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Background: Mild cognitive impairment (MCI) exhibits abnormal resting-state 
EEG oscillations in delta (1–4 Hz), theta (4–7 Hz), and alpha (8–13 Hz) bands, 
though findings remain inconsistent. Moreover, dynamic functional connectivity 
(FC) alterations in these bands are poorly understood. To address this, we aimed 
to characterize resting-state EEG oscillations and dynamic FC in these frequency 
bands in MCI.
Method: We recruited 21 MCI and 20 age−/education-matched normal controls 
(NC). Resting-state EEG was recorded for 5 min (eyes-open). We utilized power 
spectral density to investigate abnormalities in neural oscillations, and employed 
the directed transfer function (DTF) to explore dynamic functional connectivity 
(FC) alterations within the delta, alpha, and theta frequency bands 4among two 
groups.
Results: Compared to NC, for neural oscillation, MCI showed significantly 
increased delta oscillation (prefrontal, parietal, temporal, and central regions) 
mainly located in the frontal and parietal lobes, significantly decreased alpha 
oscillation of the entire brain region mainly located in the frontal lobe, and both 
significantly increased and decreased theta oscillation (prefrontal, parietal, and 
occipital lobes) with fewer electrodes. For dynamic brain FC, in the delta band, 
the MCI exhibited significantly enhanced bidirectional FC between the prefrontal 
and parietal lobes, as well as two bottom-up FC from the occipital lobe to the 
central and parietal regions; In the theta band, the MCI showed significant 
enhancement of two FC from the temporal lobe to the frontal lobe, two FC 
from the occipital lobe to the parietal lobe, and one FC from the parietal lobe 
to the frontal lobe; In the alpha band, the MCI had one significantly enhanced 
bottom-up FC from the occipital lobe to the prefrontal lobe.
Conclusion: During the eyes-open resting-state, differences of two groups in 
neural oscillations were primarily observed in the alpha and delta bands. The 
MCI exhibited significantly decreased alpha oscillations in the frontal lobe and 
increased delta oscillations in the frontal and parietal lobes. However, dynamic 
FC differences were most prominent in the delta and theta bands, including 
significantly increased interconnectivity of the prefrontal parietal network and 
significantly increased bottom-up FC. These findings emphasize the necessity 
of comprehensive analysis of local activity and large-scale network dynamics 
in MCI.
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Introduction

Alzheimer’s disease (AD) stands as the primary etiology of dementia, 
accounting for an approximate range of 60–80% of all dementia cases 
(Palmqvist et al., 2025). It causes a gradual decline in cognitive function, 
which in turn leads to a decreased or even lost ability to live 
independently, work, and participate in society (Alzheimer’s Association 
Report, 2023). AD represents a seamless continuum of pathological 
progression, initiating with subtle, asymptomatic biological changes—
such as the accumulation of amyloid-beta (Aβ) plaques—and steadily 
advancing toward overt clinical manifestations. Within this spectrum, 
mild cognitive impairment (MCI) is characterized as the earliest 
identifiable stage marked by quantifiable cognitive deficits, rather than 
merely serving as a transient intermediary between asymptomatic and 
symptomatic phases. At this juncture, individuals with MCI already 
exhibit neuropathological hallmarks of AD, including Aβ plaques and 
neurofibrillary tangles of tau protein, yet their cognitive decline remains 
below the threshold required for a dementia diagnosis (Bruno et al., 
2024; Jack et al., 2024). Although some MCI patients may remain stable 
or even revert to normal cognition, MCI remains a major risk factor for 
AD or other forms of dementia (Jongsiriyanyong and Limpawattana, 
2018). Given that AD currently has no cure, early identification of 
MCI-AD could help mitigate cognitive decline or delay disease 
progression. In cases where active AD pathology is present in MCI, it 
may lead to alterations in cortical dynamics, which could be detected 
through the analysis of neurophysiological data (Das and Puthankattil, 
2020). Therefore, investigating objective and reliable biomarkers to 
identify individuals at high risk of AD conversion represents a promising 
research direction.

Currently, multiple diagnostic systems are employed for MCI 
detection, including neuroimaging, magnetoencephalography (MEG), 
positron emission tomography (PET), cerebrospinal fluid (CSF) and 
blood-based biomarkers (e.g., amyloid-β42/40 ratio, phosphorylated 
tau, and neurofilament light chain). However, due to their high costs 
and invasive nature, the continuous application of neuroimaging 
techniques, MEG, and PET in MCI clinical trials may face 
limitations—particularly in low- and middle-income countries 
(Babiloni et al., 2020a). Furthermore, with the exception of FDG-PET 
as an indirect marker of synaptic integrity, existing biomarkers fail to 
reflect the impact of MCI neuropathology on the neurophysiological 
transmission of neural signals that underpin cognitive processes. To 
address this gap, resting-state electroencephalography (rsEEG) 
rhythm oscillations have emerged as a highly promising alternative. 
rsEEG offers several advantages including non-invasiveness, test–
retest reliability (without practice effects until severe dementia stages), 
cost-effectiveness, and global accessibility based on widely available 
recording technologies (Babiloni et  al., 2020b). It enables the 
investigation of MCI’s effects on ascending activating systems and 
reciprocal thalamocortical circuits, where oscillatory synchronization 
signals across brain regions dynamically regulate cortical arousal 
during quiet vigilance (Rossini et al., 2020; Pfurtscheller, 1989). Such 
phase synchronization/desynchronization of cortical neural activity 
may occur in an interrelated manner across multiple cortical areas, 

