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Background: Current research is predominantly focused on the single 

dysfunction after stroke, but the potential changes in brain dynamics of post-

stroke cognitive and motor dysfunction (PSCMD) remain unclear, which hinders 

a deep understanding of its rehabilitation effects. Therefore, the objective is to 

explore the dynamic brain network characteristics of PSCMD. 

Methods: The clinical features and resting-state functional magnetic resonance 

imaging (rs-fMRI) data were collected from 75 patients with post-stroke 

motor dysfunction (PSMD), 33 patients with PSCMD, and 35 healthy controls 

(HCs). Hidden markov model (HMM) was employed for the rs-fMRI data, 

aiming to identify the repetitive states of brain activity while further assessing 

the temporal properties and activation patterns in PSCMD. Additionally, the 

correlation between the HMM state characteristics and clinical scale scores was 

systematically evaluated. 

Results: Five HMM states were ultimately identified. According to the results, 

PSMD and PSCMD groups showed significant changes in the dynamics of 

spatiotemporal attributes versus HCs, including fractional occupancy (FO), 

Lifetime (LT), and transition probability (TP). Furthermore, PSCMD patients 

exhibited greater FO than PSMD (p = 0.006) in state 3. State 3 was mainly 

characterized by low activation of sensorimotor and higher-order cognitive 

networks, as well as the high activation of the right prefrontal-parietal network, 

which may reflect adaptive changes in the brain after PSCMD. Besides, the FO of 

HMM state 3 exhibited a negative connection with the MoCa score (r = −0.389, 

p = 0.025). 

Conclusion: An abnormal dynamic brain reorganization pattern could be 

observed in PSCMD patients. Neuromodulation strategies can be optimized by 

HMM-derived brain states in the future. 
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stroke, motor dysfunction, cognitive and motor dysfunction, hidden markov model, 
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1 Introduction 

Stroke has become the predominant cause of persistent 
disability globally (Hilkens et al., 2024). Specifically, survivors 
tend to manifest as multiple functional impairments, including 
motor dysfunction, cognitive impairment, speech disorders, and 
dysphagia (Einstad et al., 2021; Wang et al., 2021; Craig et al., 
2022), and over 80% of the patients will experience cognitive 
and motor concurrent impairments after stroke (Patel et al., 
2003). This dual dysfunction has serious eects on patients’ 
quality of life and results in a huge socioeconomic burden. 
However, existing studies predominantly focus on single cognitive 
or motor dysfunction after stroke, while the neural mechanisms 
underlying post-stroke cognitive and motor dysfunction (PSCMD) 
are relatively overlooked (Yue et al., 2023; Wang Y. et al., 2024; Pang 
et al., 2024) which results in a lack of targeted treatment for PSCMD 
patients, thus exhibiting a negative eect on their rehabilitation 
outcomes. 

Resting-state functional magnetic resonance imaging is 
extensively employed in the exploration of the neural mechanisms 
of patients with brain diseases (Viviano and Damoiseaux, 2020; 
Chen et al., 2021). It has been revealed that intra- and inter-network 
functional connectivity (FC) of the sensorimotor network (SMN), 
default mode network (DMN), frontoparietal network (FPN), and 
salience network (SN) of stroke patients are disrupted, and these 
FC changes exhibit a strong connection with various dysfunctions 
after stroke, such as motor and cognitive functions (Cao et al., 
2023; Zhang, 2025; Larivière et al., 2018; Vicentini et al., 2021). 
However, static network analysis methods were employed in all of 
the studies mentioned above, while the dynamic properties of the 
network were overlooked (Yue et al., 2023; Pang et al., 2024; Cohen, 
2018; Wang et al., 2020; Lu et al., 2024). With the application of 
a sliding-window dynamic approach, it was found by a recent 
study that the connections between the visual network and other 
networks in post-stroke cognitive dysfunction (PSCI) patients 
were weakened, and they were undetected in static functional 
connectivity analysis, which underscored the importance of 
dynamic functional connectivity analysis in the deep exploration 
of neural mechanisms (Yue et al., 2023). Besides, studies have 
shown that dynamic brain remodeling has been proven to be a 
promising approach for creating novel biomarkers for disorders 
such as cognitive impairment (Xu et al., 2021), schizophrenia (Sun 
et al., 2019) and epilepsy (Qin et al., 2024). However, there is still 
a great deal of unknown about how brain networks dynamically 
remodel after stroke, particularly in PSCMD. 

