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The intramembrane aspartic protease, γ-secretase, is a heterotetrameric protein 

complex composed of four integral membrane proteins: presenilin (PSEN), 

nicastrin (NCT), Anterior pharynx defective-1 (APH-1), and presenilin enhancer 

2 (PEN-2). These components are sequentially assembled into a functional 

complex. γ-secretase is ubiquitously expressed in all cells and tissues and 

exhibits enzymatic activity akin to “molecular scissors” by cleaving various 

type I transmembrane proteins. The primary substrates of this complex 

include amyloid precursor protein (APP) and Notch. The role of APP in the 

pathogenesis of Alzheimer’s disease (AD) has been extensively investigated. 

Although γ-secretase inhibitors (GSIs) have been evaluated for their therapeutic 

potential in AD, their clinical application is limited due to significant toxic side 

effects. Recently, γ-secretase modulators (GSMs) have emerged as promising 

alternatives, offering new opportunities for the treatment of AD, especially the 

inherent γ-secretase modulatory proteins (GSMPs) within cells. Research on 

GSMPs has ushered in a new era for mitigating the side effects of AD drugs. 

In this review, we systematically summarize recent advancements in the study 

of γ-secretase in relation to AD and provide an overview of GSMs and GSMPs, 

thereby offering potential insights for the development of therapeutic strategies 

for AD. 
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1 Introduction 

The γ-secretase complex is an intramembrane-cleaving protease (I-CliP) that catalyzes 
the intramembrane domain (TMD) of its protein substrates and performs a wide variety 
of essential biological roles (Wolfe, 2019). The γ-secretase has been identified as a 
heterotetrameric complex consisting of four membrane protein subunits: APH-1, NCT, 
PSEN, and PEN-2 (Oikawa and Walter, 2019; Figure 1A). It takes a stepwise manner to 
assemble the four subunits into one complex, the correct assembly of the γ-secretase is 
tightly regulated, and then the mature γ-secretase complex is transported to the plasma 
membrane and endosomes to perform its functions (Dries and Yu, 2008; Smolarkiewicz 
et al., 2013; Figure 1B). Alzheimer disease (AD) is a common cause of cognitive impairment 
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in middle-aged and elderly people. It is a hereditary and sporadic 
neurodegenerative disorder (Knopman et al., 2021). Excessive 
phosphorylation of tau protein (Anwar et al., 2024; Adnan et al., 
2023), and deposition of beta-amyloid protein (Aβ) are currently 
the mainstream theories recognized as causing AD (Wolfe, 2024). 
γ-secretase has various substrates, in AD, γ-secretase produces 
Aβ by cleaving amyloid precursor protein (APP). The abnormal 
accumulation and aggregation of these peptides are considered 
crucial factors in the pathological changes of AD (Kim et al., 
2024). Despite the key role γ-secretase plays in AD pathogenesis 
(Hakem et al., 2024), direct inhibition strategies have not achieved 
satisfactory outcomes in clinical trials, largely because inhibiting 
multiple γ-secretase substrates may disrupt normal physiological 
functions (Dries and Yu, 2021; Caldwell et al., 2022). As a result, 
researchers are investigating alternative approaches to regulate γ-
secretase activity, such as the creation of GSMs, which represent 
a class of small molecules capable of influencing the activity of γ-
secretase (Wolfe, 2024; Hakem et al., 2024). Unlike GSIs, which 
directly suppress the enzyme’s activity, GSMs modify the cleavage 
patterns of substrates via allosteric regulation. This process leads 
to a reduction in the generation of harmful amyloid peptides 
(Rynearson et al., 2021; Petit et al., 2022). Furthermore, the 
design of GSMs aims to minimize side eects associated with 
GSIs observed during clinical trials, such as interference with 
the Notch signaling pathway (Hur, 2022). In recent years, the 
growing comprehension of γ-secretase’s structure and function 
has enhanced our knowledge of GSM mechanisms. Cryo-electron 
microscopy has played a pivotal role in mapping the structural 
configuration of γ-secretase when it interacts with GSMs, revealing 
critical details about how GSMs influence the γ-secretase complex 
(Dries and Yu, 2021; Yang et al., 2021). Studies on GSMs can help 
to improve our targeted therapy for AD. 

The activity of γ-secretase is modulated by a variety of factors, 
including the properties of its substrates and the intracellular 
microenvironment. In addition to APP, many γ-secretase substrates 
are associated with AD, such as Notch, CD43, CD44, CD91, 
CD269, CSF-1R, etc., The study of these substrates related to AD 
may give us new ideas about whether they regulate the activity 
of γ-secretase to act together in AD. There is evidence that 
the enzymatic activity of γ-secretase can also be influenced by 
interferon-induced transmembrane protein 3 (IFITM3), which is 
upregulated in tissue samples from certain late-onset Alzheimer’s 
disease patients and exhibits a positive correlation with γ-secretase 
activity (Hur et al., 2020). Several studies have demonstrated 
that inhibiting γ-secretase-activating protein (GSAP) eectively 
reduces Aβ production while leaving other critical γ-secretase 
substrates unaected (Kim et al., 2024). Apolipoprotein E (ApoE), 
the most prominent genetic risk factor for sporadic Alzheimer’s 
disease (sAD), interacts with γ-secretase and selectively inhibits 
its activity in a substrate-dependent manner (Hou et al., 2023). 
These intracellular proteins, which regulate γ-secretase, are referred 
to as γ-secretase modulatory proteins (GSMPs). If GSMPs can be 
eectively modulated to achieve therapeutic eects for AD, this 
approach may potentially further mitigate the side eects associated 
with chemical drugs. In summary, γ-secretase and its substrates 
are intricately associated with the onset and progression of AD. 
A deeper investigation into the underlying mechanisms is crucial 
for advancing AD treatment. Notably, targeted therapies involving 

GSMs and GSMPs hold promise in providing new hope for AD 
patients. 

2 Subunits of γ-secretase and their 
assembly 

2.1 Subunits of γ-secretase 

2.1.1 PSEN 
Early in the 1990’s, two human early-onset familial Alzheimer’s 

disease (EOFAD) -related loci were discovered on chromosomes 
14 (Rogaev et al., 1995) and 1 (Schellenberg et al., 1992). These 
loci were subsequently identified as two homologous genes: 
Presenilin1 (psen1) and Presenilin2 (psen2) (Levy-Lahad et al., 1995; 
Sherrington et al., 1995). PSEN are the catalytic components with 
aspartyl protease activity, and more than 150 AD causing mutations 
have been reported in both genes, with the majority occurring 
in PSEN1 (Zhang et al., 2014). The full-length PSEN consists of 
nine transmembrane helices (TM1-9) and two catalytic aspartate 
residues in TM6 (Asp257) and TM7 (Asp385) (Spasic et al., 2006). 
During γ-secretase complex maturation, the presenilin holoprotein 
becomes inactive and is rapidly degraded by proteolytic activity. 
PSEN undergoes autoproteolysis into stable N-terminal fragments 
(NTF, TM1-6) and C-terminal fragments (CTF, TM7-9) (Fraser 
et al., 1998; Kim et al., 1997; Thinakaran et al., 1996; Figure 1A). The 
endoproteolytic fragments of PSEN proteins are predominantly 
localized in the endoplasmic reticulum (ER) and Golgi apparatus 
(Annaert et al., 1999), but also found in the plasma membrane 
(Marambaud et al., 2002), endosomes (Vetrivel et al., 2004), 
phagosomes (Jutras et al., 2005), lysosomes (Sannerud et al., 2016), 
mitochondria (Area-Gomez and Schon, 2016; Area-Gomez et al., 
2009), and nuclear envelope (Kimura et al., 2001). where they 
are interacted with NCT, APH-1, and PEN-2 to form a 250kDa 
complex (Yu et al., 1998). 