governing the transmission and communication of action potentials 
within local and long-range neural networks (de Haan et al., 2009; 
Stam et al., 2007; Pievani et al., 2011). Animal studies have elucidated 
the cellular and molecular basis of sustained EEG activity in cortical 
and subcortical regions (Buzsáki et al., 2013; Crunelli et al., 2015), 
demonstrating that AD neuropathology may lead to neuronal 
disconnectivity, impaired cortico-cortical and cortico-subcortical 
pathways, and myelinated axon loss. These alterations could 
be associated with cortical neuronal hyperexcitability, hypersynchrony, 
as well as reduced neurotransmission, neural signaling, and synaptic 
activity (Ahnaou et  al., 2019; Shah et  al., 2016). EEG devices can 
capture spontaneous rhythmic neural electrical activity. Under 
standard clinical and research conditions, EEG signals are typically 
divided into five typical frequency bands: δ (1–4 Hz), θ (4–7 Hz), α 
(8–13 Hz), β (13–30 Hz), and γ (30–100 Hz). Existing reviews on 
rsEEG studies in MCI and AD indicated that patients exhibit 
abnormalities in posterior α and widespread δ and θ rhythms, 
including deviations in peak frequency, power, and “connectivity,” 
which correlate with disease progression and interventions (Babiloni 
et al., 2021). Despite these conclusive summaries, a significant gap 
remains in applying these frequency-band findings to clinical 
diagnosis and intervention. This stems from heterogeneity in study 
populations, variations in eyes-open vs. eyes-closed resting-state 
paradigms, and methodological inconsistencies. Moreover, 
controversies persist regarding abnormal brain regions across 
frequency bands. For instance, in an European DESCRIPA rsEEG 
study, compared to non-amnestic MCI, preclinical AD without 
amyloid deposition, and age-matched controls, AD-MCI exhibited 
increased fronto-occipital θ and reduced posterior α power (Babiloni 
et al., 2010). Conversely, another study found that AD and AD-MCI, 
relative to controls, displayed higher θ power density in temporal and 
parieto-occipital regions, alongside lower α power density in parieto-
occipital areas and reduced β2 power density in frontal and temporal 
lobes—all linked to cognitive deficits (Roh et al., 2011). Thus, for MCI, 
a frequency-band-specific analysis of abnormal neural oscillations 
across brain regions during the resting state is highly valuable, as it can 
help elucidate some of the existing controversies.

EEG not only captures local neural oscillations but also enables 
the measurement of correlations in neural activity between distinct 
brain regions through sophisticated non-linear dynamic analyses, 
thereby elucidating the brain’s functional integration capacity. Current 
research has demonstrated that MCI is associated with abnormal 
functional integration, conceptualized as a disconnection syndrome, 
suggesting that cognitive impairments may primarily stem from 
disrupted communication between brain regions rather than 
deterioration within discrete neural systems. For instance, task-based 
studies indicate that individuals with MCI exhibit impaired functional 
connectivity between temporal and prefrontal regions during memory 
encoding, accompanied by increased complexity in brain network 
organization, ultimately contributing to memory deficits (Jiang et al., 
2025; Jiang et al., 2024). Review articles further reveal that both AD 
and MCI patients display significant alterations in functional and 
effective connectivity within resting-state brain networks, particularly 
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in the α and θ frequency bands (Paitel et al., 2025). These changes 
reflect diminished network integration capacity and are closely 
associated with cognitive dysfunction. For instance, AD and MCI 
patients exhibit markedly weakened α-band functional connectivity 
(Stam, 2014), while θ-band connectivity more frequently demonstrates 
hyperconnectivity in these populations (Sheline and Raichle, 2013). 
However, existing resting-state studies based on brain network 
analysis report inconsistent findings (Stam et al., 2007; de Haan et al., 
2009; He et al., 2008; Yao et al., 2010; Miraglia et al., 2016; Abazid 
et al., 2021). Most research focuses on α and θ bands, while only a 
limited number of investigations address abnormalities in the brain 
network associated with the δ band. Moreover, conventional analytical 
approaches predominantly employ non-directional, phase-based 
frequency-domain metrics, which primarily reflect temporal 
synchronization of neural population activity between brain regions 
without inferring the causal directionality of information flow (Cohen, 
2014). Current causal analysis methods, also referred to as effective 
connectivity analyses, include granger causality, directed coherence, 
and directional transfer function (DTF). Among these, DTF as a 
frequency-domain effective connectivity analysis method offers 
distinct advantages in frequency specificity, temporal resolution, 
multivariate analysis capability, noise robustness, visualization of 
causal pathways, and relevance to neurophysiological mechanisms 
(Kamiński and Blinowska, 1991; Ding et al., 2000; Kuś et al., 2004; 
Blinowska, 2011). Therefore, DTF-based dynamic network analysis 
across δ, θ, and α frequency bands can reveal abnormal functional 
connectivity patterns in MCI, providing deeper insights into aberrant 
information processing mechanisms within neural networks of AD 
and MCI patients.

Neural oscillations and interregional connectivity exhibited 
distinct characteristics in terms of functional specificity, spatial scale, 
and temporal dynamics across different frequency bands, yet remain 
interconnected through frequency-band coupling and network 
integration to collectively support brain functional networks. Since 
neural oscillations and interregional connectivity are two key 
components, they are both interrelated and distinct. An independent 
analysis of the two would overlook the dynamic interactive nature 
between them. Therefore, it is necessary to establish an integrated 
analytical framework that encompasses neural oscillations across all 
frequency bands in various brain regions, as well as whole-brain 
dynamic network connectivity, to comprehensively understand the 
aberrant patterns in MCI during the resting state. In summary, our 
objectives were: (1) to investigate regional neural oscillation 
abnormalities in δ, θ, and α bands in MCI using resting-state EEG; and 
(2) to examine dynamic network connectivity abnormalities in δ, θ, 
and α bands in MCI through rsEEG dynamic network analysis.

Materials and methods

Participants

Given that MCI is not easily detectable in the community 
environment, this study first conducted a public awareness 
campaign through posters in Min’an Community, Chengdu, 
aiming to enhance residents’ understanding of MCI, and then 
proceeded with the recruitment of participants for the research. 
The assessment scales employed included: the Mini-Mental State 

Examination (MMSE), Montreal Cognitive Assessment (MoCA), 
Subjective Cognitive Decline Self Rating Scale (SCD-21), 
Activities of Daily Living scale (ADL), Geriatric Depression Scale 
(GDS), Generalized Anxiety Disorder scale (GAD), and 
Ischemic Scale.