Although sliding window analysis is a commonly used method, 
it has certain limitations. This approach depends on a fixed window 
size that requires predetermined size and step increments, and the 
choice of window size is often somewhat subjective (Vidaurre et al., 
2021). Hidden markov model (HMM) has advantages in modeling 
temporal dependencies and avoiding arbitrary window selection. 
HMM can accurately capture the transient characteristics of brain 
state transitions and identify the dierences in brain networks 
of neuropsychiatric patients with its millisecond time resolution 
(Kottaram et al., 2019; Meer et al., 2020; Javaheripour et al., 
2023), thus providing a new perspective for the explanation of the 
neural mechanisms of neuropsychiatric diseases. For example, Lu 
et al. (2024) demonstrated that disrupted dynamic reorganization 

of the DMN might serve as a critical neural factor in cognitive 
deficits following mild traumatic brain injury. Besides, Zhang et al. 
(2024) found that frontoparietal structural damage exhibited a 
strong connection with the decline of activation of the cognitive 
control network in bipolar disorder. Moreover, Kottaram et al. 
(2019) demonstrated that the degree of positive symptoms in 
individuals with schizophrenia exhibited a connection with the 
enhanced activity in sensory networks and a greater percentage of 
time spent in states with inactive executive networks (ECN) and 
DMN. Vidaurre et al. (2017) observed that brain network dynamics 
are closely related to cognition. Cornblath et al. (2020) found 
that Temporal sequences of brain activity at rest are modulated 
by cognitive demands. These findings provided crucial evidence 
for the deep exploration of the underlying neural mechanisms of 
PSCMD. Therefore, the application of HMM to PSCMD could 
be employed in the identification of key biomarkers related to 
cognitive or motor disorders, thereby providing new insights into 
the optimization of neural regulation strategies. 

In this study, we conducted dynamic brain network analysis 
of resting-state fMRI data from stroke and healthy controls 
(HCs) utilizing HMM methodology to identify varying brain 
states between stroke patients and HCs. We also explored 
dierences in spatiotemporal properties across groups exhibiting 
distinct dysfunctions after stroke. Based on prior findings, we 
inferred that stroke patients would experience alterations in state 
transitions along with specific patterns within their brain networks, 
alongside potential shared and unique changes in spatiotemporal 
characteristics between PSCMD and post-stroke motor dysfunction 
(PSMD) networks. 

2 Materials and methods 

2.1 Participant 

This research recruited 114 patients with motor dysfunction 
after stroke. The inclusion criteria were: (1) diagnosis by CT or 
MRI; (2) first onset of the disease; (3) duration of 2 weeks– 
3 months; (4) lesions confined to a single hemisphere, primarily 
involving the basal ganglia and their adjacent areas; (5) age range 
of 40–75 years old; (6) right-handedness; and (7) stable vital signs 
and clear consciousness. The exclusion criteria were: (1) history of 
stroke; (2) history of neurologic or psychiatric disorders, as well 
as other serious physical diseases; (3) contraindications to MRI 
examination. Based on the exclusion criteria, four patients were 
excluded due to previous neurological or mental disorders, and 
two patients with excessive head movement (translation > 2.5 mm, 
movement > 2.5◦ , or mean FD > 0.5 mm) were also excluded. 
Eventually, 108 patients were incorporated. According to previous 
research suggestions (Pendlebury et al., 2011; Sachdev et al., 2004), 
stroke patients were divided into two subgroups: the patients with 
MMSE score ≥ 26 and MoCA scores ≥ 26were classified as the 
PSCD group (n = 75), while those with MMSE scores < 26 and 
MoCA scores < 26 were classified as the PSCMD group (n = 33). 
Furthermore, 35 healthy individuals who were matched by age 
and gender were recruited in this research (Figure 1). This study 
was approved by the Ethics Committee of the 900 Hospital of 
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FIGURE 1 

Participant recruitment flowchart. 

the People’s Liberation Army Joint Logistics Force (NO. 2015011). 
Every participant provided written informed consent. 