2.1.2 NCT 
A novel protein (Nicastrin, NCT) was found in 2000 by 

immunoprecipitation of PSEN1 combined with mass spectrometry 
(Yu et al., 2000). Nicastrin was named after the Italian village of 
Nicastro, where the PSEN-associated forms of Familial Alzheimer’s 
disease were discovered (Feldman et al., 1963; Foncin et al., 
1985). Human NCT gene maps to chromosomee 1, it has been 
identified as risk genes for Alzheimer’s disease susceptibility locus 
in two genome surveys (Zubenko et al., 1998; Owen et al., 2000). 
NCT is a type I transmembrane glycoprotein with 709 amino 
acids, a putative amino-terminal signal peptide, an N-terminal 
hydrophilic domain, N-myristoylation and phosphorylation 
motifs, a transmembrane domain, and a 20-residue hydrophilic 
carboxy terminus (Yu et al., 2000; Figure 1A). The conserved 
functions of NCT for Notch signaling have been revealed from 
studies in Caenorhabditis. Elegans (Goutte et al., 2000), Drosophila 
melanogaster (Chung and Struhl, 2002; Hu et al., 2002), and mice 
(Beher et al., 2003). NCT is the first identified PSEN cofactor, and 
it plays a critical role in PSEN-mediated processing of APP and 
notch/glp-1 signaling (Yu et al., 2000). The ectodomain of NCT is 
proposed to recruit substrates into the γ-secretase complex (Shah 
et al., 2005; Dries et al., 2009). 
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FIGURE 1 

Structure of γ-secretase subunits and their assembly in cells. (A) The γ-secretase complex is composed of four multipass membrane proteins, 
presenilin (PSEN), nicastrin (NCT), Anterior pharynx defective-1 (APH-1), and presenilin enhancer 2 (PEN-2). PSEN represents the catalytic 
components in the complex; it consists of nine transmembrane helices, including two catalytic aspartate residues (circled in red) in TM6 and TM7. 
PSEN is cleaved endoproteolytically between TM6 and TM7 to produce amino terminal fragment (NTF) and carboxyl terminal fragment (CTF). NCT is 
a cofactor of PSEN; it is a type I transmembrane glycoprotein with a large glycosylated extracellular domain (orange circles indicate the 
glycosalation site). APH-1 is a seven-transmembrane protein required for APH-1/NCT trafficking to the cell surface (Goutte et al., 2002). PEN-2, the 
smallest component of the -secretase complex, modulates the activity of -secretase. PEN-2 has three membrane-embedded domains, the first two 
domains traversing only half of the lipid bilayer. (B) The four γ-secretase subunits are biosynthesized in the endoplasmic reticulum (ER) and taking a 
stepwise manner to form a complex. Subcomplex I: N-glycosylated Nicastrin forms imNCT, which then binds to APH-1 to create imNCT/APH-1. 
PSEN holoprotein binds to the imNCT/APH-1 subcomplex. Subcomplex III: PEN-2 is fused to imNCT/APH-1/PSEN holoprotein. Subcomplex IV: 
PSEN autoproteolysis at theTMD6 and TMD7 producing PSEN-NTF and PSEN-CTF fragments. Subcomplex V: Subcomplex IV is transported to the 
Golgi, where NCT undergoes further N-glycosylation to generate mature Nicastrin. Then, the mature γ-secretase complex moves on toward the 
plasma membrane and endosomes. 
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2.1.3 APH-1 
In the genetic screening of Notch, psen, and NCT in 

C. elegans, two multipass transmembrane proteins, Anterior 
pharynx defective-1 (APH-1) and Presenilin enhancer-2 (PEN-
2), interact strongly with PSEN (SEL-12 in C. elegans) and NCT 
(APH-2 in C. elegans); APH-1 deficiency caused a comparable 
phenotype to psen and NCT (Francis et al., 2002; Goutte et al., 
2002). In mammals, APH-1 is a seven transmembrane protein of 
approximately 25 kDa (Figure 1A). The GxxxG motif in the fourth 
TMD of APH-1 is critical for the formation and activation of the 
γ-secretase complex. APH-1 physically interacts with immature 
NCT (imNCT) in ER to form a stable subcomplex (LaVoie et al., 
2003; Lee et al., 2004), then binds to the C-terminus of PSEN 
holoprotein (Morais et al., 2003; Steiner et al., 2008). The ternary 
complex of imNCT/APH-1/holo-PSEN is then transported to the 
trans-Golgi, where NCT can fully develop and become extensively 
N-glycosylated. Human APH-1 is encoded by aph1a and aph1b, of 
which aph1a appears to be the more studied. 

2.1.4 PEN-2 
The PEN-2 was identified side-by-side with APH-1 in a 

C. elegans screening (Francis et al., 2002; Goutte et al., 2002). 
Human PEN-2 is encoded by a single gene on chromosome 
19 (Panmontha et al., 2015). It is the smallest component of 
γ-secretase with 101 residues, two hydrophobic domains that 
function as transmembrane spanning domains, and a "U-shaped" 
structure with the N- and C- termini toward the lumen, according 
to earlier reports (Crystal et al., 2003; Bergman et al., 2004; 
Figure 1A). Recent structure research of PEN-2, however, has 
revealed that there are three membrane-embedded domains, with 
the C-terminus being luminal and the N-terminus being exposed 
to the cytoplasm, indicating that the first two domains traverse only 
half of the lipid bilayer (Zhang et al., 2015). PEN-2 is the last protein 
to be incorporated into the γ-secretase complex and regulates 
PSEN auto-hydrolysis and NCT maturation (Francis et al., 2002; 
Watanabe et al., 2006), and it serves as an ER retention receptor 
for the immature γ-secretase complex (Fassler et al., 2005). The 
extracellular region of PEN-2 can interact with the ectodomain of 
NCT (Sun et al., 2015). The N-terminal extension of PEN-2 can 
modify the hydrophilic environment of the PSEN catalytic pore 
(Isoo et al., 2007). Thus, PEN-2 may modulate γ-secretase activity. 

2.2 Assembly and activation of 
γ-secretase complex 

The correct assembly of the γ-secretase is tightly regulated. It 
is now widely acknowledged that it takes a stepwise manner to 
assemble the four subunits into one complex. First, the Nicastrin 
is synthesized and modified with N-glycosylated in the ER to form 
imNCT, which then binds to APH-1 to form the heterodimer 
imNCT/APH-1 subcomplex I (LaVoie et al., 2003). In order 
to build subcomplex II, the Proximal C-terminus of the PSEN 
holoprotein connects to the intermediate heterodimer via the TM 
domain of NCT (Kaether et al., 2005). Then, PEN-2 and TM4 of 
PSEN are combined to create subcomplex III (Kornilova et al., 
2006; Watanabe et al., 2006). However, it is unclear whether 
this complex is generated by successive binding of PSEN1 and 

PEN-2 or by a prefabricated PSEN1/PEN-2 subcomplex (Fraering 
et al., 2004). Subcomplex III is immediately followed by PSEN 
autoproteolysis at TMD6 and TMD7 to produce PSEN-NTF and 
PSEN-CTF fragments, which comprise the active form of PSEN 
inside subcomplex IV (Fukumori et al., 2010). If PEN-2 is not 
present, the subcomplex is degraded via proteasomes (Prokop 
et al., 2004). In a next step, approximately 5% of subcomplex 
IV traÿcs to the Golgi, where NCT is further N-glycosylated to 
form mature Nicastrin (mNCT), and this is the subcomplex V 
(Moniruzzaman et al., 2018), represents the formation of active γ-
secretase in the cell. Finally, the mature active γ-secretase complex 
is then transported to the plasma membrane and endosomes 
(Dries and Yu, 2008; Smolarkiewicz et al., 2013; Figure 1B). The 
four-component intramembrane proteinase gamma-secretase is 
intricately linked to the development of various diseases. Single-
particle electron cryo-microscopy revealed the principle of the 
assembly of four subunits, with PSEN1 in the central position, 
its amino terminal fragment (NTF) wrapped by PEN-2, and its 
carboxyl terminal fragment (CTF) interacting with APH-1. NCT’s 
unique TM binds to APH-1, and its extracellular domain binds 
to PEN-2. TM6 and TM7 in PSEN1 are located on the convex 
side of the TM horseshoe shape and contain catalytic aspartate 
residues. This structure provides an important framework for 
understanding the function of γ-secretase (Sun et al., 2015). The 
complex of γ-secretase with the Notch fragment indicates that three 
transmembrane domains of PSEN1 surround the transmembrane 
helix of Notch, and PSEN1 undergoes a significant conformational 
rearrangement when binding to its substrate. These features reveal 
structural changes in γ-secretas during substrate recruitment (Yang 
et al., 2019). Post-translational modifications can further regulate 
the matured γ-secretase. The phosphorylation of PSEN1, PSEN2 
and NCT regulate functions of γ-secretase complex, including the 
proteolytic processing, γ-secretase activity (Fluhrer et al., 2004; 
Walter et al., 1999; Kuo et al., 2008), stability (Lau et al., 2002) 
and subcellular localization (Sannerud et al., 2016). The assembly 
and activation of the four subunits play an important role in the 
function of γ-secretase. 

