume (A,B) Mediation analysis shows total, direct, and indirect effects of miR-423-5p expression levels on AD and composite scores for 
memory through global cortical amyloid deposition (A), and hippocampal volume (B). Hippocampal volume was measured in cubic millimeters (mm3). 
Cognitive scores were standardized as Z-scores. AD, Alzheimer’s disease; miR, microRNA; PET, positron emission tomography; SUVR, standard uptake 
value ratio.

FIGURE 10

The ROC curves and mean AUC of machine learning approach Sensitivity is on the y-axis and 1-specificity is on the x-axis. 5-fold cross validation was 
used to investigate and compare the classification performance of two different classification models for differentiating AD from CN. The gray zone 
around the mean ROC curve represents ± 1 standard deviation. Two different classification models were evaluated using the following training 
features: (A) age, sex, and APOE ε4 carrier status; (B) age, sex, APOE ε4 carrier status, miR-423-5p, and miR-92a-3p. AD, Alzheimer’s disease; APOE, 
apolipoprotein E; AUC, area under the curve; CN, cognitively normal; miRNAs, microRNAs, ROC, receiver operating characteristic.
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5 Conclusion

In conclusion, this study shows associations of circulating 
miRNAs (miR-423-5p and miR-92a-3p) with central AD 
biomarkers and disease progression as well as the improvement 
in the accuracy of AD classification, shedding light on their 
potential as blood-based molecular biomarkers for AD. Further 
investigations are warranted to validate our findings and clarify 
the underlying mechanisms.
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