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Background: A vision-based gait analysis system using deep learning algorithms

for simple monocular videos was validated to estimate temporo-spatial gait

parameters in idiopathic normal-pressure hydrocephalus (INPH) patients. The

Timed Up and Go (TUG) test has been used to reflect risk of falling in INPH

patients. The aims of the study were (1) to investigate relationships between

temporo-spatial gait parameters measured by a vision-based gait analysis

system using monocular videos and TUG scores and (2) to determine whether

an automated machine learning model based on these gait parameters could

predict falling risk in INPH patients.

Methods: Gait data from 59 patients were collected from the vision-based

system. All patients were also evaluated with the TUG test. A TUG time of ≥13.5 s

was used as a cut-off to identify potential fallers.

Results: Timed Up and Go scores were negatively correlated with gait velocity,

cadence, stride length, and swing phase. TUG scores were positively correlated

with step width, stride time, stance phase, double-limb support phase, stride

time variability, and stride length variability. The area under the curve for

predicting falling risk using the automated machine learning-based model was

0.979. We found that velocity was the most important factor in predicting falling

risk with the interpretable method called SHapley Additive exPlanations.

Conclusion: This study identified important associations between gait

parameters measured by vision-based gait analysis and TUG scores in INPH

patients. An automated machine learning model based on gait parameters

measured by vision-based gait analysis can predict falling risk with excellent

performance in INPH patients. We suggest that our vision-based gait analysis

method using monocular videos has the potential to bridge the gap between

laboratory testing and clinical assessment of gait and balance in INPH patients.

KEYWORDS

idiopathic normal pressure hydrocephalus (INPH), timed up and go test (TUG), gait
analysis, deep learning, video-based assessment, fall risk prediction
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Introduction 

Idiopathic normal-pressure hydrocephalus (INPH) is a 
treatable neurologic disorder characterized by ventricular 
dilatation (Evans’ index >0.3), normal cerebrospinal fluid (CSF) 
pressure at lumbar puncture, and a symptom triad of cognitive 
impairment, gait disturbance, and urinary dysfunction (Relkin 
et al., 2005). Gait and balance disturbances are core symptoms in 
patients with INPH and these disturbances lead to an increased 
risk of falling (Nikaido et al., 2019). And several studies have 
reported fall rates of 60%–80% in patients with INPH (Nikaido 
et al., 2018, 2019). One simple and commonly used measurement 
in gait function is the 10-meter walking test, in which the patient 
is asked to walk at their normal pace for 10 meters (Sundstrom 
et al., 2022). The output is simply the time needed to complete 
the task (Sundstrom et al., 2022). The Timed Up and Go (TUG) 
test incorporates components of gait and balance control, and has 
primarily been used to estimate risk of falling in elderly populations 
(Sundstrom et al., 2022). The TUG test is considered to be more 
comprehensive than the 10-meter walking test (Sundstrom et al., 
2022). For the TUG test, patients are instructed to get up from 
an armchair, walk 3 meters at a safe and comfortable pace, turn 
around, walk back to the chair and sit down (Sundstrom et al., 
2022). 

To analyze patients’ gait, several marker-based measurement 
systems such as Vicon have been proposed (Chromy et al., 2025). 
These methods provide relatively precise gait measurements, but 
calibration steps are required before clinical use, and dedicated 
calibration devices as well as wide spaces are necessary. 3D motion 
capture systems based on inertial sensors such as gyroscopes or 
magnetometers have also been developed and used for gait analysis 
(Cloete and Scheer, 2008). However, in addition to the calibration 
burden, wearable attachments to the human body can easily disturb 
natural movement and may alter gait patterns. Pressure-sensitive 
walkway systems such as GAITRite (Vítečková et al., 2020) enable 
precise analysis of gait patterns in the temporo-spatial domain. 
However, the restriction of the walking area on devices like 
force plates provides limited mobility, and these systems require 
expensive equipment and experienced operators. Video sensors 
provide a rich source of information that can be used for gait 
analysis (Wang et al., 2013; Jeong et al., 2021). Additionally, vision-
based gait analysis systems oer remote and continuous monitoring 
with high accessibility due to their non-invasive characteristics 
and cost-eective setup. Recent evidence indicates that vision-
based gait analysis using artificial intelligence algorithms can be 
used to validly assess stride dynamics during walking (Clark et al., 
2013; Jeong et al., 2021). Further, in our recent study using the 
GAITRite gait analysis system as a reference system, a vision-
based gait analysis method using monocular videos was proposed 
to properly estimate temporo-spatial gait parameters by leveraging 
deep learning algorithms in INPH patients (Jeong et al., 2021). Our 
vision-based gait analysis system demonstrated a strong correlation 
with the GAITRite gait analysis system across 11 gait parameters, 
providing comparable data for assessing gait dysfunction in INPH 
(Jeong et al., 2021). The vision-based gait analysis system can 
provide clinicians with a low-cost, non-intrusive, and easy-to-
use system for quantitative gait analysis (Jeong et al., 2021). 
Our method, which uses a commodity camera, may improve 

accessibility to quantitative gait analysis in clinical settings and at 
home. 