2.2 Clinical assessment 

With the application of the Fugl-Meyer assessment scale 
(FMA), motor function was evaluated in this study (Chen et al., 
2022). Besides, daily life abilities were evaluated using the Modified 
Barthel Index (MBI) (Ohura et al., 2017). The Brief Mental State 
Examination (MMSE) and the Montreal Cognitive Assessment 
(MoCa) were employed in the assessment of cognitive function 
(Folstein et al., 1975; Nasreddine et al., 2005). 

2.3 MRI acquisition 

A 3.0T Siemens Trio scanner (Erlangen, Germany) with a 
12-channel phased-array head coil was employed for the whole-
brain imaging. Participants were positioned supine, and foam 
padding was applied to stabilize the head and minimize the 
motion artifacts. Throughout the scan, subjects were asked to keep 
their eyes closed and stay awake, maintain relaxed breathing, and 
avoid voluntary movements. rs-fMRI and detailed 3D T1-weighted 
structural scans were achieved from all the participants. Gradient-
echo planar imaging was employed in the rs-fMRI protocol, and the 
parameters were set as: repetition time (TR) = 2,000 ms, echo time 
(TE) = 21 ms, 33 contiguous axial slices (4 mm thickness, 0.8 mm 
interslice gap), matrix = 64 × 64, field of view = 240 × 240 mm 2 , 

and a total of 180 volumes were collected over 6 min. 3D T1-
weighted parameters were parameterized as follows: TR = 1,900 ms, 
TE = 2.52 ms, layer thickness = 1 mm, no layer spacing, field of 
view = 240 × 240 mm 2 , matrix = 256 × 256, number of layers = 176. 

2.4 Lesion analysis 

Lesions were meticulously delineated layer by layer on T1-
weighted MR images utilizing MRIcron1 . Subsequently, the regions 
of interest (ROIs) were normalized to the MNI spatial template 
through MR fragment normalization within the SPM8 clinical 
toolbox. Finally, lesion maps from stroke patients were binarized 
and overlaid onto T1-weighted templates in the MRIcron software 
to generate lesion probability maps. We constructed a composite 
ROI by integrating the normalized ROIs and superimposed this 
composite ROI onto the T1-weighted template to illustrate the 
overlapping regions (Figure 2). 

2.5 Data preprocessing 

Before data preprocessing, we flipped the MRI data of patients 
with left-sided lesions from left to right along the midsagittal 
line. DPABI2 was employed for preprocessing by the following 
steps: (1) Transform the initial DICOM file into the 4DNifti 

1 http://www.mccauslandcenter.sc.edu/mricro/mricron 

2 http://rfmri.Org/dpab 
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FIGURE 2 

The overlap map of the lesions across all the stroke patients. Color bar indicates the percentage of the lesion overlap. 

file format; (2) Remove the first 10 time points, alongside the 
concurrent slice-time correction and head motion correction 
on the remaining 170 time points, excluding participants with 
translation > 2.5 mm, movement > 2.5◦ , or mean FD > 0.5 mm; 
(3) Co-register the realigned image with a single 3D T1-weighted 
image to complete the transformation from a single space to the 
standard Montreal Institute of Neuroscience space; (4) Smooth 
on a 6 mm half-height, full-width Gaussian space; (5) Remove 
noise by regression including Friston’s 24 motor parameters, white 
matter, cerebrospinal fluid, and global brain signals; (6) Filter in 
the frequency range of 0.01–0.10 Hz to mitigate the interference 
of high-frequency noise and low-frequency drift on the images. 