Given the relatively low sensitivity of the MMSE in detecting MCI, 
particularly among individuals with higher educational attainment 
(Zhang et al., 2021), and considering that all participants in this study 
were recruited from highly educated communities, reliance solely on 
MMSE may result in underdiagnosis of MCI. In our study, an MMSE 
score > 24 can swiftly rule out potential patients with very early-stage 
mild dementia. The MoCA demonstrates superior sensitivity for 
subtle cognitive deficits and is more appropriate for MCI diagnosis 
(Ciesielska et al., 2016; Jia et al., 2021). Combining MMSE and MoCA 
through a dual-threshold strategy (MMSE >24 + MoCA <26) can 
enhance diagnostic accuracy, ensuring enrollment of individuals with 
mild yet measurable cognitive impairment but not meet the dementia 
criteria. Similar criteria have been validated in prior MCI research to 
balance sensitivity and specificity, particularly in highly educated 
populations (Julayanont and Nasreddine, 2017). However, it is 
noteworthy that the diagnosis of MCI generally relies on clinical 
evaluation, neuropsychological testing, as well as reports from patients 
and their caregivers, rather than solely on scores of cognitive 
assessment scale (Petersen et al., 2018; Petersen, 2016).

Inclusion criteria for MCI participants: met the diagnostic 
guidelines of the 2018 Chinese Dementia and Cognitive Impairment 
Diagnosis and Treatment Standards; Self-reported memory 
complaints; MoCA score <26/30 with MMSE score >24; Instrumental 
Activities of Daily Living score >6/8 and ADL = 100; Age 65–75 years; 
No use of anti-Alzheimer’s medications; No history of neurological or 
psychiatric disorders; No history of diabetes mellitus; No history of 
cardiac disease; Compliance with informed consent protocols.

Inclusion criteria for cognitively normal controls (NC): no self-
reported memory complaints; MoCA score >26/30 and MMSE score 
>24; Age 65-75 years; No psychiatric or central nervous system 
disorders; No history of diabetes mellitus; No history of cardiac 
disease; Compliance with informed consent protocols.

Demographic characteristics of 
participants

We enrolled a total of 41 elderly participants from Chengdu’s 
Min’an community, comprising 21 individuals with MCI and 20 
NC. The research protocol was approved by the Ethics Committee of 
West China Medical School, Sichuan University. All participants 
provided written informed consent prior to enrollment. The baseline 
characteristics of participants are presented in Table 1.

EEG data acquisition and pre-processing

The EEG recordings were conducted in an electrically shielded 
room. A NeuroScan system was used to acquire 32-channel EEG 
signals (Electrodes placed according to the international 10–20 
system) at a sampling rate of 250 Hz. During recording, electrode 
impedance was maintained below 10 kΩ. Participants remained 
seated with eyes open in front of a blank computer screen while 
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minimizing movement. Five minutes of resting-state EEG data were 
collected from per participant.

The EEG Data Pre-processing involved the following key steps: 
Average Reference: The raw signals were re-referenced to the common 
average reference. Bandpass filtering: A 1–30 Hz bandpass filter 
(Butterworth, zero-phase) was applied to remove low-frequency drifts 
and high-frequency noise. Independent Component Analysis (ICA): 
Artifact removal was performed using the Infomax algorithm in 
EEGLAB to identify and eliminate noise components (ocular and 
muscular artifacts). Baseline correction and epoch segmentation: The 
continuous 5-min EEG recording was segmented into 60 
non-overlapping 5-s epochs.

Power spectral density analysis

Power Spectral Density (PSD) quantifies the power distribution 
of neural oscillations across frequency bands. Given established 
findings that resting-state EEG activity primarily localizes to δ 
(1–4 Hz), θ (4–7 Hz), and α (8–13 Hz) bands, we computed each 
electrode’s PSD values within these frequency ranges using 
Welch’s method:

	
( ) ( )

2n 1
jwm

l
m 0

1P W m .e
n

−
−

=
= ε∑

	
(1)

where j denotes the imaginary unit, W represents frequency, n 
indexes EEG samples, and x(n) corresponds to each channel’s time 
series. Equation 1 yields PSD values for all channels in δ, θ, and 
α bands.

Dynamic brain network construction

We implemented DTF to model causal brain networks. DTF 
characterizes directional information flow between multichannel 

signals based on Granger causality principles. A 32-channel 
multivariate autoregressive (MVAR) model was constructed:

	 ( ) ( ) ( ) ( ) ( ) = … … 1 , 2 , , , 32X t X t X t Xi t X t 	 (2)

The time series vector X(t) is defined as Equation 2, where Xi 
represents the i_th channel’s time series. The MVAR model is 
expressed as Equation 3:
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Here, An denotes 32 × 32 coefficient matrices, e(t) is white noise, 
and model order p = 2 was determined via Bayesian Information 
Criterion (BIC). Frequency-domain transformation yields Equation 4:
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The normalized DTF is defined as:
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In the Equation 5, γ2ij(f) represents the ratio of the normalized 
influence from channel j to channel i relative to the total influence 
from all channels to channel i. A higher value indicates a stronger 
causal relationship from the source channel j (cause) to the target 
channel i (effect), and vice versa, where k denotes the total number 
of channels.

Non-zero values suggest the existence of causal connectivity between 
channels j and i, though such connectivity may represent spurious 
correlations. To address this, we employed the surrogate data method 
proposed by Kaminski in 1991 to test the significance of effective 
functional connectivity, thereby identifying genuine connections and 
eliminating chance-induced false positives. The core principle of this 
method involves generating an empirical distribution for significance 
testing through the following procedure: First, the EEG signals from each 
channel were phase-randomized to create surrogate datasets. This 
randomization process was repeated 1,000 times to construct a null 
distribution of DTF values. The 950th sorted value (corresponding to the 
95th percentile) served as the significance threshold (α = 0.05). When 
the actual DTF value exceeded this threshold, the causal functional 
connectivity from channel j to i was considered statistically significant 
(DTF > 0). Conversely, functional connectivity below the threshold were 
deemed non-significant (DTF = 0).

For each of frequency bands, we computed 32 × 32 DTF matrices 
where: Nodes represent EEG electrodes edges correspond to 
directional transfer function values between channels DTF_Mean 
denotes the frequency-averaged DTF value across the band of interest. 
As a network metric, DTF_Mean quantitatively characterizes 
connectivity patterns and serves as a direct indicator of causal 
functional connectivity strength within the network.

TABLE 1  Descriptive statistics of the NC group and the MCI group 
represent as mean (SD).

