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Background: Mild cognitive impairment (MCI) exhibits abnormal resting-state
EEG oscillations in delta (1-4 Hz), theta (4-7 Hz), and alpha (8—-13 Hz) bands,
though findings remain inconsistent. Moreover, dynamic functional connectivity
(FC) alterations in these bands are poorly understood. To address this, we aimed
to characterize resting-state EEG oscillations and dynamic FC in these frequency
bands in MCI.

Method: We recruited 21 MCl and 20 age—/education-matched normal controls
(NC). Resting-state EEG was recorded for 5 min (eyes-open). We utilized power
spectral density to investigate abnormalities in neural oscillations, and employed
the directed transfer function (DTF) to explore dynamic functional connectivity
(FC) alterations within the delta, alpha, and theta frequency bands 4among two
groups.

Results: Compared to NC, for neural oscillation, MCl showed significantly
increased delta oscillation (prefrontal, parietal, temporal, and central regions)
mainly located in the frontal and parietal lobes, significantly decreased alpha
oscillation of the entire brain region mainly located in the frontal lobe, and both
significantly increased and decreased theta oscillation (prefrontal, parietal, and
occipital lobes) with fewer electrodes. For dynamic brain FC, in the delta band,
the MCl exhibited significantly enhanced bidirectional FC between the prefrontal
and parietal lobes, as well as two bottom-up FC from the occipital lobe to the
central and parietal regions; In the theta band, the MCI showed significant
enhancement of two FC from the temporal lobe to the frontal lobe, two FC
from the occipital lobe to the parietal lobe, and one FC from the parietal lobe
to the frontal lobe; In the alpha band, the MCI had one significantly enhanced
bottom-up FC from the occipital lobe to the prefrontal lobe.

Conclusion: During the eyes-open resting-state, differences of two groups in
neural oscillations were primarily observed in the alpha and delta bands. The
MCI exhibited significantly decreased alpha oscillations in the frontal lobe and
increased delta oscillations in the frontal and parietal lobes. However, dynamic
FC differences were most prominent in the delta and theta bands, including
significantly increased interconnectivity of the prefrontal parietal network and
significantly increased bottom-up FC. These findings emphasize the necessity
of comprehensive analysis of local activity and large-scale network dynamics
in MCI.
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Introduction

Alzheimer’s disease (AD) stands as the primary etiology of dementia,
accounting for an approximate range of 60-80% of all dementia cases
(Palmqvist et al.,, 2025). It causes a gradual decline in cognitive function,
which in turn leads to a decreased or even lost ability to live
independently, work, and participate in society (Alzheimer’s Association
Report, 2023). AD represents a seamless continuum of pathological
progression, initiating with subtle, asymptomatic biological changes—
such as the accumulation of amyloid-beta (Af) plaques—and steadily
advancing toward overt clinical manifestations. Within this spectrum,
mild cognitive impairment (MCI) is characterized as the earliest
identifiable stage marked by quantifiable cognitive deficits, rather than
merely serving as a transient intermediary between asymptomatic and
symptomatic phases. At this juncture, individuals with MCI already
exhibit neuropathological hallmarks of AD, including Ap plaques and
neurofibrillary tangles of tau protein, yet their cognitive decline remains
below the threshold required for a dementia diagnosis (Bruno et al.,
20245 Jack et al,, 2024). Although some MCI patients may remain stable
or even revert to normal cognition, MCI remains a major risk factor for
AD or other forms of dementia (Jongsiriyanyong and Limpawattana,
2018). Given that AD currently has no cure, early identification of
MCI-AD could help mitigate cognitive decline or delay disease
progression. In cases where active AD pathology is present in MCI, it
may lead to alterations in cortical dynamics, which could be detected
through the analysis of neurophysiological data (Das and Puthankattil,
2020). Therefore, investigating objective and reliable biomarkers to
identify individuals at high risk of AD conversion represents a promising
research direction.

Currently, multiple diagnostic systems are employed for MCI
detection, including neuroimaging, magnetoencephalography (MEG),
positron emission tomography (PET), cerebrospinal fluid (CSF) and
blood-based biomarkers (e.g., amyloid-p42/40 ratio, phosphorylated
tau, and neurofilament light chain). However, due to their high costs
and invasive nature, the continuous application of neuroimaging
techniques, MEG, and PET in MCI clinical trials may face
limitations—particularly in low- and middle-income countries
(Babiloni et al., 2020a). Furthermore, with the exception of FDG-PET
as an indirect marker of synaptic integrity, existing biomarkers fail to
reflect the impact of MCI neuropathology on the neurophysiological
transmission of neural signals that underpin cognitive processes. To
address this gap, resting-state electroencephalography (rsEEG)
rhythm oscillations have emerged as a highly promising alternative.
rsEEG offers several advantages including non-invasiveness, test—
retest reliability (without practice effects until severe dementia stages),
cost-effectiveness, and global accessibility based on widely available
recording technologies (Babiloni et al, 2020b). It enables the
investigation of MCT’s effects on ascending activating systems and
reciprocal thalamocortical circuits, where oscillatory synchronization
signals across brain regions dynamically regulate cortical arousal
during quiet vigilance (Rossini et al., 2020; Pfurtscheller, 1989). Such
phase synchronization/desynchronization of cortical neural activity
may occur in an interrelated manner across multiple cortical areas,