2.6 Hidden markov modeling 

Hidden markov model is a markov process with the 
incorporation of hidden states. The changes in brain activity over 
time scales can be explained by a limited number of hidden 
states. Firstly, the AAL90 brain atlas was employed as the later 
observation sequence in the extraction of the time series of the 
subjects after preprocessing. Secondly, 90 ROIs × 170 time-point 
spatio-temporal data were generated for the construction of HMM. 
Subsequently, the HMM-MAR toolbox in MATLAB3 was used to 
define states through multivariate Gaussian distributions (Vidaurre 
et al., 2017). Iterative calculations ranging from 2 to 15 states were 
conducted following a prior study (Moretto et al., 2022). Finally, 
the number of dierent HMM states was evaluated by summarizing 
statistical indicators, which were composed of the minimum free 
energy and the median fraction occupancy. It was found that the 
HMM reached the minimum free energy state when the number of 

3 https://github.com/OHBA-analysis/HMM-MAR 

states was 5, and 5 HMM states were selected for subsequent studies 
(Figures 3A–C). 

2.7 Temporal properties of HMM 

The metrics reflecting temporal brain dynamics were 
examined: (1) FO: the ratio of time that each subject spent in 
a specific state. (2) LT: LT is the stretch that a state lingers before 
shifting into another, which could reflect the stability of the state; 
(3) Switch rate (SR): it is defined as the frequency of transitions 
between dierent states, which could indicate the speed of dynamic 
changes; (4) TP is the key factor of HMM, which represents the 
likelihood of changing from a state to another (Figure 3D). 

2.8 Statistical analysis 

The SPSS 23.0 software (SPSS Inc., Chicago, Illinois, 
United States) was utilized in this study. Continuous variables 
were expressed as mean ± standard deviation (SD), while 
categorical variables were presented as counts. The Shapiro-Wilk 
test was employed in the assessment of the normality of the data. 
Continuous variables were assessed by independent t-tests or 
one-way analysis of variance (ANOVA), while categorical variables 
were analyzed with chi-square tests. A two-tailed t-test was applied 
in the comparison of FO, LT, and SR of HMM status in stroke and 
HCs, as well as PSMD and PSCMD patients. False discovery rate 
(FDR) correction was applied to multiple comparisons. p < 0.05 
threshold was considered to indicate statistical significance. 

A non-parametric permutation test was utilized to compare 
HMM state transition probabilities between stroke patients and 
HCs, as well as PSMD and PSCMD, with the involvement of 
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FIGURE 3 

(A) The brain regions of each subject were segmented into 90 regions of interest with AAL mapping. (B) Time-series data, including 90 areas and 170 
time points were collected for all participants. (C) Five hidden markov model (HMM) states were identified. (D) Four dynamic state metrics [including 
fractional occupancy (FO), lifetime (LT), switch rate (SR), and transition probability (TP)] were evaluated. * represents p < 0.05. 

TABLE 1 Demographic and clinical characteristics. 

Variable PSMD (n = 75) PSCMD (n = 33) HCs (n = 35) P-value 

Age, y, mean (SD) 56.95 ± 1.098 60.21 ± 1.675 57.69 ± 1.321 0.234 

Sex, male, n (%) 55 (73%) 18 (55%) 20 (57%) 0.090 

Stroke duration, d, mean (SD) 33.91 ± 23.29 33.85 ± 20.56 NA 0.990 

Stroke type, ischemia, n (%) 71 (95%) 30 (91%) NA 0.456 

Lesion hemisphere, left, n (%) 42 (56%) 17 (52%) NA 0.666 

FMA, mean (SD) 59.71 ± 25.14 52.48 ± 23.42 NA 0.163 

Barthel, mean (SD) 69.64 ± 19.92 62.24 ± 22.46 NA 0.090 

MMSE, mean (SD) 28.89 ± 1.09 21.91 ± 4.52 NA <0.001 

MoCa, mean (SD) 28.21 ± 1.11 17.30 ± 6.38 NA <0.001 

HCs, healthy controls; PSMD, post-stroke motor dysfunction; PSCMD, post-stroke cognitive and motor dysfunction; M ± SD, mean ± standard deviation. 