Category NC group 
N = (20)

MCI group 
N = (21)

t/x2 p

Sex Female (N = 12)

Male (N = 8)

Female (N = 15)

Male (N = 6)

0.595 0.44

Age (years) 70.00 (3.39) 70.33 (2.85) 0.444 0.659

Education 

(years)

11.05 (3.63) 9.52 (3.50) 1.369 0.179

MOCA 26.70 (1.38) 19.91 (2.98) 9.284 <0.01*

MMSE 28.05 (1.43) 26.76 (2.02) 2.343 0.024*

SD, standard deviation; NC, cognitively normal elderly; MCI, mild cognitive impairment; 
MOCA, Montreal Cognitive Assessment; MMSE, Mini Mental State Examination. *p < 0.05.
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Statistical analysis

Statistical analyses were performed using SPSS 22.0 software. In 
the analysis of two groups of continuous variables (Age, Education, 
MoCA, MMSE, behavioral measures, PSD, and DTF_Mean values), 
we employed the Shapiro–Wilk test to evaluate the normality of both 
groups and used Levene’s test to determine whether the variances of 
the two groups were equal. When the data met the assumptions of 
normality and homogeneity of variance, independent samples t-tests 
were conducted and Cohen’s d was calculated to quantify the effect 
size of group differences; otherwise, the Mann–Whitney U test was 
applied and Cliff ’s delta was computed to estimate the magnitude of 
distributional difference. For the analysis of two groups of 
non-continuous variables (gender), we employ the chi-square test. 
Pearson correlation analysis was conducted to examine relationships 
between cognitive scale scores and DTF_Mean values. The false 
discovery rate (FDR) correction was applied for multiple comparisons 
of EEG metrics (PSD, and DTF_Mean values). The level of statistical 
significance was set at p < 0.05.

Results

PSD analysis results

The analysis of neural oscillation differences in the δ band between 
groups revealed that the MCI group exhibited significantly decreased 
δ oscillations (p < 0.05) at 1 prefrontal electrode: F7 (effect size: 
−0.23), 1 parietal electrode: CP6 (effect size:-0.44), and 2 occipital 
electrodes: PO3, PO7 (effect size: −0.28; −0.27), totaling 3 brain 
regions (4 electrodes) as shown in Figure 1. Meanwhile, the MCI 
group demonstrated significantly increased δ oscillations (p < 0.05) at 
7 prefrontal electrodes: F8, FP2, AF3, Fz, FC1, FC2, FC5 (effect size:0
.22;0.27;0.21;0.20;0.20;0.21;0.21), 8 parietal electrodes: CP1, CP2, 
CP5, P3, P4, P7, P8, Pz (effect size:0.25;0.29;0.23;0.24;0.31;0.26;0.24;0
.24), 1 temporal electrode: T7 (effect size:0.20), and 2 central 

electrodes: C4, CZ (effect size:0.22;0.20), totaling 4 brain regions (16 
electrodes) as shown in Figure 2.

The intergroup analysis of θ-band neural oscillations 
demonstrated that the MCI group showed significantly decreased θ 
oscillations (p < 0.05) at 2 prefrontal electrodes: F7, AF4 (effect size: 
−0.22; −0.24), 1 parietal electrode: CP6 (effect size:-0.44), and 2 
occipital electrodes: PO3, PO7 (effect size: −0.31; −0.33), totaling 3 
brain regions (5 electrodes) as shown in Figure 3. Meanwhile, the MCI 
group exhibited significantly increased θ oscillations (p < 0.05) at 3 
prefrontal electrodes: F8, FP2, AF3 (effect size: 0.25; 0.37;0.27), 2 
parietal electrodes: CP1, P4 (effect size: 0.34; 0.33), and 1 occipital 
electrode: PO8 (effect size: 0.25), totaling 3 brain regions (6 electrodes) 
as shown in Figure 4.

The intergroup analysis of α-band neural oscillations revealed that 
the MCI group displayed significantly decreased α oscillations 
(p < 0.05) at 8 prefrontal electrodes: F7, F3, Fz, FC1, FC2, FC5, FC6, 
AF4 (effect size: −0.31; −0.21; −0.31; −0.34; −0.23; −0.21; −0.28; 
−0.31), 3 parietal electrodes: CP6, CP5, P8 (effect size: −036; −0.29; 
−0.34), 1 temporal electrode: T7 (effect size: −0.25), 2 central 
electrodes: C3, C4 (effect size: −0.23; −0.32), and 2 occipital 
electrodes: PO3, PO7 (effect size: −0.24; −0.33), totaling 5 brain 
regions (16 electrodes) as shown in Figure 5. Meanwhile, the MCI 
group showed significantly increased α oscillations (p < 0.05) at only 
2 prefrontal electrodes: F8, FP2 (effect size: 0.29; 0.24), 2 parietal 
electrodes: CP1, P4 (effect size: 0.29; 0.21), and 1 occipital electrode: 
PO8 (effect size: 0.37), totaling 3 brain regions (5 electrodes), as shown 
in Figure 6.

Results of resting-state dynamic network 
analysis

Intergroup analysis of resting-state dynamic 
network patterns

Functional connectivity and network topology between brain 
regions reflect information transfer and integration, representing the 

FIGURE 1

Statistical analysis of δ oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b) 
Statistics on the numbers of electrodes with significant differences based on brain regions. NC > MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O, 
occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.
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overall functional integration of the brain. Analysis of dynamic 
resting-state brain networks helps further explain the differences 
between local neural oscillations in brain regions and interregional 
functional connectivity. The intergroup analysis of δ-band dynamic 
network connectivity showed that the MCI group had significantly 
reduced prefrontal (AF3) to prefrontal (AF4) functional connectivity 
(number = 1, p  < 0.05,effect size: −0.70), as shown in Figure  7. 
Meanwhile, the MCI group exhibited significantly enhanced top-down 
prefrontal (Fz, F8) to parietal (P3) functional connectivity 
(number = 2, p < 0.05, d = 0.76; effect size: 0.69), bottom-up parietal 
(CP5) to prefrontal (FP2, F3) functional connectivity (number = 2, 
p < 0.05, effect size: 1.06; 0.67), parietal (P3) to central (C3) functional 
connectivity (number = 1, p < 0.05, effect size: 0.68), and bottom-up 
occipital (PO3) to prefrontal (F7), central (C4), and parietal (CP5) 

functional connectivity (number = 3, p < 0.05, effect size: 0.75; 0.80; 
0.82), as shown in Figure 8.