Frontiers in Aging Neuroscience

governing the transmission and communication of action potentials
within local and long-range neural networks (de Haan et al., 2009;
Stam et al., 2007; Pievani et al., 2011). Animal studies have elucidated
the cellular and molecular basis of sustained EEG activity in cortical
and subcortical regions (Buzsaki et al., 2013; Crunelli et al,, 2015),
demonstrating that AD neuropathology may lead to neuronal
disconnectivity, impaired cortico-cortical and cortico-subcortical
pathways, and myelinated axon loss. These alterations could
be associated with cortical neuronal hyperexcitability, hypersynchrony,
as well as reduced neurotransmission, neural signaling, and synaptic
activity (Ahnaou et al., 2019; Shah et al., 2016). EEG devices can
capture spontaneous rhythmic neural electrical activity. Under
standard clinical and research conditions, EEG signals are typically
divided into five typical frequency bands: 6 (1-4 Hz), 6 (4-7 Hz), a
(8-13 Hz), f (13-30 Hz), and y (30-100 Hz). Existing reviews on
rsEEG studies in MCI and AD indicated that patients exhibit
abnormalities in posterior a and widespread & and 6 rhythms,
including deviations in peak frequency, power, and “connectivity;,”
which correlate with disease progression and interventions (Babiloni
et al., 2021). Despite these conclusive summaries, a significant gap
remains in applying these frequency-band findings to clinical
diagnosis and intervention. This stems from heterogeneity in study
populations, variations in eyes-open vs. eyes-closed resting-state
paradigms, and methodological inconsistencies. Moreover,
controversies persist regarding abnormal brain regions across
frequency bands. For instance, in an European DESCRIPA rsEEG
study, compared to non-amnestic MCI, preclinical AD without
amyloid deposition, and age-matched controls, AD-MCI exhibited
increased fronto-occipital 8 and reduced posterior a power (Babiloni
etal., 2010). Conversely, another study found that AD and AD-MCI,
relative to controls, displayed higher 6 power density in temporal and
parieto-occipital regions, alongside lower o power density in parieto-
occipital areas and reduced p2 power density in frontal and temporal
lobes—all linked to cognitive deficits (Roh et al., 2011). Thus, for MCI,
a frequency-band-specific analysis of abnormal neural oscillations
across brain regions during the resting state is highly valuable, as it can
help elucidate some of the existing controversies.

EEG not only captures local neural oscillations but also enables
the measurement of correlations in neural activity between distinct
brain regions through sophisticated non-linear dynamic analyses,
thereby elucidating the brain’s functional integration capacity. Current
research has demonstrated that MCI is associated with abnormal
functional integration, conceptualized as a disconnection syndrome,
suggesting that cognitive impairments may primarily stem from
disrupted communication between brain regions rather than
deterioration within discrete neural systems. For instance, task-based
studies indicate that individuals with MCI exhibit impaired functional
connectivity between temporal and prefrontal regions during memory
encoding, accompanied by increased complexity in brain network
organization, ultimately contributing to memory deficits (Jiang et al.,
2025; Jiang et al., 2024). Review articles further reveal that both AD
and MCI patients display significant alterations in functional and
effective connectivity within resting-state brain networks, particularly
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in the a and @ frequency bands (Paitel et al., 2025). These changes
reflect diminished network integration capacity and are closely
associated with cognitive dysfunction. For instance, AD and MCI
patients exhibit markedly weakened a-band functional connectivity
(Stam, 2014), while 6-band connectivity more frequently demonstrates
hyperconnectivity in these populations (Sheline and Raichle, 2013).
However, existing resting-state studies based on brain network
analysis report inconsistent findings (Stam et al., 2007; de Haan et al.,
2009; He et al,, 2008; Yao et al., 2010; Miraglia et al., 2016; Abazid
et al., 2021). Most research focuses on o and 6 bands, while only a
limited number of investigations address abnormalities in the brain
network associated with the § band. Moreover, conventional analytical
approaches predominantly employ non-directional, phase-based
frequency-domain metrics, which primarily reflect temporal
synchronization of neural population activity between brain regions
without inferring the causal directionality of information flow (Cohen,
2014). Current causal analysis methods, also referred to as effective
connectivity analyses, include granger causality, directed coherence,
and directional transfer function (DTF). Among these, DTF as a
frequency-domain effective connectivity analysis method offers
distinct advantages in frequency specificity, temporal resolution,
multivariate analysis capability, noise robustness, visualization of
causal pathways, and relevance to neurophysiological mechanisms
(Kaminski and Blinowska, 1991; Ding et al., 2000; Kus et al., 2004;
Blinowska, 2011). Therefore, DTF-based dynamic network analysis
across 6, 0, and «a frequency bands can reveal abnormal functional
connectivity patterns in MCI, providing deeper insights into aberrant
information processing mechanisms within neural networks of AD
and MCI patients.

Neural oscillations and interregional connectivity exhibited
distinct characteristics in terms of functional specificity, spatial scale,
and temporal dynamics across different frequency bands, yet remain
interconnected through frequency-band coupling and network
integration to collectively support brain functional networks. Since
neural oscillations and interregional connectivity are two key
components, they are both interrelated and distinct. An independent
analysis of the two would overlook the dynamic interactive nature
between them. Therefore, it is necessary to establish an integrated
analytical framework that encompasses neural oscillations across all
frequency bands in various brain regions, as well as whole-brain
dynamic network connectivity, to comprehensively understand the
aberrant patterns in MCI during the resting state. In summary, our
objectives were: (1) to investigate regional neural oscillation
abnormalities in 8, 6, and @ bands in MCI using resting-state EEG; and
(2) to examine dynamic network connectivity abnormalities in 8, 6,
and o bands in MCI through rsEEG dynamic network analysis.

Materials and methods
Participants

Given that MCI is not easily detectable in the community
environment, this study first conducted a public awareness
campaign through posters in Minan Community, Chengdu,
aiming to enhance residents’ understanding of MCI, and then
proceeded with the recruitment of participants for the research.
The assessment scales employed included: the Mini-Mental State
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Examination (MMSE), Montreal Cognitive Assessment (MoCA),
Subjective Cognitive Decline Self Rating Scale (SCD-21),
Activities of Daily Living scale (ADL), Geriatric Depression Scale
(GDS), Generalized Anxiety Disorder scale (GAD), and
Ischemic Scale.

