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Motor learning refers to a set of processes associated with practice and
experience that are essential for acquiring new skills and adapting behavior
throughout the lifespan. Mastery of motor skills plays a crucial role in maintaining
autonomy and quality of life, particularly in aging populations. This learning
process relies on internal neural mechanisms that lead to enduring changes in
movement capability, yet the underlying functional and anatomical adaptations
in sensorimotor circuits remain incompletely understood. These adaptations are
often influenced by both task characteristics and age, highlighting the need for
a deeper understanding of brain activity related to motor learning. In this pre-
registered systematic review, we synthesized evidence from experimental studies
and randomized controlled trials (RCTs) examining the relationship between
motor learning and brain activities, specifically as measured by resting-state and
task-related electroencephalography (EEG). We conducted a comprehensive
literature search, identifying studies published in English between 2008 and
May 2025 from PubMed, Scopus, and Web of Science databases and identified
from web pages. After initial screening of 1,910 articles by title and abstract,
a total of 80 studies met the eligibility criteria and were included in the final
review. Studies were assessed for methodological quality in accordance with
PRISMA guidelines. Our review focuses on EEG oscillatory activity across young,
middle-aged, and older adults during motor skill acquisition, motor learning,
adaptation and motor inhibitory control. We examined whether specific EEG
features are linked to predicting motor learning performance, and explored
how oscillatory patterns vary by task type, complexity, and age. By integrating
findings across diverse studies, this review aims to advance our understanding
of the neural mechanisms that support motor learning and its dimensions and
inform the development of targeted, age-appropriate empirical research in
healthy populations.

Systematic review registration: CRD42024569699.
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1 Introduction

Motor learning involves enduring adjustments to bodily movements in a lifelong
process of skill acquisition. This process includes factors such as practice and behavioral
modification to overcome challenges encountered while executing actions in response to
novel stimuli (Bracha and Bloedel, 2008). These challenges arise from interactions between
e.g., the individual, the task, and the environment during motor activities, such as riding
a bike or playing an instrument leading to permanent changes in skilled motor behavior
(Krakauer et al., 2019; Lee and Schmidt, 2008; Leech et al., 2021; Masaki and Sommer,
2012; Magill and Anderson, 2017; Schmidt, 1988; Schmidt et al., 2018).
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One interconnected concept related to motor learning
is motor performance. Unlike motor learning, which refers
to the long-lasting acquisition, refinement, retention, and
improvement of motor skill behavior over time involving
cognitive and neural processes, motor performance is defined
as the ability to execute a motor task. It requires the integration
of muscular and nervous system functions, and reflects the
observable outcomes of movement. Motor performance is
also a multifaceted state, dependent on distinct performance
conditions such as force production, precision control,
movement speed, resistance to fatigue, motor adaptation,
and, finally, motor learning (Behrens et al., 2022; Forman
et al., 2021), which serves as our inclusive term in this
systematic review.

Another related concept is motor sequence learning,
which refers to the process of acquiring and improving the
execution of ordered motor actions through practice and
training (Doyon, 2008; Gonzalez and Burke, 2018; Tzvi-Minker,
2015). It enhances both the speed and accuracy of performing
learned movements. This type of learning involves predictive
processing, allowing individuals to anticipate subsequent
movements in a sequence. A key task used to study this
phenomenon is the Serial Reaction Time Task (SRTT), which
measures response times as participants learn sequences of
actions. Brain regions such as the cerebellum and striatum are
crucial for automating these tasks, while sequences of varying
complexity engage distinct neural circuits. The short-term,
immediate enhancements that result from repeated practice
highlight practice effects, whereas skill acquisition refers to the
comprehensive process of learning a new skill, from initial attempts
to achieving proficiency.

Mastering skills through motor learning is underpinned by
neurocognitive contributions and neurological processes involving
brain activity and synaptic organization and working memory
(Constantinidis et al., 2023; Dayan and Cohen, 2011; Mottaz
et al., 2024; Rostami et al., 2009; Seidler et al., 2012). Learning-
induced functional and anatomical changes within sensorimotor
circuits are well-documented. For instance, studies on the
explicit learning of sensorimotor tasks, as well as learning
within sensory-motor circuits, establish a connection between
action and the anticipated result. This suggests that brain states

Abbreviations: EEG, Electroencephalography; EEG-EMG,

Electroencephalography and Electromyography: A well-known quantitative

techniques used for gathering biological signals at cortical and muscular

levels; DMN, Default Mode Network; TEP, transcranial magnetic stimulation-

evoked potential; DCM, Dynamic causal modeling; PSD, Power Spectral

Density; rsFC, resting-state functional connectivity; FC, functional

connectivity; ERD, event-related desynchronization; ERS, event-related

synchronization; PS, phase synchronization; FFT, the Fast Fourier Transform;

MRBD, motor-related beta-dynamics; PMBR, post-movement beta rebound;

ROIs, Regions of interest; RT, reaction times; MVF, mirror visual feedback;

GBA, Gamma-Band Activity; Iγ, The gamma index; M1, The primary motor

cortex; SMA, The supplementary motor area; PMv, ventral premotor cortex;

PMd, the dorsal premotor cortex; S1, the primary somatosensory cortex;

PPC, the posterior parietal cortex; MFC, medial frontal cortex; PFC, prefrontal

cortex.

prior to movement can offer insights into the expected success
of motor learning (Meyer et al., 2014; Zhou and Schneider,
2024).