Analysis of θ-band dynamic network connectivity differences 
between groups revealed that the MCI group showed significantly 
reduced top-down functional connectivity from prefrontal FC6 to 
parietal P8 (number = 1, p < 0.05, effect size: −0.69), as shown in 
Figure  9. Meanwhile, the MCI group demonstrated significantly 
enhanced top-down temporal T8 to prefrontal AF4/F4 functional 
connectivity (number = 2, p < 0.05, effect size: 0.67; −0.69), occipital 
PO3 to parietal P3/CP5 functional connectivity (number = 2, p < 0.05, 
effect size: 0.68; −0.76), bottom-up parietal CP5 to prefrontal FP2 
functional connectivity (number = 1, p < 0.05, effect size: 0.72), and 
prefrontal F8 to F7 functional connectivity (number = 1, p < 0.05, 
effect size:0.69), as shown in Figure 10.

FIGURE 2

Statistical analysis of δ oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b) 
Statistics on the numbers of electrodes with significant differences based on brain regions. NC < MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O, 
occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.

FIGURE 3

Statistical analysis of θ oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b) 
Statistics on the numbers of electrodes with significant differences based on brain regions. NC > MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O, 
occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.
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Analysis of α-band dynamic network connectivity revealed no 
significantly reduced functional connectivity in the MCI group 
(p > 0.05). However, the MCI group exhibited significantly enhanced 
bottom-up occipital (Oz) to prefrontal (FP2, F8, FC6, P7) functional 
connectivity (number = 4, p < 0.05, effect size: 0.66; 0.82; 0.64; 0.67) 
and bottom-up occipital (Oz) to parietal (CP5, CP2) functional 
connectivity (number = 2, p < 0.05, effect size: 0.72; 0.74), as shown in 
Figure 11.

Correlation analysis between resting-state 
dynamic network connectivity and MoCA

To explore the heterogeneity sources of these abnormal 
connectivity patterns and their associations with behavioral 
performance, we  further analyzed the correlations between 
significantly different brain functional connectivity and MoCA 

scores. In the δ band, correlation analysis revealed MoCA scores 
showed a correlation coefficient of (r = 0.28, p = 0.0738) with the 
prefrontal-to-prefrontal functional connectivity (AF3 >> AF4); 
correlation coefficients of (r = −0.40, p = 0.0088) and (r = −0.28, 
p = 0.0760) with the two top-down prefrontal-to-parietal functional 
connectivity (Fz >> P3, F8 >> P3); correlation coefficients of 
(r = −0.40, p = 0.0104) and (r = −0.19, p = 0.2279) with the two 
bottom-up parietal-to-prefrontal functional connectivity 
(CP5 >> FP2, CP5 >> F3); a correlation coefficient of (r = −0.27, 
p = 0.0918) with the bottom-up parietal-to-central functional 
connectivity (P3 >> C3); and correlation coefficients of (r = −0.22, 
p = 0.1610), (r = −0.36, p = 0.0225), and (r = −0.40, p = 0.0092) with 
the three bottom-up occipital-to-prefrontal/central/parietal 
functional connectivity (PO3 >> F7, PO3 >> C4, PO3 >> CP5), as 
shown in Figure 12.

FIGURE 4

Statistical analysis of θ oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b) 
Statistics on the numbers of electrodes with significant differences based on brain regions. NC < MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O, 
occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.

FIGURE 5

Statistical analysis of α oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b) 
Statistics on the numbers of electrodes with significant differences based on brain regions. NC > MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O, 
occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.
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In the θ band, correlation analysis revealed MoCA scores 
showed a correlation coefficient of (r = −0.30, p = 0.0611) with 
the prefrontal-to-prefrontal functional connectivity (F8 >> F7); a 
correlation coefficient of (r = 0.25, p = 0.114) with the top-down 
prefrontal-to-parietal functional connectivity (FC6 >> P8); 
correlation coefficient of (r = −0.45, p = 0.0028) and (r = −0.39, 
p = 0.0116) with the two bottom-up temporal-to-prefrontal 
functional connectivity (T8 >> AF4, T8 >> F4); correlation 
coefficient of (r = −0.43, p = 0.0055) and (r = −0.35, p = 0.0262) 
with the two bottom-up occipital-to-parietal functional 
connectivity (PO3 >> CP5, PO3 >> P3); and a correlation 
coefficient of (r = −0.33, p = 0.0366) with the bottom-up parietal-
to-prefrontal functional connectivity (CP5 >> FP2), as shown in 
Figure 13.

In the α band, correlation analysis revealed MoCA scores showed 
correlation coefficient of (r = −0.23, p = 0.1432), (r = −0.37, 
p = 0.0178) and (r = −0.29, p = 0.0659) with the three bottom-up 
occipital-to-prefrontal functional connectivity (Oz >> FP2, Oz >> F8, 
Oz >> FC6); and correlation coefficient of (r = −0.24, p = 0.1262), 
(r = −0.24, p = 0.1312) and (r = −0.22, p = 0.1678) with the three 
bottom-up occipital-to-parietal functional connectivity (Oz >> CP5, 
Oz >> CP2, Oz >> P7), as shown in Figure 14.

Discussion

To our knowledge, this was the first study integrating neural 
oscillations and dynamic functional brain network findings across 

FIGURE 6

Statistical analysis of α oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b) 
Statistics on the numbers of electrodes with significant differences based on brain regions. NC < MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O, 
occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.

FIGURE 7

Statistical analysis of δ-band dynamic network connectivity between NC and MCI. The i-axis and j-axis represent 32 EEG electrodes respectively, with 
functional connectivity directed from j to i (NC > MCI, p < 0.05, FDR-corrected).
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three primary frequency bands (δ, θ, α) using PSD and causal dynamic 
network analysis methods based on resting-state EEG data from MCI 
and NC. The study revealed abnormal electrophysiological 
characteristics in the resting-state EEG of MCI patients, uncovering 
the electrophysiological mechanisms underlying cognitive decline in 
MCI. Firstly, we discovered that the neural oscillation abnormalities 
and brain network connectivity abnormalities in the brain regions of 
MCI were distributed in different frequency bands. Second, our results 
revealed localized abnormalities in neural oscillations within specific 
brain regions, coupled with frequency-dependent alterations in 
dynamic functional connectivity in MCI patients.