Given the relatively low sensitivity of the MMSE in detecting MCI,
particularly among individuals with higher educational attainment
(Zhang et al., 2021), and considering that all participants in this study
were recruited from highly educated communities, reliance solely on
MMSE may result in underdiagnosis of MCI. In our study, an MMSE
score > 24 can swiftly rule out potential patients with very early-stage
mild dementia. The MoCA demonstrates superior sensitivity for
subtle cognitive deficits and is more appropriate for MCI diagnosis
(Ciesielska et al., 2016; Jia et al., 2021). Combining MMSE and MoCA
through a dual-threshold strategy (MMSE >24 + MoCA <26) can
enhance diagnostic accuracy, ensuring enrollment of individuals with
mild yet measurable cognitive impairment but not meet the dementia
criteria. Similar criteria have been validated in prior MCI research to
balance sensitivity and specificity, particularly in highly educated
populations (Julayanont and Nasreddine, 2017). However, it is
noteworthy that the diagnosis of MCI generally relies on clinical
evaluation, neuropsychological testing, as well as reports from patients
and their caregivers, rather than solely on scores of cognitive
assessment scale (Petersen et al., 2018; Petersen, 2016).

Inclusion criteria for MCI participants: met the diagnostic
guidelines of the 2018 Chinese Dementia and Cognitive Impairment
Diagnosis and Treatment Standards; Self-reported memory
complaints; MoCA score <26/30 with MMSE score >24; Instrumental
Activities of Daily Living score >6/8 and ADL = 100; Age 65-75 years;
No use of anti-Alzheimer’s medications; No history of neurological or
psychiatric disorders; No history of diabetes mellitus; No history of
cardiac disease; Compliance with informed consent protocols.

Inclusion criteria for cognitively normal controls (NC): no self-
reported memory complaints; MoCA score >26/30 and MMSE score
>24; Age 65-75 years; No psychiatric or central nervous system
disorders; No history of diabetes mellitus; No history of cardiac
disease; Compliance with informed consent protocols.

Demographic characteristics of
participants

We enrolled a total of 41 elderly participants from Chengdu’s
Minan community, comprising 21 individuals with MCI and 20
NC. The research protocol was approved by the Ethics Committee of
West China Medical School, Sichuan University. All participants
provided written informed consent prior to enrollment. The baseline
characteristics of participants are presented in Table 1.

EEG data acquisition and pre-processing

The EEG recordings were conducted in an electrically shielded
room. A NeuroScan system was used to acquire 32-channel EEG
signals (Electrodes placed according to the international 10-20
system) at a sampling rate of 250 Hz. During recording, electrode
impedance was maintained below 10 kQ. Participants remained
seated with eyes open in front of a blank computer screen while
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TABLE 1 Descriptive statistics of the NC group and the MCI group
represent as mean (SD).

Category NCgroup MCI group t/x? p
N = (20) N = (21)

Sex Female (N=12) = Female (N = 15) 0.595 0.44
Male (N = 8) Male (N = 6)

Age (years) 70.00 (3.39) 70.33 (2.85) 0.444 0.659

Education 11.05 (3.63) 9.52 (3.50) 1.369 0.179

(years)

MOCA 26.70 (1.38) 19.91 (2.98) 9.284 <0.01%

MMSE 28.05 (1.43) 26.76 (2.02) 2.343 0.024*

SD, standard deviation; NC, cognitively normal elderly; MCI, mild cognitive impairment;
MOCA, Montreal Cognitive Assessment; MMSE, Mini Mental State Examination. *p < 0.05.

minimizing movement. Five minutes of resting-state EEG data were
collected from per participant.

The EEG Data Pre-processing involved the following key steps:
Average Reference: The raw signals were re-referenced to the common
average reference. Bandpass filtering: A 1-30 Hz bandpass filter
(Butterworth, zero-phase) was applied to remove low-frequency drifts
and high-frequency noise. Independent Component Analysis (ICA):
Artifact removal was performed using the Infomax algorithm in
EEGLAB to identify and eliminate noise components (ocular and
muscular artifacts). Baseline correction and epoch segmentation: The
continuous 5-min EEG recording was segmented into 60
non-overlapping 5-s epochs.

Power spectral density analysis

Power Spectral Density (PSD) quantifies the power distribution
of neural oscillations across frequency bands. Given established
findings that resting-state EEG activity primarily localizes to &
(1-4 Hz), 6 (4-7 Hz), and «a (8-13 Hz) bands, we computed each
electrodes PSD values within these frequency ranges using
Welchs method:

1)

where j denotes the imaginary unit, W represents frequency, n
indexes EEG samples, and x(n) corresponds to each channel’s time
series. Equation 1 yields PSD values for all channels in §, 6, and
a bands.

Dynamic brain network construction

We implemented DTF to model causal brain networks. DTF
characterizes directional information flow between multichannel
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signals based on Granger causality principles. A 32-channel
multivariate autoregressive (MVAR) model was constructed:

X(t)=[ X (t).X2(t),...

Xi(t)....X32(t) ] ©)

The time series vector X(t) is defined as Equation 2, where X;
represents the i_th channel’s time series. The MVAR model is
expressed as Equation 3:

X(t)= S AnX(t-n)+e(t) )

n=1

Here, A, denotes 32 x 32 coefficient matrices, e(t) is white noise,
and model order p =2 was determined via Bayesian Information
Criterion (BIC). Frequency-domain transformation yields Equation 4:

X(f)=AT(f)e(f)=H(f)e(f) (@)

The normalized DTF is defined as:

()= ()13 Him (1) 5)

In the Equation 5, y*j(f) represents the ratio of the normalized
influence from channel j to channel i relative to the total influence
from all channels to channel i. A higher value indicates a stronger
causal relationship from the source channel j (cause) to the target
channel i (effect), and vice versa, where k denotes the total number
of channels.

Non-zero values suggest the existence of causal connectivity between
channels j and i, though such connectivity may represent spurious
correlations. To address this, we employed the surrogate data method
proposed by Kaminski in 1991 to test the significance of effective
functional connectivity, thereby identifying genuine connections and
eliminating chance-induced false positives. The core principle of this
method involves generating an empirical distribution for significance
testing through the following procedure: First, the EEG signals from each
channel were phase-randomized to create surrogate datasets. This
randomization process was repeated 1,000 times to construct a null
distribution of DTF values. The 950th sorted value (corresponding to the
95th percentile) served as the significance threshold (a = 0.05). When
the actual DTF value exceeded this threshold, the causal functional
connectivity from channel j to i was considered statistically significant
(DTF > 0). Conversely, functional connectivity below the threshold were
deemed non-significant (DTF = 0).