Both cortical and subcortical regions contribute significantly to
motor sequence learning, with cerebro-cortical and striatal-cortical
networks playing a key role (Hikosaka et al., 2002; Doyon et al.,
2002; Tzvi et al., 2014; Penhune and Doyon, 2002).Understanding
these connections is essential for comprehending the mechanisms
underlying motor learning, which is crucial for advancing motor
learning enhancement and neurorehabilitation practices. However,
due to genetic factors and individual differences in brain structure
and function, the neurophysiology of motor learning remains not
fully understood, whereas gaining knowledge in this area even can
help predicting motor performance from resting neural markers
(Tomassini et al., 2010; Herszage et al., 2020; Williams and Gross,
1980).

Several theoretical frameworks shaped our perception of motor
skill acquisition and learning, such as Fitts and Posner Three-Stage
Model, Bernstein’s Degrees of Freedom Model, Gentile’s Two-Stage
Model, and Schmidt’s Schema Theory. Contemporary frameworks
and Modern Computational Models describe different motor
learning mechanisms mapped onto specific neural regions, which
are key for motor skill acquisition (Bernstein, 1966; Cano-de-la-
Cuerda et al., 2015; Fitts, 1967; Gentile, 1972; Leech et al., 2022).
What is less known and partially understood is the neural circuits
engaged during skill acquisition that are modulated specifically by
practice-based performance improvement, and those that predict
recall performance. Moreover, the growing evidence suggests that
brain activity during practice in the primary motor cortex and basal
ganglia is associated with trial-by-trial practice performance which
is predictive of immediate recall performance. These frameworks
offer distinct perspectives on how new motor skills are acquired and
refined, highlighting the need for further research to unravel how
these neural activities translate into long-term skill retention, and
expertise (Beroukhim-Kay et al., 2022; Cano-de-la-Cuerda et al.,
2015).

Previous studies have highlighted the considerable roles of
various brain structures in motor learning and skill acquisition.
The prefrontal cortex (PFC) is involved in the cognitive processes
required for mastering new motor skills (Grafton and Volz,
2019; Tian and Chen, 2021; Friedman and Robbins, 2021).
The cingulate cortex facilitates motor control, error detection,
performance evaluation, and the refinement of motor skills
(Asemi et al., 2015; Paus, 2001). The primary motor cortex (M1)
contains a somatotopic motor map corresponding to specific
body part movements, which undergoes neuroplastic changes to
accommodate new skills and enhance existing ones (Kandel et al.,
2013; Papale and Hooks, 2017; Seidler, 2009; Tian and Chen,
2021). The supplementary motor area (SMA) is more involved
in internally-generated movements is interconnected with M1
(Hardwick et al., 2012; Welniarz et al., 2019), the dorsal premotor
cortex (PMd), and the ventral premotor cortex (PMC), facilitating
the guidance of motor actions through sensory input especially
externally-guided movements (Hoshi and Tanji, 2007; Kantak et al.,
2011).

The basal ganglia and cerebellum support motor learning
through complementary mechanisms that enable smooth,
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coordinated initiation and maintenance of movement (Baladron
et al., 2023; Doyon et al., 2009; Torbati et al., 2024). The
hippocampus also interacts with the striatum during motor
sequence learning (Albouy et al., 2008, 2014). The coordinated
activity of the primary somatosensory cortex (S1) and the posterior
parietal cortex (PPC) supports motor movements through both
somatosensory and visual feedback (Mirdamadi et al., 2025;
Wang et al., 2024). Furthermore, major functional and anatomical
networks including the basal ganglia, cerebellum, M1, SMA,
premotor cortex, sensorimotor cortex, parietal cortex, right
thalamus, cingulate gyrus, and putamen have been associated
with motor deficits, spatial and sensorimotor learning, and motor
sequence learning (Lefebvre et al., 2012; Penhune and Steele, 2012).