Our study demonstrated that MCI exhibits significant differences 
in δ, θ, and α band distributions across brain regions, primarily 
characterized by widespread δ oscillation enhancement and α 
oscillation reduction, while θ band differences were observed in 
fewer electrodes.

The resting state δ oscillations

δ oscillations during resting state are typically associated with 
deep rest and sleep states, reflecting a “shutdown” state of the brain. 
During wakefulness, the presence of δ oscillations may be related to 
attentional lapses or cognitive decline. In our study, a notable increase 
in delta oscillations among individuals with MCI was primarily 
observed in the prefrontal and parietal regions (mid-forebrain areas), 
while such an increase was absent in posterior regions like the 
occipital lobe, which is consistent with previous research (Babiloni 
et al., 2013b; Jelic et al., 2000). Interestingly, however, there was a 
significant decrease in delta oscillations at two electrodes (PO3, PO4) 
located in the occipital lobe. The prefrontal cortex and parietal cortex 
(particularly the posterior parietal cortex) play crucial roles in 
cognitive functions such as working memory, attention, and spatial 
processing. Increased δ waves in frontal and parietal regions may 

FIGURE 8

Statistical analysis of δ-band dynamic network connectivity between NC and MCI groups. The i-axis and j-axis represent 32 EEG electrodes 
respectively, with functional connectivity directed from j to i (NC < MCI, p < 0.05, FDR-corrected).

FIGURE 9

Statistical analysis of θ-band dynamic network connectivity between NC and MCI. The i-axis and j-axis represent 32 EEG electrodes respectively, with 
functional connectivity directed from j to i (NC > MCI, p < 0.05, FDR-corrected).
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result from abnormal local neuronal synchronization, potentially 
caused by amyloid deposition or neurofibrillary tangles (hallmark 
pathologies of AD) that disrupt excitatory/inhibitory balance. For 
MCI patients, it’s possible that these changes are linked to early 
neurodegenerative processes and subsequently result in functional 
connectivity abnormalities in these important prefrontal–parietal 
regions. The significant attenuation of δ oscillations in the occipital 
lobe (across fewer electrodes) in MCI presents an intriguing contrast 
to the anterior enhancement. Current limited research indicates that 
patients with AD exhibit enhanced δ oscillations in the occipital lobe 
during the advanced stages of the disease, which runs counter to our 
findings (Babiloni et  al., 2013a). The occipital lobe, primarily 
responsible for visual information processing including primary visual 
cortex (V1) and higher visual areas (Murray et  al., 2016). The 
attenuation of δ oscillations in the occipital lobe may be associated 

with attentional distraction or cognitive decline, as evidenced by early 
impairments in visual-related cognitive tasks (such as visual memory) 
in MCI (Jiang et al., 2024). Furthermore, this could be attributed to 
the fact that during the MCI stage, while large-scale neuronal death 
may not have occurred yet, a decline in synaptic plasticity may lead to 
the suppression of low-frequency activity. Nevertheless, our results 
should still be interpreted with caution, as the significant attenuation 
of delta oscillations is currently observed only at a limited number 
of electrodes.

The resting state α oscillations

The α oscillations are considered the dominant resting rhythm 
in awake adults, associated with intelligence, cognition, and 

FIGURE 10

Statistical analysis of θ-band dynamic network connectivity between NC and MCI. The i-axis and j-axis represent 32 EEG electrodes respectively, with 
functional connectivity directed from j to i (NC < MCI, p < 0.05, FDR-corrected).

FIGURE 11

Statistical analysis of α-band dynamic network connectivity between NC and MCI. The i-axis and j-axis represent 32 EEG electrodes respectively, with 
functional connectivity directed from j to i (NC < MCI, p < 0.05, FDR-corrected).
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memory (Klimesch, 1999). Our study found widespread α 
reduction in MCI patients’ resting-state EEG, particularly in 
frontal regions, aligning with some previous research (Chae et al., 
2020). However, recent studies linking resting-state EEG α 
rhythms with CSF tau biomarkers reported significantly decreased 
α source activity in parietal, temporal, and occipital regions in 

AD-MCI compared to healthy controls and non-AD MCI groups, 
showing strong negative correlations between CSF phosphorylated 
tau/total tau levels and posterior α source activity, with weaker 
correlations to amyloid-β42 levels (Seidu et  al., 2024). The 
discrepancy with our findings of globally reduced α oscillations 
(predominantly prefrontal) may stem from methodological 

FIGURE 12

Correlation analysis results between significantly difference brain functional connectivity and MoCA scores in δ-band. (a) Correlation between MoCA 
scores and the prefrontal → prefrontal functional connectivity (AF3> > AF4). (b) Correlations between MoCA scores and two prefrontal → parietal 
functional connectivity (top: Fz> > P3; bottom: F8> > P3). (c) Correlations between MoCA scores and two parietal → prefrontal functional connectivity 
(top: CP5 >> FP2; bottom: CP5 >> F3). (d) Correlation between MoCA scores and the parietal → central functional connectivity (P3 >> C3). (e) 
Correlations between MoCA scores and occipital → prefrontal/central/parietal functional connectivity (top-left: PO3 >> F7; bottom-left: PO3 >> C4; 
top-right: PO3 >> CP5).
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FIGURE 13

Correlation analysis results between significantly difference brain functional connectivity and MoCA scores in θ-band. (a) Correlation between MoCA 
scores and the prefrontal → prefrontal functional connectivity (F8 >> F7). (b) Correlation between MoCA scores and the prefrontal → parietal functional 
connectivity (FC6 >> P8). (c) Correlations between MoCA scores and two temporal → prefrontal functional connectivity (top: T8 >> AF4; bottom: 
T8 >> F4). (d) Correlations between MoCA scores and two occipital → parietal functional connectivity (top: PO3 >> CP5; bottom: PO3 >> P3).  
(e) Correlation between MoCA scores and the parietal → prefrontal functional connectivity (CP5 >> FP2).