For each of frequency bands, we computed 32 x 32 DTF matrices
where: Nodes represent EEG electrodes edges correspond to
directional transfer function values between channels DTF_Mean
denotes the frequency-averaged DTF value across the band of interest.
As a network metricc, DTF_Mean quantitatively characterizes
connectivity patterns and serves as a direct indicator of causal
functional connectivity strength within the network.
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Statistical analysis

Statistical analyses were performed using SPSS 22.0 software. In
the analysis of two groups of continuous variables (Age, Education,
MoCA, MMSE, behavioral measures, PSD, and DTF_Mean values),
we employed the Shapiro-Wilk test to evaluate the normality of both
groups and used Levenes test to determine whether the variances of
the two groups were equal. When the data met the assumptions of
normality and homogeneity of variance, independent samples t-tests
were conducted and Cohen’s d was calculated to quantify the effect
size of group differences; otherwise, the Mann-Whitney U test was
applied and Cliff’s delta was computed to estimate the magnitude of
distributional difference. For the analysis of two groups of
non-continuous variables (gender), we employ the chi-square test.
Pearson correlation analysis was conducted to examine relationships
between cognitive scale scores and DTF_Mean values. The false
discovery rate (FDR) correction was applied for multiple comparisons
of EEG metrics (PSD, and DTF_Mean values). The level of statistical
significance was set at p < 0.05.

Results
PSD analysis results

The analysis of neural oscillation differences in the § band between
groups revealed that the MCI group exhibited significantly decreased
§ oscillations (p < 0.05) at 1 prefrontal electrode: F7 (effect size:
—0.23), 1 parietal electrode: CP6 (effect size:-0.44), and 2 occipital
electrodes: PO3, PO7 (effect size: —0.28; —0.27), totaling 3 brain
regions (4 electrodes) as shown in Figure 1. Meanwhile, the MCI
group demonstrated significantly increased 8 oscillations (p < 0.05) at
7 prefrontal electrodes: F8, FP2, AF3, Fz, FC1, FC2, FC5 (effect size:0
.22;0.27;0.21;0.20;0.20;0.21;0.21), 8 parietal electrodes: CP1, CP2,
CP5, P3, P4, P7, P8, Pz (effect size:0.25;0.29;0.23;0.24;0.31;0.26;0.24;0
.24), 1 temporal electrode: T7 (effect size:0.20), and 2 central

10.3389/fnagi.2025.1640966

electrodes: C4, CZ (effect size:0.22;0.20), totaling 4 brain regions (16
electrodes) as shown in Figure 2.

The
demonstrated that the MCI group showed significantly decreased 0
oscillations (p < 0.05) at 2 prefrontal electrodes: F7, AF4 (effect size:
—0.22; —0.24), 1 parietal electrode: CP6 (effect size:-0.44), and 2
occipital electrodes: PO3, PO7 (effect size: —0.31; —0.33), totaling 3
brain regions (5 electrodes) as shown in Figure 3. Meanwhile, the MCI

intergroup analysis of 6@-band neural oscillations

group exhibited significantly increased 0 oscillations (p < 0.05) at 3
prefrontal electrodes: F8, FP2, AF3 (effect size: 0.25; 0.37;0.27), 2
parietal electrodes: CP1, P4 (effect size: 0.34; 0.33), and 1 occipital
electrode: PO8 (effect size: 0.25), totaling 3 brain regions (6 electrodes)
as shown in Figure 4.

The intergroup analysis of a-band neural oscillations revealed that
the MCI group displayed significantly decreased a oscillations
(p < 0.05) at 8 prefrontal electrodes: F7, F3, Fz, FC1, FC2, FC5, FC6,
AF4 (effect size: —0.31; —0.21; —0.31; —0.34; —0.23; —0.21; —0.28;
—0.31), 3 parietal electrodes: CP6, CP5, P8 (effect size: —036; —0.29;
—0.34), 1 temporal electrode: T7 (effect size: —0.25), 2 central
electrodes: C3, C4 (effect size: —0.23; —0.32), and 2 occipital
electrodes: PO3, PO7 (effect size: —0.24; —0.33), totaling 5 brain
regions (16 electrodes) as shown in Figure 5. Meanwhile, the MCI
group showed significantly increased o oscillations (p < 0.05) at only
2 prefrontal electrodes: F8, FP2 (effect size: 0.29; 0.24), 2 parietal
electrodes: CP1, P4 (effect size: 0.29; 0.21), and 1 occipital electrode:
POB8 (effect size: 0.37), totaling 3 brain regions (5 electrodes), as shown
in Figure 6.

Results of resting-state dynamic network
analysis

Intergroup analysis of resting-state dynamic
network patterns

Functional connectivity and network topology between brain
regions reflect information transfer and integration, representing the

NC>MCI 1-4Hz

(a)

FIGURE 1

occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.

Statistical analysis of § oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b)
Statistics on the numbers of electrodes with significant differences based on brain regions. NC > MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O,

The number of electrodes with significant
differences in each brain region

1.5
1
0.5
0
F P T C (o]
B Number

(b)
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NC<MCI 1-4Hz

(a)

FIGURE 2

occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.

The number of electrodes with significant
differences in each brain region

II-I
£k P T C

B Number

AN 0

O R N WMWN

(b)

Statistical analysis of & oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b)
Statistics on the numbers of electrodes with significant differences based on brain regions. NC < MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O,

NC>MCI 4-7Hz

(a)

FIGURE 3

occipital lobe; P, parietal lobe; T, temporal lobe; C, central district.