1.1 Age-related motor learning

Aging is associated with reductions in gray matter volume in
key brain areas, including the primary motor cortex, somatosensory
cortex, and cerebellum. These structural and functional brain
changes can impact movement speed, coordination, and precision
(Good et al., 2001; Salat, 2004; Seidler, 2009; Ward, 2003).
Even in the absence of neurodegenerative disease, aging is
characterized by alterations in sensorimotor activity, resource
allocation, and cognitive-motor interactions, all of which affect
perception, movement, and cognition (Seidler, 2009). While
sensorimotor function declines with age, training and brain
stimulation techniques have the potential to modulate these
effects. Several studies have reported age-related declines in motor
performance and motor learning (Brown et al., 2009; Durkina et al.,
1995; Janacsek and Nemeth, 2012; Shimoyama, 1990). For example,
simple repetitive tasks such as finger tapping show a reduction
in frequency with age (Shimoyama, 1990). Likewise, older adults
exhibit reduced learning rates in tasks like the pursuit of motor
learning across multiple days (Durkina et al., 1995). Although
immediate learning gains are often observed, the consolidation
of motor memory is particularly affected by age (Janacsek and
Nemeth, 2012).

Prior research has highlighted the importance of age-related
differences in motor learning capacity and performance, often
estimated through specific neural oscillatory bands such as mu and
beta (Deiber et al., 2014; Liu et al., 2017; Rueda-Delgado et al.,
2019). Few studies have directly investigated the impact of age on
brain oscillations as predictors of motor learning improvements.
However, existing evidence suggests that age-related changes
in brain function, cognition, and motor abilities likely interact
to influence learning outcomes (Espenhahn et al., 2019; Wang
et al., 2019). Understanding these effects is critical for supporting
functional independence in aging populations and for developing
personalized sensorimotor training and rehabilitation protocols.
This highlights the need to incorporate age, neural oscillatory
patterns, and cognitive measures into motor learning research to
capture a more comprehensive picture of individual differences
across the lifespan.

Aging studies have consistently shown reduced processing
efficiency, accompanied by declines in working memory and
slower response times (Berchicci et al., 2012; Hedden and

Gabrieli, 2004). Older adults generally require more cognitive
resources for planning and executing motor tasks compared to
younger individuals. Additionally, slower information processing
and reduced attentional capacity can further hinder (Seidler, 2009).
Given the centrality of aging in this context, this systematic review
aims to examine how motor learning is shaped by age-related
neural changes, specifically through EEG-measured oscillatory
brain activity. We focus on motor skill acquisition and adaptation
across the adult lifespan, highlighting neural patterns that may
predict learning outcomes and inform individualized interventions
for age-related motor deficits.

Examining both resting-state and task-related brain activities
in the context of motor learning offers insight into how aging
affects the ability to acquire and retain new motor skills. However,
the precise effects of aging on motor skill acquisition, retention,
and neural plasticity following practice remain inconclusive and
merit further investigation. In this line, studies have shown that age
affects both motor learning and associated alpha activity. It has been
reported that the neural circuits involved in motor skill acquisition
in older adults are like those in younger individuals, but older adults
tend to exhibit more widespread activation patterns. This suggests
that while the same networks are engaged, the efficiency of their
use may differ due to age-related changes (Bootsma et al., 2021;
Berghuis et al., 2019). There is also another study that investigated
the effects of alpha-wave binaural acoustic beats on motor learning
across different age groups. Their findings suggested that this type
of stimulation could improve motor performance in older adults
by enhancing alpha activity, thereby influencing their learning
processes differently than in younger individuals (Herozi et al.,
2024; Durand-Ruel et al., 2023). According to Park et al. (2025),
resting-state oscillations are associated with age. The findings
indicated that decreased alpha and altered beta activity with age
provide foundational insights that relate to age-related changes
in neural oscillations vary as a function of brain region and
frequency band. Since these oscillations are known to influence
neuroplasticity and motor performance, that is interesting to see
how such brain oscillations change with age, which could influence
motor learning processes (Park et al., 2025).

In this review, we synthesized current EEG research to
better understand how age shapes motor skill acquisition, with a
focus on oscillatory dynamics and neural plasticity. Specifically,
we examined findings from studies using EEG to assess both
resting-state and task-related activity, focusing on how age-
related changes in e.g., alpha, beta, and mu rhythms relate to
learning processes. By integrating results across studies, we aim
to clarify how neural oscillations and functional connectivity
evolve with age and how these changes shape the capacity to
acquire and retain new motor skills. This approach allows for
a more comprehensive understanding of the neural mechanisms
underlying motor learning across the lifespan. Furthermore, it
reveals important gaps in the literature, particularly in relation to
age-specific variability in training outcomes. Additionally, these
efforts would underscore the need for personalized approaches to
motor rehabilitation and cognitive-motor interventions in older
adults. In this context, the present review not only highlights
patterns of compensatory brain activity associated with aging but
also sets the stage for future research aimed at optimizing motor
learning strategies through targeted neurophysiological markers.
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1.2 Brain oscillations as a signature of
motor learning