γ-secretase complex is ubiquitous in all tissues, the presence 
of all γ-secretase subunits does not guarantee active complex 
formation, many evidences suggest that two pools of γ-secretase 
exist: the long half-life of assembling γ-secretase complex and 
the short half-life of monomeric subunits, and only a small 
fraction of γ-secretase is catalytically active (Beher et al., 2003; 
Lai et al., 2003). A broad range of γ-secretase substrates has 
been identified, suggesting that additional events and cofactors 
composition are required to enhance the activity of γ-secretase 
and substrate specificity (Placanica et al., 2010). Although γ-
secretase can cleave a variety of protein substrates, when cells 
are in dierent environments and receive dierent signals, γ-
secretase may selectively hydrolyze one or a class of substrates to 
ensure the normal execution of cell functions. γ-secretase subunits 
are localized in nearly all endomembrane system compartments, 
including the endoplasmic reticulum (Kaether et al., 2004), 
lysosomal membrane (Houser et al., 2023), pre- and post-Golgi 
compartments (Annaert et al., 1999), phagosome (Jutras et al., 
2005), plasma membrane and endosome (Vetrivel et al., 2004). 
This suggests that in dierent cellular domains γ-secretase binds 
to dierent substrates and plays dierent roles. Thus, the activity 
of γ-secretase may be regulated by a variety of mechanisms. For 
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instance, APP is processed by intracellular γ-secretase, while Notch, 
which acts on the plasma membrane, is processed on the cell surface 
(Tarassishin et al., 2004). Furthermore, lipid composition also 
impacts substrate processing, the cholesterol-rich membranes are 
the major site of Aβ production (Wahrle et al., 2002; Marquer et al., 
2014), and γ-secretase partitioning into lipid bilayers remodels 
membrane components that create a suitable microenvironment 
for substrate recognition and activity (Barros et al., 2020). Only 
correct subunit assembly can enable γ-secretase to recognize 
specific substrates under specific environment and conditions, thus 
being actived and performing the correct cell biological functions. 

3 γ-secretase in Alzheimer’s disease 

Over a 100 distinct type I integral membrane proteins have 
been identified as γ-secretase substrates to date, and more are 
being continuously discovered (Hemming et al., 2008; Haapasalo 
and Kovacs, 2011). γ-secretase was originally characterized based 
on its proteolytic function in cleaving the APP, a process that 
generates Aβ—a key pathological component in the formation 
of senile plaques associated with AD. Consequently, γ-secretase 
is widely regarded as a central player in the pathogenesis 
of AD. Beyond APP, an expanding repertoire of γ-secretase 
substrates has been implicated in the molecular mechanisms 
underlying AD development. In the following sections, we 
will systematically examine those proteins that demonstrate 

significant associations with the onset and progression of AD, 
aiming to elucidate the multifaceted roles of γ-secretase in 
disease pathology and to lay a foundation for the development 
of targeted therapeutic interventions. 

3.1 Amyloid precursor protein (APP) 

Alzheimer’s disease was first oÿcially described by Alois 
Alzheimer in 1906, which is the most common form of dementia 
(Small and Cappai, 2006). The excessively aggregates amyloid 
plaques in the brain majorly contribute to dysfunction and 
degeneration of neurons that result in AD (Zhang et al., 2012). 
Although the etiology of Alzheimer’s disease is still the subject 
of considerable debate, the “amyloid-cascade hypothesis” has 
remained the prevailing theory over the years (Small and Cappai, 
2006; Soria Lopez et al., 2019). This hypothesis suggests that 
amyloid plaques in the brains of AD patients consisted of fibrils 
formed by Aβ. The cleavage by γ-secretase requires shedding of 
the substrate’s extracellular domains by the other secretases. In 
the Non-Amyloidogenic pathway, APP is cleaved by α-secretase 
to generate sAPPα and the membrane-associated 83 amino 
acid C-terminal fragment APP-CTF (C83), γ-secretase further 
cleaves C83 to produce p3 and AICD (Selkoe, 2001; Figure 2A). 
Alternatively, in the amyloidogenic pathway, APP is first processed 
by β-secretase and produces the secreted sAPP-β and APP– 
C-terminal 99-residue fragment (C99), subsequent γ-Secretase 

FIGURE 2 

Amyloid precursor protein (APP) processing. (A) In the non-amyloid and amyloid pathways, APP undergoes cleavage by α-secretase or β-secretase, 
respectively, releasing sAPPα and C83 in the non-amyloid pathway, or sAPPβ and C99 in the amyloid pathways. Subsequently, γ-secretase cleaves 
C83 into p3 and APP intracellular domain (AICD), while C99 is processed into Aβ and AICD. (B) Following β-secretase mediated cleavage of APP 
(where the sequence numbering of Aβ stars at 1), C99 is further cleaved by γ-secretase at ε-sites to generate Aβ49 and AICD50-99, or Aβ48 and 
AICD49-99. These peptides are subsequently processed through additional cleavages at ζ and γ sites, resulting in the sequential formation of 
Aβ46→43→40→37 from Aβ49, and Aβ48→45→42→38 from Aβ48. Arrows indicate cleavage sites, and membranes are depicted in yellow. 
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mediated cleavage of C99 at the γ-, ζ-, and ε-sites close to the 
cytosolic end of TMD to generate APP intracellular domain (AICD) 
and the extracellular secretion of Aβ peptides (Moser et al., 2024). 
The cleavage of C99 by γ-secretase results in a variety of peptides 
(from large Aβ49 peptides to smaller ones with 37 residues), Aβ 
peptides are cleaved mainly by tripeptide trimming or tetrapeptide 
trimming via the Aβ40 product line (Aβ49→46→43→40→37) or 
the Aβ42 product line (Aβ48→45→42→38) (Hur, 2022; Takami 
et al., 2009; Wang et al., 1996; Figure 2B). 

Approximately 25 mutations in APP are associated with the 
occurrence of AD, many of which are located in the area of TMD 
(Devkota et al., 2021). Although there have been numerous debates 
on whether immune activity is advantageous or detrimental to the 
progression of AD pathology, it has long been that immune activity 
is closely related to the pathophysiology of AD (Frost et al., 2019). 

3.2 Other GS substrate proteins related 
to AD 

In addition to APP, γ-Secretase has more than 140 substrates, all 
of which are type 1 transmembrane proteins. Among them, many 
substrates have been reported to be related to the APP. For instance, 
the low-density lipoprotein receptor-related protein (LRP) directly 
interacts with the PS1 subunit of γ-secretase and competes with 
APP for access to the enzyme’s cleavage site. Overexpression of 

the C-terminal fragment of LRP decreases the production of Aβ 
peptides derived from APP and suppresses the signaling activity of 
AICD (Lleó et al., 2005). These findings indicate that LRP functions 
as a competitive substrate, modulating the cleavage of APP by γ-
secretase through occupancy of the enzyme’s active site. Based on 
the important role of APP in AD, the research on these substrates 
may be more conducive to our study of the molecular mechanism 
of AD pathogenesis. We input the 149 substrate proteins of γ-
Secretase (Güner and Lichtenthaler, 2020) into the STRING website 
(STRING: functional protein association networks) to screen the 
APP-related proteins centered on this APP (Figure 3). The screened 
proteins were analyzed and compared with AD in the Human 
Disease Database Retrieval (MalaCards) and the Disgenet database. 
These proteins are summarized in Table 1. 

4 γ-secretase modulators (GSMs) 

4.1 GSMs 

γ-secretase modulators exhibit greater therapeutic potential 
by modulating enzyme activity to selectively decrease Aβ42 
levels while preserving the normal processing of other substrates 
(Mekala et al., 2020; Wolfe, 2012). Cryo-electron microscopy 
revealed that GSMs bind to the transmembrane domain of PS1 
and change the conformation of γ-secretase, thereby reducing 

FIGURE 3 

GSs substrate associated with amyloid precursor protein (APP). 
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TABLE 1 γ-secretase’s substrates associated with Alzheimer’s disease (AD). 