The number of electrodes with significant
differences in each brain region

2.5

2
15
1
0.5 I
0
F P T

B Number

(b)

Statistical analysis of 8 oscillation distribution between NC and MCI. (a) Distribution of electrodes with significant differences in brain regions. (b)
Statistics on the numbers of electrodes with significant differences based on brain regions. NC > MCI. (p < 0.05) (FDR corrected). F, frontal lobe; O,

overall functional integration of the brain. Analysis of dynamic
resting-state brain networks helps further explain the differences
between local neural oscillations in brain regions and interregional
functional connectivity. The intergroup analysis of §-band dynamic
network connectivity showed that the MCI group had significantly
reduced prefrontal (AF3) to prefrontal (AF4) functional connectivity
(number =1, p <0.05,effect size: —0.70), as shown in Figure 7.
Meanwhile, the MCI group exhibited significantly enhanced top-down
prefrontal (Fz, F8) to parietal (P3) functional connectivity
(number = 2, p < 0.05, d = 0.76; effect size: 0.69), bottom-up parietal
(CP5) to prefrontal (FP2, F3) functional connectivity (number = 2,
P < 0.05, effect size: 1.06; 0.67), parietal (P3) to central (C3) functional
connectivity (number = 1, p < 0.05, effect size: 0.68), and bottom-up
occipital (PO3) to prefrontal (F7), central (C4), and parietal (CP5)
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functional connectivity (number = 3, p < 0.05, effect size: 0.75; 0.80;
0.82), as shown in Figure 8.

Analysis of 6-band dynamic network connectivity differences
between groups revealed that the MCI group showed significantly
reduced top-down functional connectivity from prefrontal FC6 to
parietal P8 (number = 1, p < 0.05, effect size: —0.69), as shown in
Figure 9. Meanwhile, the MCI group demonstrated significantly
enhanced top-down temporal T8 to prefrontal AF4/F4 functional
connectivity (number = 2, p < 0.05, effect size: 0.67; —0.69), occipital
PO3 to parietal P3/CP5 functional connectivity (number = 2, p < 0.05,
effect size: 0.68; —0.76), bottom-up parietal CP5 to prefrontal FP2
functional connectivity (number = 1, p < 0.05, effect size: 0.72), and
prefrontal F8 to F7 functional connectivity (number = 1, p < 0.05,
effect size:0.69), as shown in Figure 10.
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Analysis of a-band dynamic network connectivity revealed no
significantly reduced functional connectivity in the MCI group
(p > 0.05). However, the MCI group exhibited significantly enhanced
bottom-up occipital (Oz) to prefrontal (FP2, F8, FC6, P7) functional
connectivity (number = 4, p < 0.05, effect size: 0.66; 0.82; 0.64; 0.67)
and bottom-up occipital (Oz) to parietal (CP5, CP2) functional
connectivity (number = 2, p < 0.05, effect size: 0.72; 0.74), as shown in
Figure 11.

Correlation analysis between resting-state
dynamic network connectivity and MoCA

To explore the heterogeneity sources of these abnormal
connectivity patterns and their associations with behavioral
performance, we further analyzed the correlations between
significantly different brain functional connectivity and MoCA

Frontiers in Aging Neuroscience

scores. In the § band, correlation analysis revealed MoCA scores
showed a correlation coefficient of (r = 0.28, p = 0.0738) with the
prefrontal-to-prefrontal functional connectivity (AF3 >> AF4);
correlation coefficients of (r=—0.40, p = 0.0088) and (r = —0.28,
p =0.0760) with the two top-down prefrontal-to-parietal functional
connectivity (Fz>>P3, F8>>P3); correlation coefficients of
(r=-0.40, p=0.0104) and (r=—0.19, p =0.2279) with the two
bottom-up  parietal-to-prefrontal ~ functional  connectivity
(CP5 >> FP2, CP5 >> F3); a correlation coefficient of (r = —0.27,
p=0.0918) with the bottom-up parietal-to-central functional
connectivity (P3 >> C3); and correlation coefficients of (r = —0.22,
p=0.1610), (r = —0.36, p = 0.0225), and (r = —0.40, p = 0.0092) with
the three bottom-up occipital-to-prefrontal/central/parietal
functional connectivity (PO3 >> F7, PO3 >> C4, PO3 >> CP5), as
shown in Figure 12.
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Statistical analysis of 8-band dynamic network connectivity between NC and MCI. The i-axis and j-axis represent 32 EEG electrodes respectively, with
functional connectivity directed fromj to i (NC > MCI, p < 0.05, FDR-corrected).

AF3—>AF4

In the € band, correlation analysis revealed MoCA scores
showed a correlation coefficient of (r = —0.30, p = 0.0611) with
the prefrontal-to-prefrontal functional connectivity (F8 >> F7); a
correlation coefficient of (r = 0.25, p = 0.114) with the top-down
prefrontal-to-parietal functional connectivity (FC6 >> P8);
correlation coefficient of (r = —0.45, p = 0.0028) and (r = —0.39,
p=0.0116) with the two bottom-up temporal-to-prefrontal
functional connectivity (T8 >> AF4, T8 >> F4); correlation
coefficient of (r = —0.43, p = 0.0055) and (r = —0.35, p = 0.0262)
with the two bottom-up occipital-to-parietal functional
connectivity (PO3 >>CP5, PO3 >>P3); and a correlation
coefficient of (r = —0.33, p = 0.0366) with the bottom-up parietal-
to-prefrontal functional connectivity (CP5 >> FP2), as shown in
Figure 13.
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In the a band, correlation analysis revealed MoCA scores showed
correlation coefficient of (r=-0.23, p=0.1432), (r=-0.37,
p=0.0178) and (r=—0.29, p = 0.0659) with the three bottom-up
occipital-to-prefrontal functional connectivity (Oz >> FP2, Oz >> F8,
Oz >> FC6); and correlation coefficient of (r=—0.24, p = 0.1262),
(r=-0.24, p=0.1312) and (r = —0.22, p = 0.1678) with the three
bottom-up occipital-to-parietal functional connectivity (Oz >> CP5,
Oz >> CP2, Oz >> P7), as shown in Figure 14.