FIGURE 14

Correlation analysis results between significantly difference brain functional connectivity and MoCA scores in α-band. (a) Correlations between MoCA 
scores and three occipital → prefrontal functional connectivity (Oz >> FP2, Oz >> F8, Oz >> FC6). (b) Correlations between MoCA scores and three 
occipital → parietal functional connectivity (Oz >> CP5, Oz >> CP2, Oz >> P7).
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differences: we  collected eyes-open resting-state EEG data, 
whereas those studies used eyes-closed paradigms. α oscillations 
are predominantly linked to general attentional processes. The 
distinct topographical patterns, characterized by a reduction in 
prefrontal α activity during the eyes-open resting state and a 
decline in posterior α activity during the eyes-closed resting state, 
may serve as indicators of state-dependent pathological features 
in individuals with MCI. Specifically, in the eyes-open condition, 
the prefrontal cortex employs an α-mediated inhibitory 
mechanism to actively filter out irrelevant visual stimuli (Jensen 
et al., 2014). In our study, the notable reduction in prefrontal α 
activity potentially indicates a marked deterioration in the 
capacity of MCI patients to inhibit distracting information. It is 
hypothesized that this heightened vulnerability to interference 
plays a role in the documented decline in cognitive control and 
memory deficits observed among elderly individuals who do not 
have cognitive impairment (Voytek and Knight, 2010). 
Nevertheless, another plausible interpretation is that this 
reduction in prefrontal α during the eyes-open state might be an 
outward sign of overactive compensatory processes occurring 
within the prefrontal cortex. For example, in a resting-state 
magnetic resonance imaging study that compared the default 
mode network (DMN) activity between patients with amnestic 
MCI (aMCI) and healthy elderly individuals, it was found that 
compared with healthy elderly people, patients with aMCI 
exhibited increased activity in the left prefrontal cortex, the 
inferior parietal lobule, and the middle temporal gyrus (Qi et al., 
2010). This enhanced activity may reflect a compensatory 
mechanism in the prefrontal cortex aimed at making up for the 
functional impairment of the DMN. Since α waves are typically 
associated with DMN activity during the resting state, and during 
task-related states, the prefrontal cortex needs to suppress α waves 
to activate the working memory network.

The resting state θ oscillations

Resting-state θ oscillations reflect the neural activity characteristics 
of the brain in a task-free state and are closely associated with memory 
encoding, attention regulation, emotional processing, and neural 
network integration. In our study, both groups showed significant θ 
oscillation abnormalities in the prefrontal, parietal, and occipital 
lobes, though the extent was less widespread compared to δ and α 
oscillations. This may be because θ oscillations are more strongly 
linked to task-related states, where their abnormalities are typically 
more pronounced—such as in task-related cognitive functions like 
working memory and attention (Ryan et al., 2021). Additionally, θ 
oscillation abnormalities are often concentrated in memory- and 
attention-related brain regions (e.g., prefrontal cortex and 
hippocampus) (Hasselmo and Stern, 2014), whereas δ and α 
oscillation abnormalities may involve broader areas (e.g., default mode 
network-related regions) (Sadaghiani et al., 2010; Steriade et al., 1993). 
The widespread enhancement of δ oscillations in the prefrontal and 
parietal lobes, coupled with the synchronous reduction of α 
oscillations in the prefrontal lobe, may reflect both pathological 
compensation and dysregulation of neuronal activity related 
to neurodegeneration.

The δ band functional connectivity

The next issue pertains to differences in network connectivity 
across frequency bands. In our study, under resting-state conditions, 
the neural oscillation differences in MCI were distinct from the 
network connectivity differences. While neural oscillation 
abnormalities primarily appeared in the δ and α bands, network 
connectivity differences were most prominent in the δ and θ bands. 
In the δ band, MCI exhibited significantly enhanced reciprocal 
functional connectivity between the prefrontal and parietal lobes, as 
well as strengthened bottom-up functional connectivity from the 
occipital lobe to the central and parietal regions. Existing studies have 
yielded heterogeneous results: two studies reported significantly 
reduced frontal–parietal δ-band functional connectivity in MCI 
(López et  al., 2014; Moretti et  al., 2008), one found weakened 
prefrontal-temporal δ-band functional connectivity (Tóth et al., 2014), 
while another observed enhanced prefrontal-temporal δ-band 
functional connectivity (Handayani et al., 2018). The frontoparietal 
network (FPN) is critical for endogenous attention regulation, 
cognitive resource allocation, and dynamic network switching (Spreng 
et al., 2010; Cole et al., 2013). The observed enhancement of δ-band 
functional connectivity within the frontoparietal network in patients 
with MCI may suggest functional compensation—an adaptive 
adjustment to meet cognitive resource demands (Babiloni et al., 2016). 
However, in the absence of direct behavioral associations (such as task 
performance indicators) or longitudinal data tracking connectivity 
over time, this explanation remains speculative. Alternatively, it may 
stem from neurotransmitter alterations (e.g., reduced acetylcholine 
leading to decreased cortical excitability and reliance on slower-wave 
synchronization) (Johansson et al., 2013). Future research needs to 
incorporate behavioral assessments and longitudinal designs to clarify 
these mechanisms and identify the adaptive or non-adaptive nature of 
such connectivity changes. The occipital lobe is central to visual 
processing, the central region to sensorimotor integration, and the 
parietal lobe to spatial attention, working memory, and sensory 
integration. The significantly enhanced bottom-up occipital-to-
central/parietal δ-band functional connectivity in MCI. It may reflect 
abnormal allocation of spatial or attentional resources during rest. 
This bottom-up pattern suggests that MCI patients excessively rely on 
low-frequency oscillations for visual/sensory processing during rest 
(Wang et al., 2007), and this reliance is potentially linked to attention 
deficits, memory decline, and impaired executive function (Spironelli 
and Angrilli, 2009), making it a possible marker of early 
cognitive deterioration.