Protein name GDAS 
(MalaCards) 

GDAS 
(disgenet) 

Functions in AD 

Alcadein α (Calsyntenin-1) (Hata 

et al., 2009) 
22.12 0.2 Binding to kinesin-1 motors to mediate axonal anterograde transport of certain 

types of vesicles. APP is transported through these vesicles (Araki et al., 2004) 

Alcadein γ (Calsyntenin-3) (Hata 

et al., 2009) 
NR 0.2 Regulate synaptic function (Uchida et al., 2013) 

APLP1 (Schauenburg et al., 2018) 24.01 0.35 APLP1 plays a role in the formation and maturation of cortical synapses. (Kim 

et al., 1995) 

APLP2 (Eggert et al., 2004) 33.56 0.3 Regulate neural development and myelination (Roisman et al., 2019)v 

apoER2(LRP8) (Fuentealba et al., 
2007) 

20.68 0.8 Regulate synaptic plasticity and Aβ (amyloid-beta) metabolism (Kim et al., 2014) 

APP (Xu et al., 2016) 567.73 1 The basis for the formation of amyloid plaques in the brains of patients with 

Alzheimer’s disease (De Strooper et al., 1998) 

CX3CR1 (CCRL1) (Güner and 

Lichtenthaler, 2020) 
NR NR CX3CL1 ICD may hold significant translational potential for neuroprotection in 

Alzheimer’s disease and for disorders associated with insulin resistance (Gayen 

et al., 2022). 

CD147 (Basigin BSG) (Güner and 

Lichtenthaler, 2020) 
14.51 NR CD147 subunit within the gamma-secretase complex down-modulates the 

production of Abeta-peptides (Zhou et al., 2005). 

CD44 (Lammich et al., 2002) 13.04 NR CD44 encodes a cell surface glycoprotein that is associated with inflammation, 
metastasis, and inflammatory-linked neuronal damage (Pinner et al., 2017). 

CSF-1R (Wei et al., 2021) 131.9 0.96 Microglia are dependent on signaling through the colony stimulating factor-1 

receptor (CSF-1R/CD115) for growth and survival (Walker et al., 2017). 

Delta1(DLK1) (Ikeuchi and 

Sisodia, 2003) 
NR NR Regulate neuroinflammation and the functions of glial cells (Zheng and Wang, 

2025). 

DR6 (TNFRSF21) (Colombo 

et al., 2018) 
NR 0.25 Regulate neuronal degeneration and neuroinflammation (Zeng et al., 2012) 

EphB2 (Xu et al., 2009) NR NR Regulate synaptic plasticity and the inflammatory response (Shi X. D. et al., 2016) 

ErbB4 (Ni et al., 2001) NR NR Regulate synaptic plasticity, neuroinflammation, as well as Aβ (amyloid-beta 

protein) (Chaudhury et al., 2003). 

IGF-1R (McElroy et al., 2007) 13.81 0.8 The IGF 1/IRS-2 signaling pathway can regulate the activities of 
alpha-/beta-secretase,and inhibit the production of Aβ (amyloid-beta) (Freude 

et al., 2009) 

IL-1R1 (Elzinga et al., 2009) NR 0.45 Reducing the interleukin-1β receptor-1 (IL-1R1) negative regulator TOM1 

aected microglia activity, increased amyloid-beta levels (Martini et al., 2019). 

LDLR (Kim et al., 2018) 19.79 0.85 Regulate the cholesterol metabolism in the brain (Abisambra et al., 2010) 

LRP1 (Zurhove et al., 2008) 44.34 0.8 LRP1 is involved in eux of amyloid beta-peptide (1-42) (Sultana et al., 2010) 

LRP1b (Liu et al., 2007) NR NR Regulate neurodegeneration (Benoit et al., 2013) 

LRP6 (Mi and Johnson, 2007) 21.9 0.35 Regulate the function and stability of synapses (Buechler and Salinas, 2018) 

LRP2 (Zou et al., 2004) NR 0.35 LRP2 deficiency mice at the mediating BBB leads to neurodegeneration (Dietrich 

et al., 2014). 

N-cadherin (CDH2) 
(Marambaud et al., 2003) 

NR NR The cleaved levels of N-cadherin were increased in homogenates of postmortem 

brain from AD patients compared with that in non-AD patients. (Choi et al., 
2020) 

Neuregulin-1 (NLGN1) 
(Malvankar and Wolfe, 2025) 

NR NR Neuro protective eect (Sun et al., 2020) 

SEZ6L (Pigoni et al., 2016) NR NR SEZ6L is a neuronal substrate of the AD β-secretase, and function in the nervous 
system (Ong-Pålsson et al., 2022) 

SorCS1 (Nyborg et al., 2006) NR NR Regulate synaptic formation and function (Savas et al., 2015) 

SorLA (Sorl1) (Nyborg et al., 
2006) 

NR 0.65 Regulate the processing of amyloid precursor protein (APP), the metabolism of 
Aβ (amyloid-beta protein), and the intracellular transportation within neurons 

(Jensen et al., 2023). 

Sortilin (Nyborg et al., 2006) 14.03 0.65 Participate in the regulation of the clearance of Aβ (amyloid-beta) (Andersson 

et al., 2016) 

(Continued) 
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TABLE 1 (Continued) 

Protein name GDAS 
(MalaCards) 

GDAS 
(disgenet) 

Functions in AD 

TkrB (NTRK2) (Tejeda et al., 
2016) 

NR NR TrkB receptor agonist blocks δ-secretase activity exhibiting promising 

therapeutic eÿcacy in 3xTg AD mouse model (Liao et al., 2021). 

TNFRSF1A (TNFR1) 
(Chhibber-Goel et al., 2016) 

NR NR A novel substrate of γ -secretase composed of ps1. The IL-1R1 ICD produced by 

γ -secretase translocates to the nucleus under the stimulation of IL-1β 

(Chhibber, 2013). 

TREM2 (Wunderlich et al., 2013) 117.71 1 TREM2 exerts an anti-inflammatory eect in the brain (Jonsson et al., 2013). 

TRKA(NTRK1) (Merilahti et al., 
2017) 

21.3 0.8 It mediates the signal transduction of nerve growth factor (NGF) and regulates 
neuronal survival, synaptic plasticity, and the metabolism of pathological 
proteins (Chen et al., 2008). 

VLDLR (Hoe and Rebeck, 2005) 21.24 0.8 Regulate lipid metabolism (Moulton et al., 2021) 

The table sequentially lists the names and species of the proteins, the gene scores related to Alzheimer’s disease (AD) from the MalaCards and Disgenet databases, as well as their roles in AD. 
NR, not retrieved; GDAS, gene-disease association score. 

FIGURE 4 

Mechanism diagram of γ-secretase modulators (GSMs) regulating 
γ-secretase activity and its effect on Aβ peptide generation. 

Aβ42 production and enhancing Aβ38 generation (Yang et al., 
2021; Mehra and Kepp, 2021; Figure 4). In addition, Petit et al. 
demonstrated that certain GSMs enhance the eÿciency of substrate 
processing by stabilizing the interaction between γ-secretase and 
APP, elucidating the mechanism of their selective regulation (Petit 
et al., 2022). Early GSMs, such as non-steroidal anti-inflammatory 
drugs (NSAIDs), were ineective due to insuÿcient potency and 
unfavorable pharmacokinetic properties. NSAIDs mainly alleviate 
Aβ-induced neuroinflammation by inhibiting COX-1, COX-2 and 
prostaglandins (Imbimbo et al., 2010). Ibuprofen, flurbiprofen, 
and indomethacin can regulate γ-secretase, lowering Aβ42 levels 
while increasing Aβ38 (Eriksen et al., 2003). However, clinical trials 
have not confirmed significant eÿcacy in patients with mild to 
moderate AD (Miguel-Álvarez et al., 2015). Although studies on 
indomethacin have shown some positive trends, the results are not 
convincing due to the small sample size (de Jong et al., 2008). 
Research indicates that NSAIDs may be eective in the early stage 
of the disease but ineective or even harmful in the later stages 
(Hampel et al., 2020). Moreover, most NSAIDs have diÿculty 
penetrating the blood-brain barrier (BBB), limiting their eÿcacy 
(Sastre and Gentleman, 2010), and the eects are also influenced by 