In recent decades, electroencephalography (EEG) has emerged
as a non-invasive technique to measure neurological activity
associated with motor tasks, offering insights into the brain
mechanisms involved in the learning and adaptation of motor
skills (Ahmadian et al., 2013; Hamada et al., 2023; Haar and Faisal,
2020a,b; Jee, 2021). Brain waves are classified into delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma
(>30 Hz) frequency bands using the Fast Fourier Transform
(FFT) technique. Each EEG frequency band is associated with
distinct psychophysiological states. Studies suggest a correlation
between EEG frequency band activity and the neural mechanisms
underlying motor learning and task success (Teplan, 2002; Nayak
and Anilkumar, 2025).

However, the results of individual studies remain inconclusive
when considered alone. Across the literature, six EEG frequency
bands have been associated with motor learning. Among these, beta
(13–30 Hz) (Espenhahn et al., 2019), alpha (8–12 Hz) (Ghasemian
et al., 2016), and theta (5–8 Hz) (Van Der Cruijsen et al., 2021)
have been consistently identified as the most relevant for predicting
and understanding motor actions. In addition, gamma (30–100 Hz)
(Amo et al., 2015; Amo et al., 2017; Usanos et al., 2020), delta
(2–4 Hz) (Hamel-Thibault et al., 2016; Wong et al., 2013), and
mu bands (8–13 Hz) (Nakayashiki et al., 2014; Deiber et al., 2014;
Zhang and Fong, 2019) are believed to offer valuable insights into
predicting motor learning outcomes. These insights come from
analyses of both task-based activity and resting-state functional
connectivity (rsFC) (Sugata et al., 2020; see Table 1 for details).

EEG power spectral density (PSD)—considered an indicator
of motor learning which is linked to a range of brain functions.
Spontaneous brain activity and PSD contribute to the encoding
of information during motor learning, with alpha and beta bands
specifically associated with motor performance (Hamada et al.,
2023; Livne et al., 2022). In addition, PSD provides a robust
framework for examining the neural correlates of motor learning
and task success, making it an effective tool for understanding brain
activity during motor tasks.

Research has demonstrated that frequency bands such as theta,
alpha, beta, and gamma play distinct roles in visual attention
and motor memory, indicating that PSD effectively captures these
variations (Aliakbaryhosseinabadi et al., 2021; Hamada et al., 2023).

Beta oscillations are particularly sensitive to components of
motor tasks involving top-down processing and sensorimotor
behavior (Barone and Rossiter, 2021; Engel and Fries, 2010). These
oscillations play a central role in motor learning, especially through
their engagement with the primary motor cortex (M1) and brain
connectivity with other brain regions. Beta-band activity has been
shown to correlate closely with motor execution, preparation, and
learning (Sugata et al., 2020). Notably, beta-band resting-state
functional connectivity (rs-FC) predicts motor learning ability,
with stronger beta connectivity between M1 and other areas
correlating with better learning outcomes.

Beta activity is sensitive to the motor components of tasks.
The so-called beta rebound, which is an increase in beta power
exceeding resting levels and is a known marker of movement

termination (Studer et al., 2010). During motor learning, average
beta activity tends to decrease, while beta modulation related to
motor tasks increases. This is accompanied by more pronounced
synchronization/desynchronization volleys (Houweling et al.,
2009). Baseline beta levels have been identified as predictors of
subsequent learning and consolidation processes (Titone et al.,
2022). For instance, a single session of practicing a pursuit-tracking
motor skill was shown to reduce beta coherence between FC and
Cz electrodes in young adults (Ghasemian et al., 2017).

Studies also suggested that cortical electrical activity is involved
in movement execution during motor performance (Espenhahn
et al., 2019; Jahanian et al., 2023c). Following visuomotor learning
tasks, movement-related beta activity has been found to predict
individual performance by 1 h, but not 24 h, after training
(Espenhahn et al., 2019). Changes in beta-band connectivity
during and after motor tasks are associated with motor memory
consolidation, indicating that beta oscillations play a vital role in
stabilizing newly acquired skills. However, individual variability
exists as prior research revealed that higher baseline beta
connectivity may correlate with poorer motor learning and weaker
consolidation outcomes (Titone et al., 2022).

The stabilization of newly learned motor skills appears to
rely on beta-band connectivity changes during and after learning
akin to capturing and preserving a photograph of the learned
movement for future recall. Yet, as with each musician in a band
having unique strengths and weaknesses, individuals with higher
baseline beta connectivity may sometimes face challenges in motor
learning and adaptation due to the inherent characteristics of their
neural networks (Watson, 2006; Aliakbaryhosseinabadi et al., 2021;
Özdenizci et al., 2017; Peng et al., 2024). Overall, while beta-
band oscillations are essential for motor learning, their specific
roles may vary depending on the neural networks involved and
individual differences.