The aims of the study were (1) to investigate relationships 
between temporo-spatial gait parameters measured by a vision-
based gait analysis system using monocular videos and TUG scores 
and (2) to determine whether an automated machine learning 
model based on these gait parameters could predict falling risk 
in INPH patients. 

Materials and methods 

Participants 

Study participants were prospectively recruited from patients at 
the Adult Hydrocephalus Clinic of Kyungpook National University 
Chilgok Hospital, South Korea between October 2022 to September 
2024. INPH diagnoses were made using criteria presented by Relkin 
et al. (2005). According to Relkin et al. (2005) criteria, which 
specify a minimum symptom duration of 3–6 months, the inclusion 
criteria for study participants were set as follows: 6 months 
progression or longer of gait disturbance along with either 
cognition or urinary symptoms, >40 years of age, and normal CSF 
opening pressure. Brain MRI showed ventricle expansion (Evans’ 
ratio >0.3) for all study participants, with no CSF flow obstruction. 
Exclusion criteria were as follows: patients with a hospitalization 
history of a significant psychiatric disorder, stroke, recent history 
of extensive alcohol use, or history of metabolic, neurological, 
or neoplastic dysfunctions that could show dementia symptoms. 
No participant in the study showed evidence of intracerebral 
hemorrhage, meningitis, head trauma, or another potential cause 
of hydrocephalus. 

This study protocol was approved by the Institutional Review 
Board of Kyungpook National University Chilgok Hospital. All 
methods and procedures were performed in accordance with 
relevant guidelines and regulations. All study participants gave 
informed and written consent for the study, including information 
related to clinical data. 

Assessing illness severity 

Comprehensive clinical scales for each INPH patient in the 
study was determined in the following manner. General cognition 
was evaluated with the Korean-Mini Mental State Examination 
(K-MMSE) (Kang et al., 1997). The Frontal Assessment Battery 
(FAB) was used to ascertain frontal lobe symptoms (Dubois et al., 
2000). The total FAB score ranged from 0 to 18, with a higher 
score meaning better performance. Gait assessment included 
performance results on the TUG test and 10-meter walking test 
(Podsiadlo and Richardson, 1991; Rossier and Wade, 2001; Kubo 
et al., 2008). The TUG test measures the length of time it takes a 
patient sitting in a chair to stand up, walk forward 3 meters, and 
return to a seated position. The TUG test has been used to predict 
the risk of falling, and a TUG time of ≥13.5 s has been suggested 
as a cut-o to identify individuals at increased risk (Sundstrom 
et al., 2022). In this study, individuals with a TUG time of 13.5 s 
or more were considered to be at increased risk of falls (Sundstrom 
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et al., 2022). While the cut-o of ≥13.5 s for the TUG test was 
originally proposed in community-dwelling elderly populations, 
this threshold has also been commonly used in studies including 
INPH patients (Yamada et al., 2019; Sundstrom et al., 2022). In our 
study, we therefore adopted this cut-o. 

Quantitative gait assessment 

For gait assessment, we utilized a vision-based gait 
measurement system that we developed in our previous study 
(Jeong et al., 2021). All participants were told to walk barefoot 
at a reasonable and self-selected speed without the use of any 
walking aid. The process was repeated 4 times to obtain suÿcient 
data for analysis. All patients were given time to rest between 
walking trials when requested to avoid fatigue. A researcher 
walked alongside each patient to ensure safety. The system’s 
camera was positioned 0.5 meters above the ground, either in 
front of or behind the participants, and recorded videos of patients 
walking a distance of 5 meters. By pipelining a YOLO v3 detector 
and ResNet18-based convolutional neural network (CNN) with 
PyTorch (He et al., 2016; Redmon and Farhadi, 2018; Paszke, 2019), 
the system detected and analyzed walking motion of the patient 
and yielded temporo-spatial gait measurements. Spatiotemporal 
gait parameters were determined using the system as follows: stride 
length, step width, gait velocity, cadence, toe in/out angle, stride 
time, stance phase (%), swing phase (%), double-limb support 
phase (%), coeÿcient of variation (CV) for stride time, and CV for 
stride length. 

Construction and evaluation of 
predictive models 

Based on measured gait parameters, we applied automated 
machine learning (AutoML) using Mljar to predict fall risk (High 
or Low) given 11 gait parameters (Hutter et al., 2019; Pło´ nska
and Pło´ nski, 2021). The AutoML procedure of Mljar consists of 2 
stages: model search with cross-validation and ensemble learning. 
In the first stage of model search, the base models used were linear 
regression, decision tree, Random Forest, and XGBoost (Breiman, 
2001; Chen and Guestrin, 2016; Breiman et al., 2017). Note that 
although deep learning models have achieved great success with 
unstructured signals like vision or sound, for structured tabular 
datasets, methods like Random Forest or XGBoost demonstrate 
superior results compared to deep learning models (Shwartz-Ziv 
and Armon, 2022). For the AutoML procedure, 5-fold cross-
validation was applied with stratification strategy to consider 
class imbalance. After finding feasible models, the second stage 
of AutoML constructed an ensemble model to combine feasible 
models to build the high-performance model. The models selected 
for the ensemble were 3 Random Forests and a XGBoost, and our 
results were reported with the ensemble model. SHAP (SHapley 
Additive exPlanations) analysis is based on Shapley values from 
Game Theory, and calculates local contributions of each input 
feature of a sample to the corresponding model output (Lundberg 
et al., 2020). Since SHAP values for each sample are just local 
explanations for the sample, the importance of an input feature 

is generally defined by the absolute mean of SHAP values of 
the feature across all samples. To analyze the importance of gait 
parameters on fall risk prediction, we applied this same definition 
of importance. 