individual genetic backgrounds (DiBattista et al., 2016). Recently, 
novel GSMs, including pyridine derivatives, purine compounds, 
and quinazolinones, have exhibited greater potency and selectivity. 
The purinergic GSMs developed by Rivkin’s group substantially 
reduced brain Aβ42 levels in a mouse model (Rivkin et al., 
2010). The incorporation of lipophilic groups has been shown to 
improve membrane permeability and central exposure (Naumann 
et al., 2013; Sekioka et al., 2020b). The newer-generation GSM 
BPN-15606 does not inhibit overall γ-secretase activity. Instead, 
it binds to the PS1 subunit of γ-secretase, allosterically altering 
APP cleavage to reduce Aβ42/Aβ40 production and promote the 
generation of more easily cleared fragments Aβ38/Aβ37 (Wagner 
et al., 2017). In PSAPP transgenic mice, treatment with BPN-15606 
before significant plaque formation eectively reduced amyloid 
deposition and improved cognitive performance. However, when 
treatment started six months of age—after plagues were already 
widespread—the drug reduced Aβ pathology but did not improve 
existing cognitive impairments (Prikhodko et al., 2020). This 
suggests that once neuronal damage becomes irreversible, lowering 
Aβ levels alone may not be suÿcient to restore cognitive function. 
Mobley’s team in Down syndrome mice showed that BPN-15606 
significantly reduced Aβ42 and Aβ40 levels; improved nerve 
growth factor signaling; reduced tau hyperphosphorylation, and 
corrected behavioral deficits, indicating its potential to delay or 
prevent AD onset in individuals with Down syndrome (Chen 
et al., 2024). Preclinical studies also demonstrated favorable 
pharmacokinetics and safety profiles supporting its advancement 
into clinical trials (Wagner et al., 2017; Gunnar et al., 2023). 
Although the new generation of GSMs possesses theoretical 
safety advantages based on their mechanism of action, practical 
challenges remain for these modulators. Firstly, the substrate 
diversity of γ-secretase may result in o-target eects, necessitating 
the development of more precise modulators. Secondly, the activity 
of γ-secretase in the brains of AD patients varies with disease 
progression, potentially influencing drug eÿcacy (Nobuto et al., 
2013). Future research should focus on structure-based drug 
design, combining cryo-electron microscopy and computational 
chemistry to optimize binding sites. Developing multi-targeted 
modulators for Aβ and tau pathologies is also crucial (Gunnar et al., 
2023; Joanna and Yue-Ming, 2022; Ji-Yeun, 2022). The existing 
GSMs are summarized in Table 2. 
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TABLE 2 The existing γ-secretase modulators (GSMs). 

Name Mechanism of drug action Phase Status Side effect 

Ibuprofen modulate γ-secretase to lower the production of Aβ42 

and concomitantly increase Aβ38 without aecting the 

total amount of Aβ (Weggen et al., 2001) 

III Completed Weak eÿcacy or insuÿcient targeting 

(Ling et al., 2015) 

Indomethacin Selectively reducing the levels of Aβ42 while 

simultaneously increasing the production of soluble 

Aβ38 without aecting Notch signaling. 

III Completed Damage to the gastric mucosa, ulceration, 
and bleeding (Sava, 2021) 

Sulindac sulfide Selective inhibition of Aβ42 production and increase of 
Aβ38 and Aβ37 fragments (Barrett et al., 2011) 

Preclinical Suspended Gastrointestinal pain, Dizziness/headache 

(Brogden et al., 1978) 

R-flurbiprofen Selective binding to the active site of γ-secretase 

modulates its cleavage preference, consequently 

diminishing the production of Aβ42. (Höttecke, 2010) 

III Terminated Low potency and poor CNS penetration 

(Green et al., 2009) 

CHF-5074 CHF-5074 binds to the intracellular domain of APP, 
altering the cleavage site of γ-secretase and 

preferentially reducing Aβ42 production (Branca et al., 
2014) 

II Completed Mild diarrhea (Amirrad et al., 2017) 

EVP-0962 It decreases the production of Aβ42 peptide and 

increases the proportion of short-chain Aβ38, thereby 

decreasing amyloid plaque formation (Bulic et al., 
2011) 

II Completed It was discontinued after a phase II clinical 
trial, and the results are not reported 

(Hur, 2022) 

E2012 Targeting the hydrophobic pocket within the 

transmembrane domain of PS1-NTF (Luo and Li, 
2022) 

I Terminated Aecting cholesterol metabolism, leading 

to lenticular opacity (Nakano-Ito et al., 
2014) 

E2212 Reducing Aβ42/40 peptides while increasing soluble 

Aβ37/Aβ38 (Maia and Sousa, 2019) 
I Completed Diarrhea (Yu et al., 2014) 

PF-06648671 Reductions of Aβ42 and Aβ40, together with increases 
in Aβ37 in healthy volunteers (Ahn et al., 2020) 

III Terminated No major side eects were reported. 

BMS-932481 increase in Aβ37 and reduce of Aβ42 CSF levels in 

healthy volunteers (Boy et al., 2019) 
II Terminated Liver injury, alanine aminotransferase 

(ALT) elevated (Zhuo et al., 2023) 

NGP555 Binding of the interacting regions of Pen-2, Nct, and 

TM loops 3-4 to regulate Aβ peptide generation 

(Ioppolo et al., 2021) 

I Completed Headache, nausea, and dizziness, liver 

enzyme levels were elevated (Rynearson 

et al., 2021) 

BIIB042 Binding to PSEN and induces γ-secretase 

conformational change, decrease Aβ42, increase Aβ38 

and have no eect on Aβ40 levels (Scannevin et al., 
2016). 

II Suspended No relevant studies 

RO7185876 Altering the cleavage site of APP, reduces Aβ40 

production and increases Aβ37/Aβ38 (Ratni et al., 
2020) 

Preclinical Unclear No relevant studies 

RG6289 Decrease Aβ42/Aβ40 and elevations in Aβ38 and Aβ37 

(De Strooper and Karran, 2024) 
II Active Mild headache, gastrointestinal 

discomfort 

BPN-15606 Lowering Aβ42 accumulation Preclinical Active High Dose toxicity in animal (Wagner 

et al., 2017) 

UCSD-776890 Potent in vitro and in vivo Aβ42 inhibition; Preclinical Active. No sign of cardiac toxicity and 

mutagenicity (Rynearson et al., 2021) 

RO7019009 Increasing Aβ37/38, reducing Aβ40/42/43, has greater 

therapeutic potential for patients carrying a single PS1 

L166P allele. (Trambauer et al., 2025) 

Preclinical Active No reports 

ACD680 Decrease Aβ42/Aβ40 and elevations in Aβ38/Aβ37 

(Nordvall et al., 2025) 
Preclinical Active No reports 

UCSD-779690 Potent Aβ42 inhibition Preclinical Unclear No sign of cardiac toxicity and 

mutagenicity (Rynearson et al., 2021) 

Cpd133 Inhibition of Aβ42 and solubility Preclinical Unclear Poor ADME (Rynearson et al., 2016) 

Cpd134 Decreasing Aβ42 in cell-based assay Preclinical Unclear Cardiac toxicity potential (Rynearson 

et al., 2020) 

Cpd135 Inhibition of Aβ42 Preclinical Unclear CYP3A4 inhibition (Shi J. et al., 2016) 

(Continued) 
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TABLE 2 (Continued) 

Name Mechanism of drug action Phase Status Side effect 

Cpd136 Decreasing Aβ42 Preclinical Unclear Limited in vivo activity and poor drug-like 

properties (Wu et al., 2016) 

FRM-36143 Decrease Aβ42 and elevations in Aβ38 and Aβ37 

(Bursavich et al., 2017; Blain et al., 2016) 
Preclinical Unclear No reports 

FRM-024 Improved Aβ42 reduction (Bursavich et al., 2021) Preclinical Unclear No reports 

Cpd142 Improved Aβ42 reduction (Zhao et al., 2017) Preclinical Unclear No reports 

Cpd143 Improved Aβ42 reduction (Fischer et al., 2015) Preclinical Unclear O-target eects 

PF-06442609 Potent Aβ42 lowering activity (Pettersson et al., 2015) Preclinical Unclear No reports 

Cpd145 Aβ42 reduction (Pettersson et al., 2017) Preclinical Unclear No reports 

BI-1408 Aβ42 reduction (Gerlach et al., 2018) Preclinical Unclear No reports 

Cpd147 Lowering Aβ42 accumulationinvitroandinvivo (Takai 
et al., 2015) 

Preclinical Unclear No reports 

Cpd149 Eectively inhibiting Ab42 (Murakami et al., 2016) Preclinical Unclear No reports 

RO7101556 Potent in vitro and in vivo activity (Rodríguez 

Sarmiento et al., 2020) 
Preclinical Unclear No reports 

Cpd152 Lack of in vivo eÿcacy (Sekioka et al., 2018) Preclinical Unclear No reports 