5,000 permutations. Moreover, Spearman correlation analysis was 
employed in the evaluation of the connections between HMM 
state-time attributes and FMA and MMSE scores. p < 0.05 
threshold was considered to indicate statistical significance. 

2.9 Verification analysis 

To validate the robustness of the results obtained from the 
HMM approach, we perform a validation analysis using the sliding 
window analysis method and K-means clustering framework. 
Firstly, the dynamic functional network connectivity (FNC) was 
computed using a sliding time window approach with the window 
size set to 22 TR (44s) and a step size of 1 TR. Secondly, a K-means 
clustering algorithm was applied to the windowed FNC matrix to 
extract the same number of states as in the HMM model (K = 5). 

Finally, the temporal properties of the dynamic FNC states were 
extracted to assess the consistency of the population trends. 

3 Results 

3.1 Demographic and clinical data 

A total of 108 ischemic stroke patients and 35 HCs were 
included in this research. Regarding the aspects of age and gender, 
no significant dierences were observed between the stroke patients 
and HCs. In stroke subgroup analysis, the MoCA scores and MMSE 
scores were significantly dierent between PSMD and PSCMD 
(p < 0.05), whereas no dierences could be found in the aspects of 
stroke duration, type, lesion hemisphere, FMA, and MBI (Table 1). 
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FIGURE 4 

Fractional occupancy (FO) and lifetime (LT) in different hidden markov model (HMM) states of the stroke and healthy controls (HCs), as well as 
post-stroke motor dysfunction (PSMD) and post-stroke cognitive and motor dysfunction (PSCMD). Blue represents stroke patients or PSCMD 
patients, and yellow represents HCs or PSMD patients. ∗ p < 0.05. 

3.2 Average functional activity of HMM 
states 

As shown in Figure 3C, State1 is mainly a decrease in activation 
for most regions, but its average functional activity is relatively 
higher than that of state 4. State2 is mainly a relative increase 
in activation for most regions, but its average functional activity 
is relatively lower than state 5. State 3 is mainly characterized 
by relatively decreased activation in most areas, but increased 
activation in the right frontal_mid, right frontal_mid_orb, right 
temporal_sup, right inferior parietal lobule, right coronal gyrus, 
and right anterior cuneus. State4 is primarily a decrease in overall 
regional activation. State5 is primarily an increase in overall 
regional activation. 

3.3 Dynamics of each HMM state 

Compared with HCs, stroke patients exhibited noticeably 
higher FO (t = 2.603, p = 0.018, FDR-corrected) and LT (t = 2.255, 
p = 0.040, FDR-corrected) in State 2, as well as FO (t = 3.025, 

p = 0.008, FDR-corrected) and LT (t = 2.903, p = 0.010, FDR-
corrected) in State 3; whereas FO (t = −4.732, p = 0.0001, FDR-
corrected) and LT (t = −4.175, p = 0.0002, FDR-corrected) in 
State 5 exhibited a significant decreasing trend. Furthermore, it 
was revealed by subgroup analyses that PSCMD patients showed 
significantly higher FO (t = 3.096, p = 0.006, FDR-corrected) and LT 
(t = 2.332, p = 0.022, FDR-corrected) in State 3 than PSMD patients 
(Figure 4). 

3.4 Transition patterns between HMM 
states 

According to the comparison of the transfer patterns of HMM 
states, no significant dierence in SR could be observed (p > 0.05) 
(Figure 5A), which could suggest that stroke patients exhibited 
stable network dynamics (similar to HCs) during resting-state 
scanning. However, the TP of HMM states varied between the 
two groups (Figure 5B). Specifically, compared with HCs, stroke 
patients exhibited a significantly higher transition probability for 
state 1 to state 3, state 2 to states 1–3, state 3 to states 1–3, and state 
4 to state 1 (state 1 to 3: p = 0.011; state 2 to 1: p = 0.031; state 2 
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FIGURE 5 