Results 

Fifty-nine INPH patients constituted the final sample for 
analysis. Table 1 lists clinical and demographic parameters of INPH 
patients. The study participants included 38 men and 21 women; 
the mean age was 75.3 ± 5.5 years. 

Correlations between clinical measures 
and gait parameters measured by the 
vision-based gait analysis system in INPH 

The TUG and 10-meter walking test scores were negatively 
correlated with gait velocity, cadence, stride length, and swing 
phase (Figure 1). The TUG and 10-meter walking test scores 
were positively correlated with the step width, stride time, stance 
phase, double-limb support phase, CV of stride time, and CV 
of stride length. 

The K-MMSE and FAB scores were positively correlated with 
gait velocity, stride length, and swing phase. The K-MMSE and FAB 
scores were negatively correlated with the stance phase, double-
limb support phase, CV of stride time, and CV of stride length. 

Model performance for predicting the 
risk of falling in INPH 

The final ensemble algorithm was constructed using 
automated machine learning techniques provided by Mljar. We 
simultaneously tested 11 gait parameter predictors to discriminate 
between 2 groups of INPH patients classified by the TUG test as 
being at high risk or low risk for falling. The area under the ROC 
curve is the main metric for evaluating the overall classification 
model fit. The area under the ROC curve was 0.979, indicating that 
the observed fit had an excellent discriminant ability (Figure 2). 
We note that several subsidiary indicators, known to be sensitive 
to specific fit characteristics in the context of varying sample 
features (e.g., group sizes and balance), provide complementary 
information. The observed metrics are as follows: classification 
accuracy = 0.93, precision = 0.95, recall = 0.95, specificity = 0.87, 
and F1 score = 0.95. 

Model explanation for predicting the risk 
of falling in INPH 

The SHAP analysis yielded invaluable and pivotal insights for 
predicting the risk of falling in INPH. In this context, the crucial 
factors, ranked by importance, are gait velocity, CV of stride time, 
stride length, cadence, stride time, and double-limb support phase. 
Figures 3, 4 illustrate SHAP analysis results. 
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TABLE 1 Demographic data and clinical characteristics of INPH patients. Values denote number (%) or mean ± standard deviation. 

Statistics Total High-risk for falling (n = 44) Low-risk for falling (n = 15) 

Gender, male 38 (64.4) 25 (56.8) 13 (86.7) 

Age (year) 75.3 ± 5.5 76.6 ± 5.0 71.4 ± 5.5 

K-MMSE 21.2 ± 5.6 20.2 ± 5.6 24.2 ± 4.2 

FAB 10.3 ± 3.7 9.6 ± 3.6 12.3 ± 3.3 

Timed up and go test 22.1 ± 20.4 25.5 ± 22.7 12.0 ± 1.3 

10-meter walking test 20.7 ± 23.2 24.0 ± 26.1 11.1 ± 2.3 

K-MMSE, Korean version of mini-mental state examination; FAB, frontal assessment battery. 

FIGURE 1 

Pearson’s correlation coefficients between clinical measures and gait parameters measured by the vision-based gait analysis system in INPH. 
Heatmap shows Pearson’s correlation coefficients. The colorbar provides a visualization of the strength and direction of the correlation. 
***P < 0.001, **P < 0.01, *P < 0.05. CV, coefficient of variability; K-MMSE, Korean version of mini-mental state examination; FAB, frontal assessment 
battery; TUG, timed up and go test. 

Discussion 

In this study, 10 out of 11 gait parameters measured by the 
vision-based gait analysis system showed correlations with clinical 
tests commonly used in INPH research to assess gait and balance 
performance (TUG and 10-meter walking test), while 7 out of 11 
gait parameters were correlated with cognitive performance tests 
frequently employed in INPH studies (FAB and K-MMSE). 

As an explanation for the association between quantitative 
gait analysis and clinical gait tests in our INPH patients, we 
might speculate as follows. The 10-meter walking test is a simple 
and commonly-used gait assessment in INPH, while the TUG 
test, which also incorporates balance control, provides a similarly 
straightforward yet more comprehensive evaluation (Sundstrom 
et al., 2022). The outcome measure for both clinical tests is the time 
required to complete the task, with a longer time indicating poorer 
performance (Sundstrom et al., 2022). Moreover, the gait of INPH 

patients is characterized by lower velocity, shorter stride length, 
a more broad-based gait, a longer stance phase with increased 
double-limb support, and greater gait variability compared to 
healthy controls (Lim et al., 2019). Our findings on the association 
between temporo-spatial gait parameters and clinical gait tests 
align with these previous results. Interestingly, gait dysfunction, 
as assessed by the TUG and 10-meter walking tests, was most 
strongly associated with worse stride time variability measured by 
the vision-based gait analysis system, with stride time variability 
showing a stronger correlation with the TUG score than with the 
10-meter walking test score. A loss of consistency in the ability to 
produce a steady gait rhythm, resulting in higher stride-to-stride 
variability, has been associated with balance impairments leading 
to falls (Balasubramanian et al., 2009; Lim et al., 2019). It was 
reported that increased stride-to-stride variability in stride time was 
significantly correlated with a high risk for falling in community 
dwelling older adults (Hausdor et al., 1997; Lim et al., 2019). Falls 
are also important clinical problems in patients with INPH (Lim 
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FIGURE 2 

Receiver operating characteristic (ROC) curve for classifying INPH patients into high- and low-risk groups for falling using gait parameters from the 
vision-based gait analysis system. 