Recent studies have also highlighted the importance of alpha
activity patterns in motor learning. Alpha oscillations can influence
the acquisition, retention, and efficiency of motor preparation
(Ghasemian et al., 2016; Deiber et al., 2014).

Within motor sequence learning networks, functional
decoupling in the motor-cerebellar loop has been observed by
changes in alpha coherence between the premotor cortex and the
cerebellum. Moreover, alpha activity has been shown to predict up
to 60% of the variability in perceptual learning outcomes (Sigala
et al., 2014; Schubert et al., 2020). These findings carry significant
implications for rehabilitation strategies aimed at enhancing motor
skills in individuals with movement disorders. Interventions such
as neurofeedback targeting alpha suppression may be employed
to increase cortical excitability and facilitate improved learning
outcomes (Wan et al., 2014).

Theta oscillations (4–6 Hz) have been further shown to
influence key aspects of motor skill acquisition, retention and are
strongly associated with successful motor learning outcomes (Van
Der Cruijsen et al., 2021). Additionally, Akkad et al. (2021) reported
that enhanced motor skill acquisition was associated with increased
theta-gamma phase-amplitude coupling, indicating that this can
enhance non-hippocampal motor learning.

Although brain oscillatory activity has given useful
understanding in measuring, and predicting motor learning

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1646172
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jah
an

ian
-N

ajafab
ad

ian
d

D
avo

o
d

i
1

0
.3

3
8

9
/fn

ag
i.2

0
2

5
.1

6
4

6
1

7
2

TABLE 1 Age-related findings across studies.

No. References Age group Frequency band Task type Learning phase Key findings

1 Babaeeghazvini
et al. (2018)

Young & old adults • Beta band • A bimanual visuomotor
task

• Focused on motor performance at
baseline/rest and its association with
age differences in connectivity rather
than specific motor learning phases.

• Older adults showed increased beta-band functional
connectivity (wPLI values) particularly in the left intra-
hemispheric pathway between the dorsal premotor area
(PMd L) and primary motor cortex (M1 L).

• In younger adults, different relationships were observed
linking structural and functional connectivity in the beta
band with motor performance, but the key beta-band
difference with aging was this increased functional
connectivity at rest in left intra-hemispheric and
inter-hemispheric motor areas, associated with motor
decline.

2 Bayram et al. (2015) Young & old adults • Beta band (15–35 Hz) • Maximal Voluntary
Contraction (MVC)

• Submaximal Elbow Flexion
(EF) at 20%, 50%, and 80%
MVC

• Focused on motor • Older adults showed weakened corticomuscular coherence
(CMC) compared to young adults across all force levels.

• The decline in CMC may contribute to motor impairment
and muscle weakness in aging.

3 Bayram et al. (2023) Young & old adults • Beta band • Voluntary movement task
• Voluntary elbow flexion

(EF)

• Focused on the execution phase of the
motor task and the graded force levels

• The elderly showed significantly lower total EEG spectral
power (ESP) at high force (80% MVC) compared to young.

• The failure of beta-band relative ESP to decrease with
increasing force in the elderly is suggested as a potential
biomarker for age-related motor control decline.

4 Bönstrup et al.
(2015a)

Young & old adults • Upper Alpha band
(12–14 Hz)

• A complex finger-tapping
sequence

• Assessed cortical activity related to
execution and suppression
(inhibition) of a motor skill in the
post-learning phase, emphasizing
motor memory retrieval and
context-sensitive inhibition rather
than initial acquisition or early
learning

• Aging is associated with reduced alpha-band activity
during motor inhibition of a well-learned motor skill after
consolidation, indicating deficits in inhibitory cortical
mechanisms with age and altered plasticity following
motor learning .

5 Bootsma et al.
(2021)

Young & old adults .
• Alpha & beta bands

• Mirror star tracing task at
one of three difficulty levels.

• Motor skill acquisition and retention
phases.

• Both age and task difficulty influence motor learning and
its neural correlates in alpha and beta EEG bands, with
older adults exhibiting more bilateral cortical activity and
differing retention depending on difficulty.

6 Chettouf et al.
(2022)

Young & old adults • Beta band • Unimanual motor task • Acquisition and within-session
practice.