Variations in state transitions between stroke patients and healthy controls (HCs), as well as between post-stroke motor dysfunction (PSMD) and 
post-stroke cognitive and motor dysfunction (PSCMD) subgroups. (A) Differences in switch rate (SR) between stroke patients and HCs; (B) notable 
shifts in transition probability (TP) between the two groups. Red color indicates a marked increase in stroke patients relative to HCs, while blue color 
denotes a significant decline; (C) contrasts in SR between PSMD and PSCMD patients; (D) distinct changes in TP between PSMD and PSCMD 
patients. Red color indicates a marked increase in PSCMD patients versus PSMD patients, and blue color indicates a significant decrease in PSCMD 
patients versus PSMD patients. ∗ p < 0.05. 

to 2: p = 0.010; state 2 to 3: p = 0.001; state 3 to 1: p = 0.040; state 
3 to 2: p = 0.007; state 3 to 3: p = 0.011; state 4 to 1: p = 0.025). 
Besides, stroke patients exhibited a significantly lower probability 
of transitioning from HMM states 1, 4, and 5 to state 5 (state 1 to 5: 
p = 0.002; state 4 to 5: p = 0.001; state 5 to 5: p = 0.00001). Overall, 
it could be implied by these results that stroke patients exhibited a 
noteworthy pattern of aberrant transitions between HMM states. 

In the stroke subgroup, no discernible variation was observed 
in SR among the HMM statuses (Figure 5C), while significant 
dierences could be found in TP between the PSMD and PSCMD 
groups. Compared with PSMD, patients with PSCMD show 
significantly higher transition probabilities from state 3 and state 5 
to state 3 (state 3 to 3: p = 0.013; state 5 to 3: p = 0.019) (Figure 5D). 

3.5 Brain activation maps of states 

The spatial activation patterns of large-scale whole-brain 
network states were investigated in this study. Compared to stroke 
patients, HCs were mainly characterized by state 5 (Figure 6A). 

State 5 showed that regions with enhanced activation were 
mainly located in the precentral gyrus, the postcentral gyrus, the 
supplementary motor area, the superior frontal gyrus, the middle 
frontal gyrus, the precuneus, the subparietal lobule, the subcortical 
regions (thalamus, caudate nucleus, and nucleus of the bean-shell), 
and the hippocampus. Conversely, areas with weakened brain 
activation were predominantly in the cuneate lobes. 

According to the results, stroke patients were predominantly 
in states 2 and 3 (Figures 6B, C). Specifically, the brain regions 
with enhanced activation in state 2 were mainly composed of 
the precentral gyrus, supplementary motor area, superior frontal 
gyrus, middle frontal gyrus, precuneus, subcortical regions, middle 
occipital gyrus and inferior occipital gyrus, and cuneus, while 
the activation levels were significantly lower than state 5. The 
regions with weakened activation in state 3 were mainly in the 
middle frontal gyrus, superior frontal gyrus, precentral gyrus, left 
supplementary motor area, subcortical regions, middle temporal 
gyrus, inferior temporal gyrus, angular gyrus, middle occipital 
gyrus and inferior occipital gyrus, and insula, whereas those with 
enhanced activation were predominantly in the right superior 
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FIGURE 6 

Spatial activation patterns of hidden markov model (HMM)-derived brain states. (A) Average activation patterns of state 5 mainly triggered by healthy 
controls (HCs). (B) Average activation patterns of state 2 mainly triggered by post-stroke motor dysfunction (PSMD). (C) Average activation patterns 
of state 3 mainly triggered by post-stroke cognitive and motor dysfunction (PSCMD). (D) Fractional occupancy (FO) of HMM state 3 exhibited a 
negative connection with the Montreal Cognitive Assessment (MoCa) scores. 

frontal gyrus, right middle frontal gyrus, right inferior parietal 
lobule, right angular gyrus, and right precuneus. Regarding the 
stroke subgroup analysis, PSMD patients were mainly dominated 
by state 2, while PSCMD patients were mainly dominated by 
state 3. 

3.6 Correlation analysis 

A negative correlation could be found between FO and severity 
of cognitive impairment in state 3 of PSCMD patients (r = −0.389, 
p = 0.025) (Figure 6D), while the temporal dynamic characteristics 
of other states exhibited no significant connections with motor or 
cognitive functions. 