FIGURE 3 

Feature importance of variables as interpreted by SHAP for classifying INPH patients into high- and low-risk groups for falling using gait parameters 
from the vision-based gait analysis system. CV, coefficient of variability. 

et al., 2019). Increased gait variability has been suggested as one of 
the main risk factors for falls in INPH patients (Lim et al., 2019). 
Measurements of various temporo-spatial gait parameters oer 

advantages in understanding patients’ gait pathology, detecting gait 
disorders, identifying balance characteristics, monitoring disease 

progression, and evaluating medical gait interventions (Vítečková
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FIGURE 4 

Attributes of characteristics as interpreted by SHAP for classifying INPH patients into high- and low-risk groups for falling using gait parameters from 
the vision-based gait analysis system. The abscissa represents the SHAP value for each feature. The red dots signify higher eigenvalues, while the 
blue dots indicate lower eigenvalues. CV, coefficient of variability. 

et al., 2020). Our observations suggest the potential utility of spatial 
and temporal parameters measured by a vision-based gait analysis 
system in quantifying gait impairment in INPH patients. 

As an explanation for the association between quantitative gait 
analysis and clinical cognitive tests in our INPH patients, we might 
speculate as follows. Gait is a complex function regulated by the 
integration of multiple brain regions interconnected through white 
matter tracts (de Laat et al., 2011). Therefore, gait disturbances 
can result from lesions aecting either cortical or subcortical white 
matter regions (Wang et al., 2008). Further, cognitive impairment 
is considered a continuum from normal aging to advanced 
dementia, and similarly, deterioration of gait is a continuum 
that coexists with declines in cognition (Montero-Odasso et al., 
2012). The association of cognitive and motor impairments in 
neurodegenerative diseases is thought to result from damage to 
common brain networks shared by cognitive and motor control 
processes (Montero-Odasso et al., 2017). Our findings were 
also consistent with these previous reports. Interestingly, poor 
cognitive performance, as assessed by the FAB and K-MMSE, 
was most strongly associated with reduced stride length, followed 
by decreased gait velocity, as measured by the vision-based gait 
analysis system. The pathophysiological mechanisms in INPH may 
involve both white matter and the cortex (Kang et al., 2020). When 
investigating underlying pathophysiological mechanisms involved 
in INPH, the cortex is usually overlooked and white matter is 
often the main focus of consideration (Kang et al., 2020). However, 
some studies suggest that when damage occurs to an axon in the 
brain, neuronal degeneration not only proceeds distally (Wallerian 
degeneration) but also proximally (dying back) (Kang et al., 2020). 
Cerebral hypoperfusion is also known to be related to neuronal 
degeneration, and is often observed in patients with INPH (Kang 
et al., 2020). Although the origin of gait disturbance in INPH 
remains unclear, the associations between specific gait parameters 

and performance on clinical cognitive tests suggest overlapping 
processes underlying these functions. Considering the fact that 
spatial parameters (e.g., stride length and velocity) are related to 
cortical areas, particularly the prefrontal cortex, while cadence and 
step time rely more on the brainstem and spinal cord (Valkanova 
et al., 2018), our findings are not surprising. 

The integration of gait analysis with comprehensive 
neuropsychological assessment has gained increasing recognition 
in INPH evaluation. Recent studies have demonstrated that 
multimodal assessment approaches, incorporating neuroimaging 
markers such as callosal angle measurements, correlate significantly 
with tap-test response and treatment outcomes (Pyrgelis et al., 
2022). Additionally, neurophysiological methods including EEG 
have shown that CSF drainage can improve cortical function, 
with changes in brain activity patterns correlating with clinical 
improvement (Micchia et al., 2022). These findings support 
our comprehensive gait assessment approach and suggest that 
quantitative gait parameters may serve as valuable biomarkers 
alongside traditional clinical measures. 

A critical consideration in INPH assessment is the high 
prevalence of concomitant Alzheimer’s disease pathology, which 
may influence both cognitive and motor outcomes. Studies 
have shown that amyloid pathology is approximately 40% of 
INPH patients, with higher Tau protein levels associated with 
significantly worse cognitive performance (Pyrgelis et al., 2024). 
This underlying neurodegenerative pathology may also contribute 
to gait dysfunction severity and treatment responsiveness, 
emphasizing the importance of comprehensive assessment 
strategies that consider both motor and cognitive domains in 
patient evaluation and prognosis. 