Cpd153 Eÿcacious Ab42 lowering (Sekioka et al., 2020b) Preclinical Unclear No reports 

Cpd154 Potent Ab42 inhibition in vitro and in vivo (Sekioka 

et al., 2020a) 
Preclinical Unclear No reports 

Cpd165 Potent Ab42 in vitro and in vivo lowering (Bischo 

et al., 2019) 
Preclinical Unclear No reports 

D-Pinitol Altering APP processing pathways reduces Aβ42 

production while avoiding interference with Notch 

signaling (López-Sánchez et al., 2018) 

Preclinical Unclear No reports 

2,5-disubstituted 

2-benzylidene 

hexanoic acid 

derivatives 

act as dual γ-secretase/PPARγ modulators in the low 

micromolar range (Hieke et al., 2011) 
Preclinical Unclear No reports 

1,2,3-C-aryl-triazoles Good modulation of γ-secretase activity, excellent 
pharmacokinetics, and reduced central Aβ42 levels in 

Sprague-Dawley rats (Fischer et al., 2011) 

Preclinical Unclear No reports 

Compound 10 h Decreasing the level of Aβ42 in plasma, CSF, and brain, 
with little eect on the level of Aβ40 (Hawkins et al., 

2011) 

Preclinical Unclear No reports 

Iminoheterocycles Lowering Aβ42 levels in various in vivo models 
(Caldwell et al., 2010) 

Preclinical Unclear No reports 

4.2 γ-secretase modulatory proteins 
(GSMPs) 

The aggregation of Aβ-monomers forms the amyloid plaques 
observed in Alzheimer patients’ brains, which is the key factor 
in AD (Selkoe, 2013). Increasing evidence has suggested that γ-
secretase and its associated proteins could participate in regulating 
AD, but direct inhibition of γ-secretase has no significant eect 
on reducing Aβ accumulation and improving cognition in AD’s 
patients (Shi and Holtzman, 2018). γ-secretase has been a key 
target for drugs as it facilitates the final cleavages in the production 
of Aβ. Due to severe adverse eects in clinical trials, GSIs have 
been discontinued. GSMPs are more secure. It has high eÿciency 
and good safety. Targeting GSMPs can selectively regulate the 
APP pathway and has tremendous applicability prospects in the 

treatment of AD. Nowadays, several GSMPs that are closely related 
to the APP signaling pathway, such as GSAP (Kim et al., 2024; 
Jin et al., 2022), IFITM3 (Hur, 2021), transmembrane traÿcking 
protein, 21-KD (TMP21) (Ílgün and Çakir, 2025), and stress-
associated endoplasmic reticulum protein 1 (SERP1) (Jung et al., 
2020). We review the results of a Pubmed search for the keywords 
“gamma secretase AND (γ-secretase modulatory proteins OR 
GSMP)” and review recent advances in GSMPs. 

4.2.1 γ-secretase activating protein (GSAP) 
Lots of γ-secretase interacting proteins have been identified 

through LCMS analysis. The GSAP was identified as a γ-secretase-
interacting partner (Teranishi et al., 2010; Frykman et al., 2012), 
it could form a complex with γ-secretase and APP-CTF, and 
an SNP in GSAP has been discovered to be associated with 

Frontiers in Aging Neuroscience 10 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1637671
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1637671 August 20, 2025 Time: 18:3 # 11

Ning et al. 10.3389/fnagi.2025.1637671 

Alzheimer’s disease, giving genetic evidence that links GSAP to 
AD susceptibility (He et al., 2010). Studies have shown that the 
inhibition of GSAP can reduce Aβ production without aecting 
the other key γ-secretase substrates (Kim et al., 2024). GSAP 
does not interact with Notch, nor does it aect its cleavage 
(He et al., 2010; Wong et al., 2019). Knockdown of GSAP 
could reduce Aβ burden and plaque development in the AD 
model transgenic mice (Kim et al., 2024; He et al., 2010). GSAP 
specifically promotes γ-secretase–mediated cleavage of APP, the 
16-kDa C-terminal fragment of GSAP (GSAP-16K) exerts dual 
modulation on γ-secretase cleavage: GSAP-16K in dilute phase 
increases C99 cleavage toward preferred production of Aβ42, 
but GSAP-16K condensates reduce APP-C99 cleavage through 
substrate sequestration (Jin et al., 2022). Imatinib is a commonly 
used anti-cancer drug in the clinic, multiple evidence indicates 
that imatinib inhibits Aβ but has no eect on Notch signaling (He 
et al., 2010; Netzer et al., 2003). In AD mouse models, imatinib 
prevents GSAP from interacting with APP-CTF, thereby reducing 
Aβ levels and tau phosphorylation (Chu et al., 2014). However, 
due to the extremely poor BBB penetration ability of imatinib 
(Brahmachari et al., 2017), it has not yet been applied in Phase 
II and Phase III clinical trials. Administration of the dimerization 
of Lep9R3LC (diLep9R3LC) peptide and GSAP siRNA complexes 
in AD mice can reduce GSAP in the cortex/hippocampus, 
inhibit Aβ accumulation, reduce tau hyperphosphorylation, and 
improve cognitive function in AD mice (Kim et al., 2024). In 
neurons, GSAP interacts with the Fe65–APP complex to modulate 
APP phosphorylation and its traÿcking/partitioning (Xu et al., 
2021). Reducing GSAP levels diminishes the partitioning of APP-
CTF into lipid rafts, specifically at the mitochondria-associated 
membrane (MAM), and also decreases γ-secretase activity involved 
in Aβ production, and decreasing GSAP expression mitigates 
pathological eects linked to AD (Xu et al., 2021). In addition 
to contributing to amyloid formation in the brain, GSAP can 
also promote end-organ dysfunction after bacterial pneumonia. 
Infection with Pseudomonas aeruginosa caused arterial hypoxemia 
in wild-type rats, but the integrity of the alveolar-capillary barrier 
was preserved in GSAP knockout rats. Additionally, infection 
enhanced myocardial infarction after ischemia-reperfusion injury, 
and this enhancement was eliminated in the GSAP knockout rats 
(Gwin et al., 2023). This result sheds light on the role of GSAP 
in innate immunity and highlights the contribution of GSAP to 
end-organ dysfunction during infection. However, even if GSAP 
can serve as an amyloid-beta-lowering therapeutic target without 
aecting other key functions of γ-secretase, but whether it also acts 
on other substrates and whether its regulation causes other side 
eects remains to be investigated. 

4.2.2 Interferon-induced transmembrane protein 
3 (IFITM3) 

Interferon-induced transmembrane protein 3 is one of the 
members of the IFITMs family, as interferon-induced genes have 
been found in human neuroblastoma cells, it is an innate immune 
response protein involved in preventing the entry of viruses into 
host cells (Amini-Bavil-Olyaee et al., 2013; Bailey et al., 2014; Kehs 
et al., 2025). The Aβ peptides have antimicrobial and antiviral 
activities as part of the innate immune response in the brain 
(Amini-Bavil-Olyaee et al., 2013; Bailey et al., 2014). Hur et al. 

(2020) performed photo-crosslinking tests using the γ-secretase 
modulator E2012-BPyne and found that IFITM3 is a γ-secretase 
interaction protein. By interacting with neighboring IFITMs or 
other transmembrane proteins, IFITMs inhibit the formation of 
viral fusion pores and reduce the fluidity of the host membrane, 
this prevents viral infection (Yao and Yan, 2020). In the context of 
AD, IFITM3 was significantly reduced in the PSEN1 and PSEN2 
double-knockout mice, and similarly, IFITM3 RNAi also reduced 
γ-secretase activity. Furthermore, IFITM3 directly binds to γ-
secretase near the catalytic site and reduces γ-secretase activity 
for Aβ40 and Aβ42 (Hur et al., 2020). The expression of IFITM3 
is significantly higher in patients with Alzheimer’s disease in the 
temporal cortex, knockout of IFITM3 in AD mouse significantly 
reduces plaque deposition (Hur et al., 2020). Other studies have 
shown that the expression of IFITM3 could be upregulated by the 
human herpes virus 6B, hepatitis C virus and cytokines interferon-γ 
(IFNγ), IFNα, IL-6, and IL-1β all significantly induce (Gómez-
Herranz et al., 2023; Yánez et al., 2020; Jiménez-Munguía et al., 
2022), and when infected COVID- 19, young mice showed higher 
IFITM3 responses and interferon-induced chemokines than older 
mice (Subramaniam et al., 2024). As an immune response protein, 
IFITM3 plays an important role in AD and other immune-related 
diseases. It has been confirmed that IFITM3 can interact with γ-
secretase in AD, but whether γ-secretase is also involved in other 
immune diseases with IFITM3 remains to be confirmed. 