Discussion

To our knowledge, this was the first study integrating neural
oscillations and dynamic functional brain network findings across
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Statistical analysis of 0-band dynamic network connectivity between NC and MCI. The i-axis and j-axis represent 32 EEG electrodes respectively, with
functional connectivity directed fromj to i (NC > MCI, p < 0.05, FDR-corrected).

three primary frequency bands (6, 6, «) using PSD and causal dynamic
network analysis methods based on resting-state EEG data from MCI
and NC. The study revealed abnormal -electrophysiological
characteristics in the resting-state EEG of MCI patients, uncovering
the electrophysiological mechanisms underlying cognitive decline in
MCI. Firstly, we discovered that the neural oscillation abnormalities
and brain network connectivity abnormalities in the brain regions of
MCI were distributed in different frequency bands. Second, our results
revealed localized abnormalities in neural oscillations within specific
brain regions, coupled with frequency-dependent alterations in
dynamic functional connectivity in MCI patients.

Our study demonstrated that MCI exhibits significant differences
in 8, 0, and o band distributions across brain regions, primarily
characterized by widespread & oscillation enhancement and o
oscillation reduction, while © band differences were observed in
fewer electrodes.
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The resting state 5 oscillations

d oscillations during resting state are typically associated with
deep rest and sleep states, reflecting a “shutdown” state of the brain.
During wakefulness, the presence of § oscillations may be related to
attentional lapses or cognitive decline. In our study, a notable increase
in delta oscillations among individuals with MCI was primarily
observed in the prefrontal and parietal regions (mid-forebrain areas),
while such an increase was absent in posterior regions like the
occipital lobe, which is consistent with previous research (Babiloni
et al., 2013b; Jelic et al., 2000). Interestingly, however, there was a
significant decrease in delta oscillations at two electrodes (PO3, PO4)
located in the occipital lobe. The prefrontal cortex and parietal cortex
(particularly the posterior parietal cortex) play crucial roles in
cognitive functions such as working memory, attention, and spatial
processing. Increased & waves in frontal and parietal regions may

09 frontiersin.org


https://doi.org/10.3389/fnagi.2025.1640966
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

Jiang et al. 10.3389/fnagi.2025.1640966
p
T8—>AF4
0.035
72 . F8—>F7 PO3—>P3
0.03
0025 PO3—>CP3§
0.02 " ?
FC2 s
0.02 0.01
b 0.015 0
@ 7]
- 0.01 20
cP2 8
y 0.005
R P@,‘m%‘ i 30 5 j
oz 0
FIGURE 10

Statistical analysis of 6-band dynamic network connectivity between NC and MCI. The j-axis and j-axis represent 32 EEG electrodes respectively, with
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Statistical analysis of a-band dynamic network connectivity between NC and MCI. The j-axis and j-axis represent 32 EEG electrodes respectively, with
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result from abnormal local neuronal synchronization, potentially
caused by amyloid deposition or neurofibrillary tangles (hallmark
pathologies of AD) that disrupt excitatory/inhibitory balance. For
MCI patients, it’s possible that these changes are linked to early
neurodegenerative processes and subsequently result in functional
connectivity abnormalities in these important prefrontal-parietal
regions. The significant attenuation of 8 oscillations in the occipital
lobe (across fewer electrodes) in MCI presents an intriguing contrast
to the anterior enhancement. Current limited research indicates that
patients with AD exhibit enhanced § oscillations in the occipital lobe
during the advanced stages of the disease, which runs counter to our
findings (Babiloni et al, 2013a). The occipital lobe, primarily
responsible for visual information processing including primary visual
cortex (V1) and higher visual areas (Murray et al, 2016). The
attenuation of d oscillations in the occipital lobe may be associated

Frontiers in Aging Neuroscience

with attentional distraction or cognitive decline, as evidenced by early
impairments in visual-related cognitive tasks (such as visual memory)
in MCI (Jiang et al., 2024). Furthermore, this could be attributed to
the fact that during the MCI stage, while large-scale neuronal death
may not have occurred yet, a decline in synaptic plasticity may lead to
the suppression of low-frequency activity. Nevertheless, our results
should still be interpreted with caution, as the significant attenuation
of delta oscillations is currently observed only at a limited number
of electrodes.

The resting state « oscillations

The a oscillations are considered the dominant resting rhythm
in awake adults, associated with intelligence, cognition, and
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Correlation analysis results between significantly difference brain functional connectivity and MoCA scores in 8-band. (a) Correlation between MoCA
scores and the prefrontal — prefrontal functional connectivity (AF3> > AF4). (b) Correlations between MoCA scores and two prefrontal — parietal
functional connectivity (top: Fz> > P3; bottom: F8> > P3). (c) Correlations between MoCA scores and two parietal — prefrontal functional connectivity
(top: CP5 >> FP2; bottom: CP5 >> F3). (d) Correlation between MoCA scores and the parietal — central functional connectivity (P3 >> C3). (e)
Correlations between MoCA scores and occipital — prefrontal/central/parietal functional connectivity (top-left: PO3 >> F7; bottom-left: PO3 >> C4;

memory (Klimesch, 1999). Our study found widespread «
reduction in MCI patients’ resting-state EEG, particularly in
frontal regions, aligning with some previous research (Chae et al.,
2020). However, recent studies linking resting-state EEG o
rhythms with CSF tau biomarkers reported significantly decreased
a source activity in parietal, temporal, and occipital regions in
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AD-MCI compared to healthy controls and non-AD MCI groups,
showing strong negative correlations between CSF phosphorylated
tau/total tau levels and posterior a source activity, with weaker
correlations to amyloid-B42 levels (Seidu et al, 2024). The
discrepancy with our findings of globally reduced a oscillations
(predominantly prefrontal) may stem from methodological
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Correlation analysis results between significantly difference brain functional connectivity and MoCA scores in 6-band. (a) Correlation between MoCA
scores and the prefrontal — prefrontal functional connectivity (F8 >> F7). (b) Correlation between MoCA scores and the prefrontal — parietal functional
connectivity (FC6 >> P8). (c) Correlations between MoCA scores and two temporal — prefrontal functional connectivity (top: T8 >> AF4; bottom:
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Correlation analysis results between significantly difference brain functional connectivity and MoCA scores in a-band. (a) Correlations between MoCA
scores and three occipital — prefrontal functional connectivity (Oz >> FP2, Oz >> F8, Oz >> FC6). (b) Correlations between MoCA scores and three
occipital — parietal functional connectivity (Oz >> CP5, Oz >> CP2, Oz >> P7).
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differences: we collected eyes-open resting-state EEG data,
whereas those studies used eyes-closed paradigms. a oscillations
are predominantly linked to general attentional processes. The
distinct topographical patterns, characterized by a reduction in
prefrontal o activity during the eyes-open resting state and a
decline in posterior a activity during the eyes-closed resting state,
may serve as indicators of state-dependent pathological features
in individuals with MCI. Specifically, in the eyes-open condition,
the prefrontal cortex employs an a-mediated inhibitory
mechanism to actively filter out irrelevant visual stimuli (Jensen
et al., 2014). In our study, the notable reduction in prefrontal o
activity potentially indicates a marked deterioration in the
capacity of MCI patients to inhibit distracting information. It is
hypothesized that this heightened vulnerability to interference
plays a role in the documented decline in cognitive control and
memory deficits observed among elderly individuals who do not
(Voytek 2010).
Nevertheless, another plausible interpretation is that this