3.7 Validate analysis results 

Sliding window analysis and K-mean clustering were used to 
obtain five states, and between-group dierences in the temporal 
attributes of these states were calculated. We found that stroke 
patients had higher FO in state 3 (t = 2.933, P = 0.010, FDR-
corrected), but shorter FO in state 5 (t = −4.732, P = 0.0001, 
FDR-corrected) compared with HCs. The comparison between 

stroke subgroups showed that the FO of PSCMI patients in state 
3 was higher than that of PSMD patients (t = 2.436, P = 0.017, 
FDR-corrected). In addition, there was no dierence in number 
of transitions between stroke and HCs group as well as the stroke 
subgroup in the analysis (P > 0.05). These are similar to the HMM 
results. However, we did not find a dierence between stroke and 
HCs in state 2 in the validation analysis (Supplementary Figure 1). 

4 Discussion 

According to the evaluation of fMRI data by HMM, five 
states that were characterized by average functional activity and 
functional connectivity were identified. It was found that stroke 
patients exhibited abnormal connectivity and activation of multiple 
brain networks, which could suggest the widespread impairment of 
neural network integration after stroke. Besides, further subgroup 
analyses revealed that patients with PSCMD exhibited low 
activation of sensorimotor networks and higher-order cognitive 
networks, while the right prefrontal parietal network was highly 
activated. These findings suggested heterogeneity in the network 
dynamics of stroke patients with dierent functional disabilities, 
and HMM-derived brain states could be employed for the 
optimization of future neural regulation strategies. 
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According to recent research, fMRI can be utilized in the 
detection of the dynamic reconfiguration of extensive brain activity 
after stroke (Mao et al., 2025; Zhang et al., 2025; Wang X. 
et al., 2024). Notably, it was found that the LT and FO of 
the stroke group were significantly lower in state 5, which was 
characterized by strong intra- and inter-network connections, 
whereas the FO was significantly higher in state 3, which was 
characterized by weaker intra- and inter-network connection 
strengths. This could suggest that stroke patients were more prone 
to staying in a low integration state, which was consistent with 
prior studies based on the sliding window approach (Wang et al., 
2020; Bonkho et al., 2020). Importantly, compared with PSMD, 
PSCMD exhibited higher FO in State 3, which was characterized 
by diminished functional connectivity between the DMN and the 
FPN. Functionally, the FPN was essential for cognitive control 
and task switching, coordinating the allocation of attentional 
resources, while the DMN exhibited a strong connection with the 
primary sensory processing and higher-order cognitive integration. 
Previous studies have demonstrated FPN in subcortical stroke 
patients, alongside the FC reduction in the network of the 
anterior DMN (Wang et al., 2014). Additionally, patients with 
PSCI showed weakened local functional connectivity in cognitive 
networks, including the DMN, and orbitofrontal cortex (Miao 
et al., 2021). Collectively, it could be suggested by these findings 
that the elevated FO in State 3 among PSCMD patients may 
involve impaired frontal-parietal integration and misallocation of 
attentional resources, reflecting diminished integration eÿciency 
of higher-order cognitive networks. In addition, MMSE scores in 
stroke patients exhibited a significantly negative connection with 
FO in state 3, indicating that an increased proportion of time spent 
by patients in this particular state correlates with more pronounced 
impairments in cognitive function. 

The brain is a complex and dynamic system (van der Horn 
et al., 2017; Ahrends et al., 2022), which can support cognitive 
and motor regulatory functions by switching between dierent 
brain states. By analyzing the switching rate of HMM states, we 
found that there was no significant dierence in SR between 
stroke patients and HCs, but there was dierence in TP between 
the two groups. The lack of significant dierence in SR between 
the two groups suggests that the overall frequency of brain state 
transitions after stroke has a certain degree of stability, whereas 
the dierence in TP reflects the reorganization of transfer paths 
between specific states in stroke patients. This may be related 
to the dynamic balance mechanism of the brain. Stroke patients 
may maintain overall stability through healthy-side compensation, 
but damaged networks exhibit altered state preferences. Notably, 
PSCMD patients were more prone to shifting to the weakly 
connected state 3 and staying in this state for a long time, which 
might be attributed to the weakened cognitive flexibility, and 
this should be further investigated in the future to explore its 
application value as a potential biomarker for PSCMD. 