• Aging reduces the magnitude and beta-band motor
oscillations during unimanual motor learning, despite
largely preserved task-related hemodynamic responses

7 Christov and
Dushanova (2016)

Young & old adults • Beta & Gamma bands (β1:
12.5–20; 12.5–20; β2:
20.5–30 Hz) (γ1: 30.5–49;
γ2: 52–69 Hz)

• Binary choice-reaction
sensorimotor task

• Analyzed during sensory (early) and
cognitive (late) processing phases
after stimulus onset

• Age-related alterations in beta and gamma oscillatory
dynamics predominantly during cognitive processing
after auditory stimulation, with task-related motor
responses assessed during sensory and early cognitive
response phases

(Continued)
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TABLE 1 (Continued)

No. References Age group Frequency band Task type Learning phase Key findings

8 Deiber et al. (2014) Young & old adults • Mu (9–12 Hz) & Low Beta
(15–20 Hz)

• Three delayed motor tasks • Motor preparation phase • Age-related reductions in the lateralization of mu and beta
oscillations during internal motor preparation,
highlighting deficits in free movement selection
mechanisms in older adults

9 Espenhahn et al.
(2019)

Young & old adults • Alpha & Beta (15–30 Hz) • Mirror drawing a novel
wrist flexion/extension
tracking task &
subsequently retested at
two different time points
(45–60 min and 24 h after
initial training).

• Motor task was assessed during the
acquisition and early retention phases

• Movement-related beta desynchronization (MRBD) in the
ipsilateral sensorimotor cortex before training predicted
individual performance 45–60 min after training.

• Cortical beta-band oscillations, especially
movement-related desynchronization, are important
neural markers that explain variability in short-term
motor learning performance in both young and elderly

10 Frolov et al. (2020) Young & old adults • Mu, beta &theta bands • A fine motor task involves
squeezing one of their
hands into a fist after an
audio signal and holding it
until a second signal. They
performed this task 30
times with each hand, for a
total of 60 repetitions

• Motor initiation (preparation) phase • Elderly adults display slowed motor initiation linked to
increased theta and altered mu/beta band dynamics
during the motor preparation phase

11 Herozi et al. (2024) Young & old adults • Alpha band • Digital mirror-tracing task • The motor task was assessed in the
acquisition and practice phase of
motor learning.

• Alpha band stimulation for 30 min led to a significant
decrease in errors in older adults but not in young adults.

• In younger adults, alpha band significantly decreased
reaction time but did not reduce errors.

12 Jahanian et al.
(2023c)

Young & old adults • Beta band, • Dart skill learning
• Dart throwing using both

dominant and
non-dominant hands.

• Assessed spans acquisition through
practice-induced changes

• Greater beta relative power predicts stronger Practice effect
in younger adults

• Lower Beta relative power predicts stronger practice effect
in older adult

13 Liu et al. (2017) Young & old adults • Alpha & beta, bands • Finger task • Focused on movement execution and
preparation phases

• Older adults exhibited a reduction in beta power
suppression during movement compared to younger
adults.

14 Lum et al. (2023b) Young & middle
aged

• Theta, alpha & beta bands • Serial Reaction Time task;
unknowingly repeat a
sequence of finger
movements in response to a
visual stimulus

• Acquisition (implicit learning) phase • Lower upper theta resting-state EEG power predicts
greater implicit motor sequence learning ability, with the
motor task assessed during the acquisition phase

(Continued)
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TABLE 1 (Continued)

No. References Age group Frequency band Task type Learning phase Key findings

15 Penalver-Andres
et al. (2022)

Young to old adults • Alpha band • Virtual surfing, requiring
participants to steer a
virtual boat using a joystick
to surf waves as quickly as
possible to a finish line
following a resting-state
EEG recording alternating
between EO & EC
conditions

• The resting brain state as a trait
marker predictive of acquisition and
motor performance stage

• Resting-state functional network activity, especially
posterior DMN preactivation, predicts motor performance
in a complex visuomotor task.

• Age & gaming/sailing experience were not significant
confounding factors in the main findings

16 Rueda-Delgado
et al. (2019)

Young & old adults • Alpha & beta bands • A bimanual coordination
task

• Placed the assessment primarily in the
acquisition and early consolidation
phases of learning.

Both groups improved motor performance with practice, but
older adults showed less learning.
• Beta power (15–30 Hz) decreased more with training

in young adults, especially in sensorimotor cortices,
indicating more flexible neural reorganization.

• Older adults showed a smaller beta power decrease and
altered alpha (8–12 Hz) band modulation after training,
reflecting less neural plasticity.

17 Sallard et al. (2014) Young & old adults • Low Beta (14–20 Hz), &
High Beta (20–30 Hz)
bands

• Unimanual Tapping (UM)
& Bimanual Tapping (BM)

• Evaluated brain activity during motor
execution rather than motor learning
stages.

• Altered low beta-band oscillatory patterns and behavioral
deficits in bimanual coordination in elderly compared to
young adults, linked to reduced sensory reafference
processing, assessed during self-paced motor execution
rather than a specific motor learning stage

18 Veldman et al.
(2021)

Young & old adults • Alpha & beta band • Visuomotor task consisted
of following a template
using right- & left wrist
flexion & extension
movements

• Evaluated motor skill acquisition
(immediately after practice),
consolidation (retention 24 h later),
and interlimb transfer (performance
in the untrained left hand).