have cognitive impairment and Knight,
reduction in prefrontal a during the eyes-open state might be an
outward sign of overactive compensatory processes occurring
within the prefrontal cortex. For example, in a resting-state
magnetic resonance imaging study that compared the default
mode network (DMN) activity between patients with amnestic
MCI (aMCI) and healthy elderly individuals, it was found that
compared with healthy elderly people, patients with aMCI
exhibited increased activity in the left prefrontal cortex, the
inferior parietal lobule, and the middle temporal gyrus (Qi et al.,
2010). This enhanced activity may reflect a compensatory
mechanism in the prefrontal cortex aimed at making up for the
functional impairment of the DMN. Since a waves are typically
associated with DMN activity during the resting state, and during
task-related states, the prefrontal cortex needs to suppress @ waves
to activate the working memory network.

The resting state 0 oscillations

Resting-state 0 oscillations reflect the neural activity characteristics
of the brain in a task-free state and are closely associated with memory
encoding, attention regulation, emotional processing, and neural
network integration. In our study, both groups showed significant 0
oscillation abnormalities in the prefrontal, parietal, and occipital
lobes, though the extent was less widespread compared to § and «
oscillations. This may be because 0 oscillations are more strongly
linked to task-related states, where their abnormalities are typically
more pronounced—such as in task-related cognitive functions like
working memory and attention (Ryan et al., 2021). Additionally, 0
oscillation abnormalities are often concentrated in memory- and
attention-related brain regions (e.g., prefrontal cortex and
hippocampus) (Hasselmo and Stern, 2014), whereas 6 and «
oscillation abnormalities may involve broader areas (e.g., default mode
network-related regions) (Sadaghiani et al., 2010; Steriade et al., 1993).
The widespread enhancement of § oscillations in the prefrontal and
parietal lobes, coupled with the synchronous reduction of «
oscillations in the prefrontal lobe, may reflect both pathological
compensation and dysregulation of neuronal activity related
to neurodegeneration.
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The & band functional connectivity

The next issue pertains to differences in network connectivity
across frequency bands. In our study, under resting-state conditions,
the neural oscillation differences in MCI were distinct from the
network connectivity differences. While neural oscillation
abnormalities primarily appeared in the 8 and o bands, network
connectivity differences were most prominent in the & and 6 bands.
In the & band, MCI exhibited significantly enhanced reciprocal
functional connectivity between the prefrontal and parietal lobes, as
well as strengthened bottom-up functional connectivity from the
occipital lobe to the central and parietal regions. Existing studies have
yielded heterogeneous results: two studies reported significantly
reduced frontal-parietal 8-band functional connectivity in MCI
(Lopez et al., 2014; Moretti et al, 2008), one found weakened
prefrontal-temporal 8-band functional connectivity (Toth et al., 2014),
while another observed enhanced prefrontal-temporal &-band
functional connectivity (Handayani et al., 2018). The frontoparietal
network (FPN) is critical for endogenous attention regulation,
cognitive resource allocation, and dynamic network switching (Spreng
etal, 2010; Cole et al., 2013). The observed enhancement of 8-band
functional connectivity within the frontoparietal network in patients
with MCI may suggest functional compensation—an adaptive
adjustment to meet cognitive resource demands (Babiloni et al., 2016).
However, in the absence of direct behavioral associations (such as task
performance indicators) or longitudinal data tracking connectivity
over time, this explanation remains speculative. Alternatively, it may
stem from neurotransmitter alterations (e.g., reduced acetylcholine
leading to decreased cortical excitability and reliance on slower-wave
synchronization) (Johansson et al., 2013). Future research needs to
incorporate behavioral assessments and longitudinal designs to clarify
these mechanisms and identify the adaptive or non-adaptive nature of
such connectivity changes. The occipital lobe is central to visual
processing, the central region to sensorimotor integration, and the
parietal lobe to spatial attention, working memory, and sensory
integration. The significantly enhanced bottom-up occipital-to-
central/parietal 3-band functional connectivity in MCI. It may reflect
abnormal allocation of spatial or attentional resources during rest.
This bottom-up pattern suggests that MCI patients excessively rely on
low-frequency oscillations for visual/sensory processing during rest
(Wang et al., 2007), and this reliance is potentially linked to attention
deficits, memory decline, and impaired executive function (Spironelli
and Angrilli, 2009), making it a possible marker of early
cognitive deterioration.