Our key finding was that an automated machine learning-based 
ensemble model incorporating 11 temporo-spatial gait parameters 
demonstrated high sensitivity and specificity in dierentiating 
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between 2 groups of INPH patients at high risk and low risk for 
falling, with an area under the ROC curve of 0.979, indicating 
excellent discriminatory ability. Further, the SHAP analysis showed 
a significant influence of gait velocity, CV of stride time, stride 
length, cadence, stride time, and double-limb support phase, 
in decreasing order, on the model’s classification performance. 
Previous studies have reported that elderly individuals at a 
higher risk of falling exhibit significantly lower gait velocity, 
greater variability in stride time, shorter stride length, lower 
cadence, increased stride time, and prolonged double-limb support 
compared to those with a lower risk of falling (Hausdor et al., 
1997; van Schooten et al., 2016; Kwon et al., 2018; Urbanek et al., 
2023). Our study on INPH patients is consistent with these previous 
findings. Gait analysis parameters can be highly useful for assessing 
and quantifying gait abnormalities, as well as predicting fall risk. 
Moreover, a vision-based gait analysis system oers clinicians a 
low-cost, non-intrusive, and user-friendly tool for quantitative gait 
assessment in INPH patients. 

Our vision-based system oers several practical advantages for 
clinical implementation. In outpatient clinics, the method could be 
seamlessly integrated into routine neurological assessments, 
providing objective gait measurements without requiring 
specialized equipment or extensive training. For pre-shunt 
evaluation, the system could serve as a standardized assessment 
tool to quantify baseline gait dysfunction and help identify surgical 
candidates. Post-shunt monitoring could benefit from regular 
gait assessments to objectively track improvement and detect 
potential complications or shunt malfunction over time. Beyond 
routine clinical monitoring, this technology presents substantial 
potential as a biomarker for treatment responsiveness. Our gait 
analysis method could provide quantitative metrics that correlate 
with clinical improvement following CSF tap tests. The objective 
nature of vision-based gait assessment may oer more sensitive 
detection of subtle improvements compared to subjective clinical 
scales, potentially enhancing patient selection for shunt surgery. 
Future studies should investigate the correlation between gait 
parameter changes post-tap test and long-term shunt outcomes. To 
realize this clinical potential, strategic implementation approaches 
will be essential. Our vision-based gait analysis system could be 
deployed through user-friendly platforms such as clinical kiosks or 
mobile applications, enabling widespread adoption across dierent 
healthcare settings. Home monitoring applications could facilitate 
longitudinal tracking of gait changes, supporting both clinical 
decision-making and research into disease progression. 

We consecutively included INPH patients from a prospectively 
collected registry. To minimize bias in the assessment before 
the CSFTT, various validated objective scales were utilized. One 
limitation of this study is that gait variability was assessed based 
on a relatively small number of steps. Although we increased the 
number of walking trials to 4 to mitigate this, longer walking 
distances might be required for a more reliable evaluation. 
A second limitation of this study is that we did not correlate our 
gait parameters with actual treatment outcomes following shunt 
surgery, which would have provided the strongest evidence for the 
diagnostic and prognostic value of our method. Such correlation 
analysis with post-surgical outcomes in patients who underwent 
shunt placement would have truly demonstrated the clinical utility 
of vision-based gait assessment as a biomarker for treatment 
responsiveness and long-term prognosis. Additionally, we included 