Based on the spatial activation map analysis of comprehensive 
cerebral network states, HCs were mainly characterized by state 
5, showing synergistic positive activation of SMN, DMN, and 
FPN. It could be suggested that HCs exhibited eÿcient integration 
of multiple networks in the resting state. Conversely, a marked 
reduction in the activation of several brain networks was observed 
in stroke patients, which was consistent with prior research findings 
(Zhang, 2025; Chen et al., 2025; Ding et al., 2018). However, it was 

found that PSMD patients exhibited enhanced visual network (VN) 
activation versus HCs. It was indicated that abnormal functional 
connectivity of the VN and diminished cross-network connectivity 
might serve as the explanation for the pathomechanism of the 
defective motor-visual attentional integration after stroke, which 
was critical for the recovery of sensorimotor functions by driving 
neuroplasticity (Zappasodi et al., 2017; Zhao et al., 2018). Based 
on the above findings, it was inferred that VN hyperactivation 
in PSMD patients might reflect a compensatory reorganization 
pattern, which was based on the enhancement of visuomotor 
integration to partially compensate for impaired sensorimotor 
pathways (Zhao et al., 2018). Notably, PSCMD exhibited high 
activation of the right prefrontal-parietal networks, and this 
hyperactivation might be attributed to the network reorganization 
after brain microstructural damage. It has been indicated that the 
application of stimuli into the active large-scale targeted-network 
could enhance the cortical excitability, and it is more favorable 
for functional recovery (Sack et al., 2024). Therefore, the present 
findings not only have significant contributions to the identification 
of neuromarkers of PSCMD, but also have the potential to serve 
as “targets” for the neuromodulation of tDCS or TMS in PSCMD 
patients. 

5 Limitations and future directions 

However, several limitations still exist in this study. First, 
there is an imbalance in the sample size between stroke groups 
and HCs, which may exert a negative eect on the statistical 
validity of the group dierence analysis. Therefore, the sample size 
needs to be enlarged in the future, in order to validate the broad 
applicability of dynamic features. Second, only the cross-sectional 
data were analyzed in the current study, which relatively limited the 
causal inference of the connections between the dynamic evolution 
of brain networks and clinical prognosis. Future studies should 
incorporate longitudinal data tracking neuroplasticity trajectories 
in stroke patients. Explore the integration of HMM or dFNC-
derived dynamic metrics into clinical classifiers or prognostic 
models to assess their translational potential in identifying and 
stratifying PSCMD patients. Third, it’s challenging to figure out 
the best number of HMM states (Stevner et al., 2019; Hutchison 
et al., 2013; Hindriks et al., 2016). Although k = 5 is identified 
as the optimal solution for the current data, transient dynamic 
features specific to stroke may be overlooked. Overall, the increase 
in state numbers could improve the temporal resolution, while it 
was necessary to keep a balance between the model complexity 
and interpretability. Finally, dierences in lesion locations, disease 
duration, and degree of impairment in stroke patients make our 
patient group highly heterogeneous, which may influence our 
interpretation. In the future, more detailed functional evaluations 
should be incorporated to refine each subgroups for further 
research. 

6 Conclusion 

Post-stroke patients exhibited abnormal activation patterns 
and broken functional connectivity across various brain networks, 
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and specific changes were found among dierent subgroups. 
Notably, PSCMD patients demonstrated hypoactivation in 
extensive sensorimotor networks and higher-order cognitive 
networks, but they concurrently exhibited hyperactivation in 
the right prefrontal-parietal networks. Overall, these findings 
provide a basis for the development of brain-state-dependent 
stimulation strategies in neuromodulation interventions for 
stroke rehabilitation. 
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