The 0 band functional connectivity

Dynamic brain network analysis in 6-band revealed significantly
enhanced bottom-up functional connectivity including temporal-to-
prefrontal, occipital-to-parietal, and parietal-to-prefrontal pathways
in MCI. Among prior 6-band resting-state EEG studies, one aligned
with our findings (Lopez et al., 2014), reporting enhanced prefrontal-
occipital 0-band functional connectivity. While others showed
weakened frontal-occipital (Akrofi et al, 2009), weakened
frontoparietal (Toth et al., 2014), or widespread reductions in frontal-
occipital, frontal-temporal, frontoparietal, and temporoparietal
functional connectivity (Youssef et al., 2021). Previous research
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findings have shown contradictory results. Moreover, most of the
aforementioned studies utilized data obtained during eyes-closed
resting state. And none of them employed causal inference methods,
thus lacking information on the dynamic flow between brain regions.
Consequently, it is difficult to make a relatively objective comparison.
0-band temporal-prefrontal functional connectivity supports memory
retrieval and episodic memory integration. Its enhancement in MCI
may reflect compensatory efforts to maintain cognitive function via
strengthened information transfer, possibly due to hippocampal
atrophy or synaptic plasticity decline necessitating stronger oscillatory
synchronization (Shankar et al., 2008). Occipital-parietal 6-band
functional connectivity typically coordinates visuospatial tasks. Its
increase in MCI may reflect patients over-reliance on visual
information processing, or the parietal lobe’s attempt to compensate
for insufficient cognitive resources by increasing synchrony with the
sensory cortex. This may be potentially related to dysfunction of the
posterior DMN, which leads to a shift of attention from internally
oriented states to external stimuli (Greicius et al., 2004; Minoshima
et al, 1997). Parietal-prefrontal 0-band functional connectivity
underlies goal-directed behavior and cognitive flexibility. Its
enhancement in MCI may reflect prefrontal over-regulation of sensory
input to offset declining processing speed, possibly due to reduced
prefrontal metabolism or dopamine imbalance (Bickman et al., 2006).
0 rhythms depend on precise cholinergic and GABAergic modulation
(Jiménez-Balado and Eich, 2021), and degeneration in these systems
in MCI may disrupt inter-regional functional connectivity. These
widely enhanced bottom-up functional connectivity in MCI suggests
MCI may rely more on primary sensory (e.g., occipital) input during
rest, with weakened top-down control from higher-order cognitive
regions (e.g., prefrontal).

The a band functional connectivity

Compared to the § and 0 frequency bands, the two groups showed
smaller yet notable differences in the o frequency band. Specifically,
the MCI group exhibited significantly enhanced bottom-up functional
connectivity from the occipital lobe to the prefrontal lobe. This
contrasts with two prior resting-state studies reporting weakened
occipital-prefrontal o connectivity in MCI (Lopez et al, 2014;
Handayani et al., 2018), likely due to their use of eyes-closed
paradigms and differing network methodologies. As « oscillations are
attention-related, the bottom-up occipital-prefrontal flow in MCI may
indicate greater dependence on visual input to sustain cognition
during rest, reflecting aberrant oscillatory patterns contributing to
cognitive decline.

The limitations

Our study aimed to identify abnormal rhythms and network
features characterizing MCI via resting-state EEG analysis,
offering insights for future research. However, limitations exist:
(1) MCI progression is fluctuating—longitudinal analyses would
better capture EEG dynamics; (2) the sample size of this study is
relatively small. Although this sample size is sufficient to identify
EEG abnormalities with significant effects, it may limit the
statistical power for detecting subtle EEG changes and EEG
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differences. Therefore, the sample size should be expanded in
future research to ensure the stability and reproducibility of the
results. (3) Although our study identified widespread EEG
abnormalities in MCI patients, their clinical heterogeneity
warrants emphasis: current diagnostic criteria classify MCI into
four core subtypes (single-domain amnestic, multi-domain
amnestic, single-domain non-amnestic, and multi-domain
non-amnestic) that differ significantly in neuropathological
mechanisms, cognitive impairment patterns, and disease
progression risks. Notably, this study’s lack of subtype
stratification may have obscured critical differences in EEG
findings—for instance, reduced prefrontal alpha power could
reflect compensatory neural activation secondary to hippocampal
dysfunction in MCI, whereas in non-aMCI, this pattern might
indicate direct impairment of executive control networks.
Therefore, future research should prioritize larger sample sizes
with rigorous MCI subtype classification to clarify subtype-
specific EEG signatures and their associations with distinct
cognitive deficits. (4) Different pre-processing procedures (such
as artifact removal and filter settings), as well as network analysis
methods (such as insufficient interpretability and lack of
standardization), can all lead to variations in results. Although
we employed rigorous pre-processing and False Discovery Rate
(FDR) correction to minimize bias, residual confounding effects
are still difficult to completely eliminate due to the limitation of
the small sample size. Moreover, as mentioned above, volume
conduction and DTF limitations may introduce spurious
connectivity estimates, highlighting the need for more advanced
analytical techniques in future research. (5) While cognitive
screening tools are valuable for initial assessment and have been
widely used in clinical and research settings, relying solely on
these methods may limit the diagnostic specificity for
MCI. Neuroimaging and biomarker assessments (e.g., Tau protein
and Amyloid deposition) offer more objective and sensitive
measures that can enhance diagnostic accuracy by providing
insights into underlying neuropathological changes associated
with MCI and its progression to dementia. The absence of these
confirmatory tests in our study increases the potential risk of
misclassification. We recognize this limitation and suggest that
future studies should consider integrating neuroimaging and
biomarker data to improve the reliability and validity of MCI
diagnoses. (6) Despite the use of reasonable statistical methods,
the small sample size inherently restricts the generalizability of
the results and increases the risk of Type I/Type II errors. Future
research should prioritize the use of larger datasets and
incorporate machine learning/deep learning techniques to
construct robust and network

more reproducible

analysis procedures.

Conclusion

In the resting state with open eyes, the difference in neural
oscillations between MCI and NC mainly occurred in the é and «
frequency bands, manifested as a decrease the frontal lobe of o
oscillations and an increase the frontal lobe and parietal lobe of &
oscillations. However, the main differences in dynamic functional
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connectivity were in the § and 0 frequency bands. MCI exhibits
significantly enhanced functional connectivity between the frontal
and parietal lobes, as well as brain functional connectivity between the
central and parietal lobes of the occipital lobe from bottom to top in
the & frequency bands. For the 0 frequency band, MCI significantly
enhances network connectivity between the temporal lobe and frontal
lobe from bottom to top, occipital lobe and parietal lobe from top to
bottom. The abnormal neural oscillations and integration between
brain regions in MCI, as well as the inconsistency in frequency bands
and brain regions, further indicate that the neural oscillations and
functional integration of brain regions are both related and different.
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