4.2.3 Transmembrane trafficking protein, 21-KD 
(TMP21) 

Transmembrane traÿcking protein, 21-KD, also known as 
TMED10, is expressed in most brain regions, with higher 
expression in neuronal cells (Vetrivel et al., 2008). Transgenic 
mice with neuron-specific increases in TMP21 expression exhibit 
postnatal growth retardation and severe neurological issues 
like tremors, seizures, ataxia, uncoordinated movements, and 
premature death, complete deletion of TMP21 results in embryonic 
lethality at very early stages (Denzel et al., 2000; Gong et al., 
2011). TMP21 is co-localized with γ-secretase, its expression is 
decreased in AD, which is consistent with the previous study 
that Aβ expression is increased when TMP21 is knocked down 
(Vetrivel et al., 2008; Pardossi-Piquard et al., 2009; Chen et al., 
2006). Importantly, TMP21 binds to γ-secretase and specifically 
modulates APP cleavage at the γ-site, however, it has no 
eect on Notch cleavage at the ε-site (Vetrivel et al., 2008; 
Chen et al., 2006; Bromley-Brits and Song, 2012). Moreover, 
TMP21 reduction impairs APP’s bidirectional transport in the 
ER/Golgi, which increases the amount of APP that undergoes 
amyloidogenic cleavage in endocytic compartments and sAPP, 
Aβ40, and Aβ42 secretion (Vetrivel et al., 2007). Reducing 
TMP21 can increase GSK3β activity (Zhang et al., 2019), thereby 
promoting NF-κB-mediated β-site amyloid precursor protein 
cleaving enzyme 1 (BACE1) expression and activity, which further 
promotes APP processing and Aβ generation (Ly et al., 2013). 
A study showed that TMP21 could interact with the murine 
cytomegalovirus immunoevasin gp40 to facilitate virus immune 
escape (Ramnarayan et al., 2018; Stützer et al., 2013; Xu et al., 2023; 
Araki et al., 2004; Honda et al., 2024), so does TM21 also defend 
against foreign invasion in AD like IFITM3? This is also one of the 
directions that can be explored in the future. 
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4.2.4 Stress-associated endoplasmic reticulum 
protein 1 (SERP1) 

Through a genome-wide screen for regulators of γ-
secretase activity, researchers identified that SERP1 promotes 
Aβ production in cells undergoing endoplasmic reticulum (ER) 
stress. The carboxyl-terminal domain of SERP1 interacts with 
the APH1A/NCT subcomplex of γ-secretase. Under ER stress 
conditions, SERP1 selectively recruits APP into the γ-secretase 
and enhances the subcellular localization of this complex within 
lipid rafts, leading to increased Aβ generation. Moreover, in 
cells exposed to high glucose levels and in diabetic AD model 
mice, elevated levels of SERP1, enhanced γ-secretase assembly, 
and increased Aβ production were observed (Jung et al., 2020). 
APH1A and NCT play a crucial role in stabilization, maturation 
and substrate recognition of the γ-secretase complex. The binding 
of SERP1 to this subcomplex may enhance its enzymatic activity 
by stabilizing the conformation of the complex or facilitating the 
entry of substrates into the active site. Although SERP1 has been 
shown to interact with γ-secretase, no atomic-resolution cryo-EM 
structures of SERP1 in complex with either the full γ-secretase 
complex or its APH1A/NCT subcomplex have been reported to 
date. Cryo-EM technology holds the potential to elucidate the 
molecular details of the SERP1–γ-secretase interaction at the 
atomic level, which is critical not only for understanding the 
unique mechanism of SERP1 as a GSMP, but also for guiding the 
rational design of therapeutics targeting this interaction. 

4.3 The other GSMPs 

4.3.1 Hif-1α 
Hypoxia-inducible factor 1α (Hif-1α) serves as a key 

transcription factor in the cellular adaptation to hypoxic 
conditions. It plays critical roles in processes such as angiogenesis, 
metabolism (Masoud and Li, 2015), embryogenesis, and the 
development and progression of tumors (Peng and Liu, 2015). 
Numerous studies have shown that Hif-1α can enhance Notch 
signaling by binding to and stabilizing the intracellular domain 
of Notch (NICD), thereby activating downstream Notch target 
genes. Under hypoxic conditions, the interaction between Hif-1α 
and Notch is essential for maintaining the undierentiated state of 
cells (Gustafsson et al., 2005). To counteract the negative feedback 
eects of Notch signaling in cancer stem cells, Hif-1α can bind to 
the promoter region of Hes1, a gene targeted by Notch signaling 
(Wang et al., 2011). In Drosophila models, Hif-1α has been shown 
to activate Notch signaling independently of ligand interactions, 
promoting the survival of Drosophila blood cells (Mukherjee et al., 
2011). Additionally, research has demonstrated that hypoxia leads 
to an increase in Aph1a gene expression, which contributes to 
the upregulation of γ-secretase activity. This eect is mediated 
through a Hif-1α response element located within the Aph1a gene 
promoter (Wang et al., 2006). In breast cancer, Hif-1α no longer 
performs its canonical role as a transcription factor under hypoxic 
conditions, but instead interacts directly with γ-secretase regulates 
its activity for Notch cleavage, and enhances cancer cell migration 
and metastasis (Villa et al., 2014). Microglia-specific BACE-1 
deletion enhances autophagolysosome function and Aβ-induced 
metabolic reprogramming via PI3K-mTOR-HIF-1α signaling, 

promoting Aβ degradation (Singh et al., 2022). This demonstrates 
that Hif-1α plays a significant role in AD; however, the molecular 
mechanism by which Hif-1α and γ-secretase jointly regulate AD 
requires further elucidation. 

4.3.2 CD 147 
Coimmunoprecipitation investigations indicated that CD147, 

a glycoprotein, also referred to as basigin or EMMPRIN (Gabison 
et al., 2009). Inhibition of CD147 was found to enhance the 
production of Aβ-peptides, suggesting its function as a regulatory 
component of γ-secretase in Aβ generation (Zhou et al., 2005). 
Additionally, CD147 regulates matrix metalloproteinases and is 
expressed across various human tissues, contributing to both 
extracellular matrix degradation and fibrosis. This makes it a 
promising target for cancer therapy via interactions involving cell-
matrix and cell-cell connections (Huang et al., 2023; Gao et al., 
2016). CD147 undergoes intramembrane cleavage by γ-secretase 
at lysine 231, leading to the release of its intracellular domains 
(ICD). The CD147ICD subsequently relocates to the nucleus, 
where it activates Notch signaling by binding to Notch promoters 
(Yong et al., 2019). Elevated levels of nuclear CD147ICD correlate 
with poorer prognoses in human hepatocellular carcinoma (HCC), 
with patients exhibiting high CD147ICD expression showing 
significantly reduced overall survival rates compared to those with 
low CD147ICD expression (Yong et al., 2019). Depletion of CD147 
using RNAi increases Aβ-peptide production without altering 
γ-secretase or APP substrates. Understanding the molecular 
mechanisms underlying the interaction between CD147 and γ-
secretase could pave the way for developing innovative therapies 
for Alzheimer’s disease (Zhou et al., 2005). 

5 Concluding remarks and future 
challenges 

The γ-secretase complex is universally present in all cells and 
tissues, and its ability to cleave multiple type I membrane proteins 
can be likened to “molecular scissors “(Wong et al., 2020). Initially 
characterized as a proteolytic activity responsible for the cleavage of 
APP to generate Aβ, γ-secretase has been extensively studied in the 
context of FAD due to missense mutations in its subunits (Jarrett 
et al., 1993). The deposition of Aβ peptide plaques in the cerebral 
cortex represents a hallmark feature of AD patients (Dominguez-
Gortaire et al., 2025). The generation of Aβ peptides is not only 
dependent on γ-secretase activity but is also critically regulated by 
β-secretase. Following the cleavage of APP by β-secretase at the 
β-site, a membrane-bound C99 intermediate is formed. This C99 
fragment subsequently undergoes further cleavage by γ-secretase 
to produce Aβ peptides. Thus, β-secretase plays a pivotal role 
in controlling the production of Aβ (Cervellati et al., 2021). In 
AD, β-secretase expression and activity are significantly increased, 
contributing to excessive Aβ production (Vassar, 2012). β-secretase 
inhibitors (BSIs) could reduce Aβ40 and Aβ42 levels eectively 
(Eketjäll et al., 2016). However, β-secretase has dual roles in Aβ, 
both in its production and degradation. When β-secretase is highly 
expressed, low-dose inhibitors may instead lead to an increase 
in Aβ42 and Aβ40 levels, as the Aβ-degrading activity of β-
secretase is preferentially weakened (Ulku et al., 2024). Several 
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TABLE 3 The comparison of β-secretase 1 inhibitors, γ-secretase inhibitors (GSIs), γ-secretase modulators (GSMs), and γ-secretase modulatory proteins 
(GSMPs) in Alzheimer’s disease (AD). 