• Beta-band motor network connectivity modulation is
critical for these motor learning mechanisms.

• Older adults may use distinct neural connectivity patterns
during learning and transfer.

19 Vieluf et al. (2018) Young & old adults • Alpha band (8–13 Hz) and
also low beta beta
(13–20 Hz), high beta
(20–30 Hz), and theta
(4–8 Hz) bands

• Force maintenance
task:Precision grip task

• Assessed expertise differences during
a force control motor task

• Young novices had decreased alpha magnitude compared
to old groups.

• High beta magnitude was lower in old novices compared
to young novices and older experts.

• Young novices showed higher low beta magnitude for
their left hand, whereas old experts showed higher beta
magnitude for the right hand.

• Attentional network activation was lower in old experts
compared to novices, suggesting different control
strategies.

20 Yordanova et al.
(2020)

Young & old adults • Theta band (3.5–7 Hz) • Four-choice reaction task
(CRT)

• The motor task assessed response
execution

• Older adults displayed a strong theta power at the medial
fronto-central region, which correlated with response
speed only in young adults, indicating an aging-related
dysfunction in medial frontal theta mechanisms.

21 Yordanova et al.
(2024)

Young & old adults • Theta band • Simple Reaction Task (SRT)
• Go-NoGo Task
• Four-Choice Reaction Task

(CRT) in two modalities,
auditory & visual

• Focused on sensorimotor reaction
execution

• Older adults showed altered functional connectivity in the
theta band during sensorimotor reactions, relying more
on sensorimotor feedback during movement execution,
compensating for reduced cognitive regulation of motor
areas, compared to younger adults.

(Continued)
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outcomes across various tasks, less is known about the time
course of training-related neural changes in alpha, beta, and
theta bands, and how these changes interact with specific training
parameters and moreover emphasizing brain network dynamics
and inter-regional communication provides a clearer and more
powerful understanding and prediction of motor learning and
motor sequence learning outcomes than considering oscillatory
activity alone (Dyck and Klaes, 2024; Mottaz et al., 2024; Takeuchi
and Izumi, 2021).

Moreover, resting-state networks offer key insights into aging-
related changes in brain dynamics. It is hypothesized that
meaningful insights into predicting motor learning outcomes can
be gained through the analysis of both task-based and rsFC. Despite
numerous studies, questions remain about whether resting-state
and task-related brain oscillations are linked to motor learning and
can reliably predict short- and long-term effects of motor learning,
and how these effects may vary with age. Prior research has shown
that resting-state EEG can successfully predict motor learning in
both clinical and healthy populations by characterizing baseline
brain states and relating them to behavioral variability (Wu et al.,
2014; Penalver-Andres et al., 2022). Thus, it is essential to examine
whether resting-state EEG power can account for interindividual
differences in motor performance and learning (Hübner et al.,
2018; Imani and Godde, 2024a,b; Jahanian et al., 2023c; Özdenizci
et al., 2016). The relationship between EEG activity at rest and
during/after motor task execution can provide valuable insights
into motor learning and motor sequence learning (Dyck and
Klaes, 2024; Takeuchi and Izumi, 2021). Notably, there have been
few studies regarding high alpha amplitude at rest that could
predict alpha neuromodulation (e.g., alpha neurofeedback) has
been found to predict learning success (Chikhi et al., 2023; Wan
et al., 2014).

1.3 Current systematic review

Aging is associated with progressive changes in both cognitive
and motor functions, which can significantly impact an individual’s
ability to learn and retain motor skills (Ren et al., 2013).
Understanding the neural mechanisms that support motor learning
across the adult lifespan is therefore critical, particularly in
the context of designing interventions for age-related motor
decline. The primary objective of this systematic review is to
examine age-related differences in EEG-measured brain activity
during motor learning. Specifically, we investigate how patterns
of neural oscillations differ among young adults (18–35 years),
middle-aged adults (35–55 years), and older adults (55–85
years) during motor skill acquisition, learning, and adaptation.
By comparing these age groups, we aim to identify how
aging influences the cortical dynamics that underlie motor
learning processes.

This review focuses on studies utilizing both resting-state and
task-related EEG recordings to capture oscillatory brain activity
associated with motor performance. We seek to determine whether
specific features of EEG oscillations measured either before or
during training can predict individual learning outcomes. A further
aim is to explore whether these neural signatures vary with task
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complexity and learning phase, and whether such changes are age-
dependent.

We address several core questions:

• How do brain oscillations during motor skill acquisition
correlate with training performance outcomes?

• Are resting-state and task-evoked brain oscillations associated
with motor learning ability, and can they serve as predictors of
learning outcomes?