INPH patients regardless of their response to the CSFTT. This 
approach was chosen to adhere to the international diagnostic 
guidelines for INPH (Relkin et al., 2005), which recommend 
diagnosis based on a combination of clinical history, neurological 
examination, and neuroimaging findings. These international 
INPH guidelines suggested that treatment responsiveness should 
not be the sole criterion for diagnosing INPH (Relkin et al., 2005). 
Gait assessment remains a critical component in evaluating INPH 
patients. Nevertheless, according to the Japanese clinical guideline 
(Ishikawa et al., 2008), improvement following the CSFTT 
provides additional diagnostic value, facilitating a transition from a 
“possible” to a “probable” diagnosis. Moreover, a positive response 
to the CSFTT is commonly used as an indicator for proceeding 
with shunt surgery (Ishikawa et al., 2008). Our results underscore 
the need for future investigations with larger and more diverse 
cohorts, including both responders and non-responders to the 
CSFTT, using quantitative gait parameters derived from vision-
based gait analysis. These studies may help determine whether deep 
learning techniques applied to monocular video recordings can 
serve as objective biomarkers for predicting CSFTT responsiveness. 
A third limitation is an absence of quantitative neuroimaging 
analysis in our INPH cohort. Integrating objective gait assessments 
with advanced neuroimaging metrics in future studies may 
provide valuable insights into potential associations and underlying 
pathophysiological mechanisms. A fourth limitation of this study 
is the relatively small cohort size (n = 59) and the imbalance 
between high- and low-risk groups, which may introduce bias 
into our model performance estimates. To mitigate these concerns, 
we implemented 5-fold cross-validation to provide more robust 
performance estimates. The class imbalance issue was also 
partially addressed by the stratification strategy in cross-validation. 
Additionally, a base algorithm for ensembling, Random Forest, 
inherently employs bootstrapping techniques that enhance model 
robustness when working with limited sample sizes. The inclusion 
of these bootstrapping-based algorithms contributed to their 
selection in our final ensemble model. We acknowledge that larger 
datasets would benefit both statistical power and machine learning 
model performance. To address this limitation, we are planning 
prospective multi-center studies for external validation, which will 
allow us to: (1) validate our findings on independent cohorts, 
(2) increase sample sizes to improve statistical reliability, and (3) 
assess model generalizability across dierent clinical settings. These 
future validation studies will be essential for clinical translation 
of our proposed model. Fifth, our inclusion criteria specified only 
that patients be older than 40 years, resulting in a broad age 
range that may have introduced heterogeneity in gait characteristics 
unrelated to INPH pathology. This decision was made because 
we followed the widely used criteria of Relkin et al. (2005). In 
clinical practice, gait disturbance in patients with INPH is often 
multifactorial, and gait evaluation is commonly performed even in 
such cases. A more precise age stratification, however, would have 
enhanced the homogeneity of our study population. Sixth, although 
we recruited participants with gait disturbance lasting 6 months or 
longer according to the criteria of Relkin et al. (2005), we did not 
systematically analyze the exact duration of symptoms, which may 
be an important factor influencing the severity of gait dysfunction 
and treatment responsiveness. These limitations highlight the 
need for larger, more homogeneous cohorts with systematically 
collected fall events, as well as detailed clinical follow-up and 
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treatment outcome data, to validate the clinical utility of vision-
based gait analysis in INPH management. Finally, in this study, we 
used conventional (non-deep learning) machine learning models 
to predict fall risk, whereas gait parameter measurements were 
obtained using deep learning-based methods. The rationale for 
the experiment’s design is partly based on the fact that machine 
learning models such as Random Forest and XGBoost are known 
to be eective on structured tabular datasets compared to deep 
learning (Shwartz-Ziv and Armon, 2022), although recent deep 
learning models have been developed to deal with tabular datasets 
(Arik and Pfister, 2021). Furthermore, since deep models require 
many data samples to train their weights due to a large number of 
parameters, this approach was not suitable for our study. Despite 
a relatively small sample size and class imbalance between low-
and high-risk groups, the experimental results demonstrated robust 
performance in predicting risk levels. 

This study identified important associations between temporo-
spatial gait parameters measured by a vision-based gait analysis 
system using monocular videos and TUG scores in INPH patients, 
with gait dysfunction, as assessed by the TUG test, showing the 
strongest association with increased stride time variability. An 
automated machine learning model based on gait parameters 
measured by a vision-based system can predict falling risk with 
excellent performance in INPH patients. According to SHAP 
analysis, gait velocity, stride time variability, stride length, cadence, 
stride time, and double-limb support phase might be important 
factors associated with fall risk. We suggest that our vision-based 
gait analysis method using monocular videos has the potential to 
bridge the gap between laboratory testing and clinical assessment 
of gait and balance in INPH patients. Our vision-based gait analysis 
system shows promise as an objective and practical tool for INPH 
management, with potential applications in routine assessments, 
pre- and post-shunt evaluation, and as a biomarker for treatment 
responsiveness. Future studies should validate these applications in 
larger, more homogeneous cohorts with systematically collected fall 
events and long-term outcome data. 

Data availability statement 

The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation. 

Ethics statement 

The studies involving humans were approved by the 
Institutional Review Board of Kyungpook National University 
Chilgok Hospital (IRB No. 2021-06-022). The studies were 
conducted in accordance with the local legislation and institutional 
requirements. The participants provided their written informed 
consent to participate in this study. 

Author contributions 

H-JC: Writing – original draft. SK: Data curation, 
Writing – original draft. HY: Writing – original 

draft, Data curation. SJ: Formal analysis, Methodology, 
Conceptualization, Writing – review & editing, Funding 
acquisition, Resources, Investigation. KK: Funding acquisition, 
Data curation, Investigation, Writing – review & editing, 
Conceptualization. 

Funding 

The author(s) declare that financial support was received 
for the research and/or publication of this article. This 
research was supported by a grant from the Korea Dementia 
Research Project through the Korea Dementia Research Center 
(KDRC), funded by the Ministry of Health and Welfare and 
the Ministry of Science and ICT, Republic of Korea (RS-
2024-00342071 to KK). Additional support was provided 
to SJ by the Ministry of Science and ICT (MSIT), Korea, 
under the ITRC (Information Technology Research Center) 
support program (IITP-2025-RS-2020-II201808) supervised by 
the Institute of Information and Communications Technology 
Planning and Evaluation (IITP), and by a grant from the Korea 
Health Technology R&D Project through the Korea Health 
Industry Development Institute (KHIDI), and funded by the 
Ministry of Health and Welfare, Republic of Korea (RS-2022-
KH130593). 

Conflict of interest 

HY and SJ were employed by AICU Corp. 
The remaining authors declare that the research was conducted 

in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest. 

Generative AI statement 

The author(s) declare that no Generative AI was used in the 
creation of this manuscript. 

Any alternative text (alt text) provided alongside figures 
in this article has been generated by Frontiers with the 
support of artificial intelligence and reasonable eorts 
have been made to ensure accuracy, including review by 
the authors wherever possible. If you identify any issues, 
please contact us. 

Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their aÿliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 

Frontiers in Aging Neuroscience 08 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1644543
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1644543 October 10, 2025 Time: 12:17 # 9

Cho et al. 10.3389/fnagi.2025.1644543 

References 

Arik, S. Ö, and Pfister, T. (2021). Tabnet: Attentive interpretable tabular learning. 
Proc. AAAI Conf. Art. Intell. 35, 6679–6687. doi: 10.1609/aaai.v35i8.16826 

Balasubramanian, C. K., Neptune, R. R., and Kautz, S. A. (2009). Variability in 
spatiotemporal step characteristics and its relationship to walking performance post-
stroke. Gait Posture 29, 408–414. doi: 10.1016/j.gaitpost.2008.10.061 

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A: 
1010933404324 

Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (2017). Classification and 
regression trees. England: Routledge. 

Chen, T., and Guestrin, C. (2016). “Xgboost: A scalable tree boosting system,” in 
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery 
and data mining, (San Francisco, CA). 

Chromy, A., Sopak, P., and Cigler, H. (2025). Validated low-cost standardized 
VICON configuration as a practical approach to estimating the minimal accuracy of a 
specific setup. Sci. Rep. 15:23351. doi: 10.1038/s41598-025-06111-9 

Clark, R. A., Bower, K. J., Mentiplay, B. F., Paterson, K., and Pua, Y. H. (2013). 
Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait 
variables. J. Biomech. 46, 2722–2725. doi: 10.1016/j.jbiomech.2013.08.011 

Cloete, T., and Scheer, C. (2008). “Benchmarking of a full-body inertial motion 
capture system for clinical gait analysis,” in Proceedimgs of the 2008 30th Annual 
International Conference of the IEEE engineering in medicine and biology society, 
(Piscataway, NJ: IEEE), 4579–4582. 

de Laat, K. F., Tuladhar, A. M., van Norden, A. G., Norris, D. G., Zwiers, M. P., and 
de Leeuw, F. E. (2011). Loss of white matter integrity is associated with gait disorders 
in cerebral small vessel disease. Brain 134(Pt 1), 73–83. doi: 10.1093/brain/awq343 

Dubois, B., Slachevsky, A., Litvan, I., and Pillon, B. (2000). The FAB: A frontal 
assessment battery at bedside. Neurology 55, 1621–1626. doi: 10.1212/wnl.55.11.1621 

Hausdor, J. M., Edelberg, H. K., Mitchell, S. L., Goldberger, A. L., and Wei, J. Y. 
(1997). Increased gait unsteadiness in community-dwelling elderly fallers. Arch. Phys. 
Med. Rehabil. 78, 278–283. doi: 10.1016/s0003-9993(97)90034-4 

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image 
recognition,” in Proceedings of the IEEE conference on computer vision and pattern 
recognition, (Las Vegas). 

Hutter, F., Kottho, L., and Vanschoren, J. (2019). Automated machine learning: 
Methods, systems, challenges. Berlin: Springer Nature. 

Ishikawa, M., Hashimoto, M., Kuwana, N., Mori, E., Miyake, H., Wachi, A., et al. 
(2008). Guidelines for management of idiopathic normal pressure hydrocephalus. 
Neurol. Med. Chir. 48(Suppl.), S1–S23. doi: 10.2176/nmc.48.s1 

Jeong, S., Yu, H., Park, J., and Kang, K. (2021). Quantitative gait analysis 
of idiopathic normal pressure hydrocephalus using deep learning algorithms on 
monocular videos. Sci. Rep. 11:12368. doi: 10.1038/s41598-021-90524-9 

Kang, K., Han, J., Lee, S. W., Jeong, S. Y., Lim, Y. H., Lee, J. M., et al. 
(2020). Abnormal cortical thickening and thinning in idiopathic normal-pressure 
hydrocephalus. Sci. Rep. 10:21213. doi: 10.1038/s41598-020-78067-x 

Kang, Y., Na, D.-L., and Hahn, S. (1997). A validity study on the Korean Mini-
Mental State Examination (K-MMSE) in dementia patients. J. Kor. Neurol. Assoc. 15, 
300–308. 

Kubo, Y., Kazui, H., Yoshida, T., Kito, Y., Kimura, N., Tokunaga, H., et al. (2008). 
Validation of grading scale for evaluating symptoms of idiopathic normal-pressure 
hydrocephalus. Dement Geriatr. Cogn. Disord. 25, 37–45. doi: 10.1159/000111149 

Kwon, M. S., Kwon, Y. R., Park, Y. S., and Kim, J. W. (2018). Comparison of 
gait patterns in elderly fallers and non-fallers. Technol. Health Care 26, 427–436. 
doi: 10.3233/THC-174736 

Lim, Y. H., Ko, P. W., Park, K. S., Hwang, S. K., Kim, S. H., Han, J., et al. 
(2019). quantitative gait analysis and cerebrospinal fluid tap test for idiopathic normal-
pressure hydrocephalus. Sci. Rep. 9:16255. doi: 10.1038/s41598-019-52448-3 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al. 
(2020). From local explanations to global understanding with explainable AI for trees. 
Nat. Mach. Intell. 2, 56–67. doi: 10.1038/s42256-019-0138-9 