Category Mechanism Advantage Side effects Clinical progression 

β-secretase inhibitor Inhibiting BACE1, blocking APP 

cleavage at the β-site, and 

reducing Aβ peptide production. 

Significantly reduce Aβ levels 
in cerebrospinal fluid and 

theoretically inhibit Aβ 

production. 

Hepatotoxicity and cognitive side 

eects, aecting other BACE1 

substrates 

Phase III clinical trials were 

partially terminated (Chen et al., 
2017; Schenk et al., 2012; 

Bateman et al., 2009) 

γ-secretase inhibitor Directly inhibit γ-secretase 

activity, block the cleavage of all 
γ-secretase substrates. 

Rapidly reduce total Aβ 

levels, including Aβ42. 
Gastrointestinal toxicity, 
immunosuppression, and 

increased skin cancer risk due to 

Notch pathway inhibition. 

Phase III clinical trials were 

terminated due to 

toxicity/ineectiveness (Hur, 
2022; Wolfe, 2012) 

γ-secretase 

modulators 
Allosteric modulation of 

γ-secretase selectively reduces 
Aβ42 and enhances Aβ37/38 

levels without aecting total Aβ 

or other substrates. 

Avoid Notch-related toxicity, 
preserve γ-secretase function. 

Early-generation GSMs: poor 

brain penetration, low eÿcacy, a 

narrow therapeutic window, and 

failed to improve cognition in 

Phase III trials. 

First-generation: failed; 
Second-generation: some toxicity; 

New GSMs: preclinical studies 
(Ji-Yeun, 2022; Raven et al., 2017) 

γ-secretase 

modulatory proteins 
Regulating γ-secretase activity or 

localization, aects Aβ 

generation. 

High targeting specificity; 
reduces Aβ42 without 

aecting Notch 

Complex mechanism, preclinical 
test, lack clinical validation. 

Preclinical studies, no clinical 
trials (Kehs et al., 2025; Luo and 

Li, 2022). 

BSIs have advanced to phase III clinical trials, but none have 
shown clear clinical benefits. For example, Verubecestat caused 
reversible cognitive decline (Vassar, 2012); Atabecestat led to dose-
dependent liver enzyme elevation (Pleen and Townley, 2022; Evin 
et al., 2011); Lanabecestat was linked to psychiatric events, weight 
loss, and skin depigmentation (Patel et al., 2022); and Elenbecestat 
resulted in dizziness, nightmares, elevated liver enzymes, and 
hippocampal atrophy Elenbecestat (Patel et al., 2022). Despite the 
setbacks encountered in phase III clinical trials, the involvement 
of β-secretase in AD pathology remains widely acknowledged. The 
complexity of AD pathogenesis and the potential o-target eects 
of BSIs are considered critical contributors to the development of 
adverse drug reactions. 

After β-secretase cleaves APP, γ-secretase subsequently cleaves 
the resulting C99 fragment to generate Aβ peptides. Recent studies 
have shown that the formation of Aβ peptide plaques may serve as 
a defense mechanism against viral attacks (Hur et al., 2020). Thus, 
it can be hypothesized that under normal physiological conditions, 
plaques fulfilling their function are subsequently cleared. However, 
when this clearance process is impaired, it leads to the development 
of AD. With an increasing number of identified γ-secretase 
substrates, it has become evident that, in addition to APP, several 
substrates play critical roles in AD progression (Yin et al., 2025). 
The limited clinical progress achieved through targeting APP 
alone suggests that the interplay between these substrates and 
APP warrants further investigation. Due to the broad substrate 
specificity of γ-secretase, GSIs inhibit the processing of multiple 
substrates, leading to significant side eects (Chen et al., 2023). 
Particularly the Notch pathway, which plays a critical role in 
essential cellular processes such as stem cell maintenance and 
proliferation, cell fate determination, and dierentiation (Kovall 
et al., 2017; Kopan and Ilagan, 2009). Inhibition of Notch has been 
associated with gastrointestinal disorders (Hur, 2022; Abdallah, 
2024); lymphopenia and an elevated risk of infection (Doody et al., 
2013; Wong et al., 2004), cognitive decline (Doody et al., 2013), 
and an increased incidence of skin cancer (Uddin et al., 2020). 
Recent evidence indicates that γ-secretase inhibitors can impair 
epithelial cell function, leading to colitis in mice (Erkert et al., 
2025). Compared to GSIs, GSMs oer more precise modulation 

of the γ-secretase cleavage site. They shift the cleavage position 
within the APP transmembrane region, leading to a decrease in 
Aβ42 levels and a relative increase in Aβ37 and Aβ38 (Figure 4). 
This approach provides several benefits over GSIs, including the 
selective reduction of Aβ42 without fully blocking γ-secretase 
activity, thereby minimizing adverse eects on Notch signaling 
and allowing for an expanded therapeutic range. Subsequent 
research uncovered that γ-secretase exhibits distinct localization 
patterns within tissues and performs specific functions in various 
cell types (Houser et al., 2023; Strope and Wilkins, 2023; Kwak 
et al., 2022). These findings raise questions regarding whether 
γ-secretase activity is regulated by other proteins or signaling 
pathways. Studies have demonstrated that only a fraction of the 
γ-secretase complex possesses catalytic activity, and the regulation 
of this activity remains an open question. GSMPs have emerged 
as key regulators of γ-secretase activity and specificity, enabling 
rapid responses to cellular signals and environmental changes 
(Antony et al., 2025). Multiple GSMPs direct the ubiquitous γ-
secretase to initiate appropriate signaling under specific conditions. 
Notably, GSMPs do not directly inhibit γ-secretase activity but 
instead modulate it, thereby targeting GMSPs to treat AD may 
mitigate adverse reactions. BSIs, GSIs, GSMs, and GSMPs can all 
play a certain role in targeting Aβ deposition. The research progress 
among them is summarized in Table 3. 

Research on γ-secretase still faces numerous challenges. For 
example, the mechanism by which GSMs interact with γ-secretase 
remains unclear. While most studies suggest that GSMs target 
the PSEN subunit of γ-secretase (Yang et al., 2021), alternative 
hypotheses propose the formation of a GSM-substrate-γ-secretase 
ternary complex (Petit et al., 2022). This uncertainty regarding 
the molecular target hampers the eective optimization of lead 
compounds. Furthermore, several GSMs have been discontinued 
from clinical development due to poor BBB penetration and safety 
concerns such as adverse side eects (Rynearson et al., 2021; 
Green et al., 2009). These failures underscore the translational 
gap between animal models and human trials. In addition, the 
physiological roles of GSM-regulated Aβ37/Aβ38 peptides in 
humans remain poorly understood, and their potential to cause 
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unintended eects is still undetermined. Furthermore, studies 
on GSMPs are at an early stage but face multiple challenges. 
These include determining their precise cellular localization 
across dierent cell types, elucidating the mechanisms underlying 
substrate selectivity, and understanding how specific GSMP 
subtypes influence substrate processing. Moreover, as protein-
based therapeutics, GSMPs are generally large and struggle to 
cross the BBB, and exogenous proteins may provoke immune 
responses, compromising both safety and therapeutic eÿcacy. 
Finally, biopharmaceuticals typically involve high production costs, 
complex manufacturing processes, and lower stability compared 
to small-molecule drugs. Currently, most research eorts are 
focused on small-molecule GSMs. In contrast, GSMPs represent 
a promising yet underexplored therapeutic avenue, with unique 
mechanisms and development hurdles that warrant further 
investigation. Addressing these gaps could significantly advance 
our understanding of γ-secretase biology in disease contexts, 
potentially leading to therapies with improved safety profiles and 
greater eÿcacy. 
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