The θ band functional connectivity

Dynamic brain network analysis in θ-band revealed significantly 
enhanced bottom-up functional connectivity including temporal-to-
prefrontal, occipital-to-parietal, and parietal-to-prefrontal pathways 
in MCI. Among prior θ-band resting-state EEG studies, one aligned 
with our findings (López et al., 2014), reporting enhanced prefrontal-
occipital θ-band functional connectivity. While others showed 
weakened frontal-occipital (Akrofi et  al., 2009), weakened 
frontoparietal (Tóth et al., 2014), or widespread reductions in frontal-
occipital, frontal-temporal, frontoparietal, and temporoparietal 
functional connectivity (Youssef et  al., 2021). Previous research 
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findings have shown contradictory results. Moreover, most of the 
aforementioned studies utilized data obtained during eyes-closed 
resting state. And none of them employed causal inference methods, 
thus lacking information on the dynamic flow between brain regions. 
Consequently, it is difficult to make a relatively objective comparison. 
θ-band temporal-prefrontal functional connectivity supports memory 
retrieval and episodic memory integration. Its enhancement in MCI 
may reflect compensatory efforts to maintain cognitive function via 
strengthened information transfer, possibly due to hippocampal 
atrophy or synaptic plasticity decline necessitating stronger oscillatory 
synchronization (Shankar et  al., 2008). Occipital-parietal θ-band 
functional connectivity typically coordinates visuospatial tasks. Its 
increase in MCI may reflect patients’ over-reliance on visual 
information processing, or the parietal lobe’s attempt to compensate 
for insufficient cognitive resources by increasing synchrony with the 
sensory cortex. This may be potentially related to dysfunction of the 
posterior DMN, which leads to a shift of attention from internally 
oriented states to external stimuli (Greicius et al., 2004; Minoshima 
et  al., 1997). Parietal-prefrontal θ-band functional connectivity 
underlies goal-directed behavior and cognitive flexibility. Its 
enhancement in MCI may reflect prefrontal over-regulation of sensory 
input to offset declining processing speed, possibly due to reduced 
prefrontal metabolism or dopamine imbalance (Bäckman et al., 2006). 
θ rhythms depend on precise cholinergic and GABAergic modulation 
(Jiménez-Balado and Eich, 2021), and degeneration in these systems 
in MCI may disrupt inter-regional functional connectivity. These 
widely enhanced bottom-up functional connectivity in MCI suggests 
MCI may rely more on primary sensory (e.g., occipital) input during 
rest, with weakened top-down control from higher-order cognitive 
regions (e.g., prefrontal).

The α band functional connectivity

Compared to the δ and θ frequency bands, the two groups showed 
smaller yet notable differences in the α frequency band. Specifically, 
the MCI group exhibited significantly enhanced bottom-up functional 
connectivity from the occipital lobe to the prefrontal lobe. This 
contrasts with two prior resting-state studies reporting weakened 
occipital-prefrontal α connectivity in MCI (López et  al., 2014; 
Handayani et  al., 2018), likely due to their use of eyes-closed 
paradigms and differing network methodologies. As α oscillations are 
attention-related, the bottom-up occipital-prefrontal flow in MCI may 
indicate greater dependence on visual input to sustain cognition 
during rest, reflecting aberrant oscillatory patterns contributing to 
cognitive decline.

The limitations

Our study aimed to identify abnormal rhythms and network 
features characterizing MCI via resting-state EEG analysis, 
offering insights for future research. However, limitations exist: 
(1) MCI progression is fluctuating—longitudinal analyses would 
better capture EEG dynamics; (2) the sample size of this study is 
relatively small. Although this sample size is sufficient to identify 
EEG abnormalities with significant effects, it may limit the 
statistical power for detecting subtle EEG changes and EEG 

differences. Therefore, the sample size should be  expanded in 
future research to ensure the stability and reproducibility of the 
results. (3) Although our study identified widespread EEG 
abnormalities in MCI patients, their clinical heterogeneity 
warrants emphasis: current diagnostic criteria classify MCI into 
four core subtypes (single-domain amnestic, multi-domain 
amnestic, single-domain non-amnestic, and multi-domain 
non-amnestic) that differ significantly in neuropathological 
mechanisms, cognitive impairment patterns, and disease 
progression risks. Notably, this study’s lack of subtype 
stratification may have obscured critical differences in EEG 
findings—for instance, reduced prefrontal alpha power could 
reflect compensatory neural activation secondary to hippocampal 
dysfunction in MCI, whereas in non-aMCI, this pattern might 
indicate direct impairment of executive control networks. 
Therefore, future research should prioritize larger sample sizes 
with rigorous MCI subtype classification to clarify subtype-
specific EEG signatures and their associations with distinct 
cognitive deficits. (4) Different pre-processing procedures (such 
as artifact removal and filter settings), as well as network analysis 
methods (such as insufficient interpretability and lack of 
standardization), can all lead to variations in results. Although 
we employed rigorous pre-processing and False Discovery Rate 
(FDR) correction to minimize bias, residual confounding effects 
are still difficult to completely eliminate due to the limitation of 
the small sample size. Moreover, as mentioned above, volume 
conduction and DTF limitations may introduce spurious 
connectivity estimates, highlighting the need for more advanced 
analytical techniques in future research. (5) While cognitive 
screening tools are valuable for initial assessment and have been 
widely used in clinical and research settings, relying solely on 
these methods may limit the diagnostic specificity for 
MCI. Neuroimaging and biomarker assessments (e.g., Tau protein 
and Amyloid deposition) offer more objective and sensitive 
measures that can enhance diagnostic accuracy by providing 
insights into underlying neuropathological changes associated 
with MCI and its progression to dementia. The absence of these 
confirmatory tests in our study increases the potential risk of 
misclassification. We recognize this limitation and suggest that 
future studies should consider integrating neuroimaging and 
biomarker data to improve the reliability and validity of MCI 
diagnoses. (6) Despite the use of reasonable statistical methods, 
the small sample size inherently restricts the generalizability of 
the results and increases the risk of Type I/Type II errors. Future 
research should prioritize the use of larger datasets and 
incorporate machine learning/deep learning techniques to 
construct more robust and reproducible network 
analysis procedures.

Conclusion

In the resting state with open eyes, the difference in neural 
oscillations between MCI and NC mainly occurred in the δ and α 
frequency bands, manifested as a decrease the frontal lobe of α 
oscillations and an increase the frontal lobe and parietal lobe of δ 
oscillations. However, the main differences in dynamic functional 
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connectivity were in the δ and θ frequency bands. MCI exhibits 
significantly enhanced functional connectivity between the frontal 
and parietal lobes, as well as brain functional connectivity between the 
central and parietal lobes of the occipital lobe from bottom to top in 
the δ frequency bands. For the θ frequency band, MCI significantly 
enhances network connectivity between the temporal lobe and frontal 
lobe from bottom to top, occipital lobe and parietal lobe from top to 
bottom. The abnormal neural oscillations and integration between 
brain regions in MCI, as well as the inconsistency in frequency bands 
and brain regions, further indicate that the neural oscillations and 
functional integration of brain regions are both related and different.
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