Micchia, K., Formica, C., De Salvo, S., Muscarà, N., Bramanti, P., Caminiti, 
F., et al. (2022). Normal pressure hydrocephalus: Neurophysiological and 
neuropsychological aspects: A narrative review. Medicine 101:e28922. 
doi: 10.1097/MD.0000000000028922 

Montero-Odasso, M., Pieruccini-Faria, F., Bartha, R., Black, S. E., Finger, E., 
Freedman, M., et al. (2017). Motor phenotype in neurodegenerative disorders: Gait 
and balance platform study design protocol for the Ontario Neurodegenerative 
Research Initiative (ONDRI). J. Alzheimers Dis. 59, 707–721. doi: 10.3233/JAD-170149 

Montero-Odasso, M., Verghese, J., Beauchet, O., and Hausdor, J. M. (2012). Gait 
and cognition: A complementary approach to understanding brain function and the 
risk of falling. J. Am. Geriatr. Soc. 60, 2127–2136. doi: 10.1111/j.1532-5415.2012. 
04209.x 

Nikaido, Y., Akisue, T., Urakami, H., Kajimoto, Y., Kuroda, K., Kawami, Y., 
et al. (2018). Postural control before and after cerebrospinal fluid shunt surgery in 
idiopathic normal pressure hydrocephalus. Clin. Neurol. Neurosurg. 172, 46–50. doi: 
10.1016/j.clineuro.2018.06.032 

Nikaido, Y., Urakami, H., Akisue, T., Okada, Y., Katsuta, N., Kawami, Y., et al. 
(2019). Associations among falls, gait variability, and balance function in idiopathic 
normal pressure hydrocephalus. Clin. Neurol. Neurosurg. 183:105385. doi: 10.1016/j. 
clineuro.2019.105385 

Paszke, A. (2019). Pytorch: An imperative style, high-performance deep learning 
library. arXiv [Preprint] doi: 10.48550/arXiv.1912.01703 

Pło´ nska, A., and Pło´ nski, P. (2021). Mljar: State-of-the-art automated machine 
learning framework for tabular data. version 0.10. 3. San Fransisco, CA: GitHub, Inc. 

Podsiadlo, D., and Richardson, S. (1991). The timed "Up & Go": A test of basic 
functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39, 142–148. doi: 
10.1111/j.1532-5415.1991.tb01616.x 

Pyrgelis, E. S., Paraskevas, G. P., Constantinides, V. C., Boufidou, F., Stefanis, 
L., and Kapaki, E. (2024). In vivo prevalence of beta-amyloid pathology and 
Alzheimer’s disease co-pathology in idiopathic normal-pressure hydrocephalus— 
association with neuropsychological features. Biomedicines 12:1898. doi: 10.3390/ 
biomedicines12081898 

Pyrgelis, E. S., Paraskevas, G. P., Constantinides, V. C., Boufidou, F., Velonakis, 
G., Stefanis, L., et al. (2022). Callosal angle sub-score of the radscale in patients with 
idiopathic normal pressure hydrocephalus is associated with positive tap test response. 
J. Clin. Med. 11:2898. doi: 10.3390/jcm11102898 

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv 
[Preprint] doi: 10.48550/arXiv.1804.02767 

Relkin, N., Marmarou, A., Klinge, P., Bergsneider, M., and Black, P. M. (2005). 
Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl.), 
S4–16; discussion ii–v. doi: 10.1227/01.neu.0000168185.29659.c5. 

Rossier, P., and Wade, D. T. (2001). Validity and reliability comparison of 4 mobility 
measures in patients presenting with neurologic impairment. Arch. Phys. Med. Rehabil. 
82, 9–13. doi: 10.1053/apmr.2001.9396 

Shwartz-Ziv, R., and Armon, A. (2022). Tabular data: Deep learning is not all you 
need. Inform. Fusion 81, 84–90. doi: 10.1016/j.inus.2021.11.011 

Sundstrom, N., Rydja, J., Virhammar, J., Kollen, L., Lundin, F., and Tullberg, M. 
(2022). The timed up and go test in idiopathic normal pressure hydrocephalus: A 
nationwide Study of 1300 patients. Fluids Barriers CNS 19:4. doi: 10.1186/s12987-021-
00298-5 

Urbanek, J. K., Roth, D. L., Karas, M., Wanigatunga, A. A., Mitchell, C. M., 
Juraschek, S. P., et al. (2023). Free-Living gait cadence measured by wearable 
accelerometer: A promising alternative to traditional measures of mobility for 
assessing fall risk. J. Gerontol. A Biol. Sci. Med. Sci. 78, 802–810. doi: 10.1093/gerona/ 
glac013 

Valkanova, V., Esser, P., Demnitz, N., Sexton, C. E., Zsoldos, E., Mahmood, A., et al. 
(2018). Association between gait and cognition in an elderly population based sample. 
Gait Posture 65, 240–245. doi: 10.1016/j.gaitpost.2018.07.178 

van Schooten, K. S., Pijnappels, M., Rispens, S. M., Elders, P. J., Lips, P., 
Daertshofer, A., et al. (2016). Daily-Life gait quality as predictor of falls in older 
people: A 1-Year prospective cohort study. PLoS One 11:e0158623. doi: 10.1371/ 
journal.pone.0158623 
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