• Do changes in cortical activity vary with task difficulty, and are
they linked to training effects and the paradigms?

• Finally, are these neural changes and their relationships with
motor learning age-dependent?

In addition, we examined whether changes in brain oscillations
are task-specific and how neural activity adapts with increasing
task complexity across different age cohorts. By synthesizing
findings across these dimensions, this review aims to offer a
comprehensive account of how motor learning is supported by
EEG-measured brain activity throughout adulthood. Ultimately,
this work addresses key gaps in the literature by integrating
evidence on neural oscillations and motor learning across the
adult lifespan. The insights gained are expected to advance our
understanding of the neurophysiological basis of age-related motor
learning differences and inform the development of tailored
rehabilitation and training strategies for older adults experiencing
motor impairments.

2 Materials and methods

2.1 Study selection and data collection

This systematic review has followed the standards of the
PRISMA statement (Page et al., 2021a,b). To address the research
questions, we considered the PICO format (Urrútia and Bonfill,
2010), and the review was prospectively registered on PROSPERO
with the identification number CRD42024569699.

2.2 Search strategy

Authors independently searched the databases to find the
relevant studies, using the PubMed, Scopus and Web of Science
databases, and using the search terms in English (“EEG” OR
“Electroencephalography ”) AND (“Brain oscillations” OR “brain
networks” OR “rest state” OR “resting-state EEG” OR “task-based
EEG”) AND (“Motor learning”) AND (“older adult” OR “young
adult” OR “aging”).

2.3 Eligibility criteria

Studies were included if they met the following criteria:
(a) published in English, (b) published between 2008 and 2025,

(c) the subjects of study were healthy young and older adults within
the age range of 18–80, (d) the original RCT or experimental studies
with parallel groups or cross over designs; (e) the intervention was

single and multisession exercise; motor training, motor learning,
or motor activity, motor planning, motor inhibitory control, motor
performance improvement; and (f) the outcome was EEG activities
in different age groups and based on different motor learning tasks.
Studies were excluded if the language was non-English, case report
studies, clinical trials, animal studies, or studies that used non-
motor training interventions such as drugs or brain stimulation
techniques. The search strategy for each used database is presented
in Boxes 1–3.

3 Results

3.1 Study selection criteria

The process of selecting articles for this review followed a
systematic approach:

1. Initial identification: A comprehensive search was conducted to
identify articles relevant to the topic. 1910 articles related to the
subject were first identified.

2. Duplicate exclusion: Among the identified articles, 611
duplicates were automatically identified and excluded; 85
duplicate records were excluded by authors, resulting in 1214
unique articles.

3. Title and abstract screening: The titles and abstracts of the 1214
unique articles were meticulously assessed. As a result of this
screening, 1094 were deemed not relevant to the review, and 122
were identified for potential inclusion.

BOX 1 Search strategy for PubMed.

(“EEG” OR “Electroencephalography “) AND (“alpha” OR “alpha wave
“ OR “alpha frequency” OR “alpha band activity” OR “alpha power” OR
“alpha coherence” OR “alpha oscillations” OR “beta” OR “beta wave” OR “beta
frequency” OR “beta band activity” OR “beta power” OR “beta coherence” OR
“beta oscillations” OR “gamma” OR “gamma wave” OR “gamma frequency”
OR “gamma band activity” OR “gamma power” OR “gamma coherence”
OR “gamma oscillations” OR “delta” OR “delta wave” OR “ delta wave “
OR “delta frequency” OR “delta band activity” OR “delta power” OR “delta
coherence” OR “delta oscillations” OR “theta” OR “theta wave” OR “theta
wave “ OR “theta frequency” OR “theta band activity” OR “theta power”
OR “theta coherence” OR “theta oscillations” OR “mu” OR “mu wave” OR
“mu frequency” OR “mu band activity” OR “mu power” OR “mu coherence”
OR “mu oscillations” OR “power spectrum” OR “power spectra density” OR
“Brain oscillations” OR “brain networks” OR “coherence” OR “rest state”
OR “rest-state” OR “resting-state” OR “resting-state EEG” OR “resting-state
functional connectivity” OR “resting state power” OR “resting-state power”
OR “task-based” OR “task-based EEG” OR “task related” OR “task-related”
OR “task related power” OR “task-related power” OR “synchronization”[tw]
OR “task related synchronization”[tw] OR “task-related synchronization”[tw]
OR “task related desynchronization” OR “task-related desynchronization”)
AND (“Motor learning” OR “Motor control” OR “Motor sequence learning”
OR “Motor sequential learning” OR “Sensorimotor learning” OR “Motor
imagery” OR “ Kinematics” OR “Motor training” OR “Motor practice”
OR “Motor exercise” OR “Motor expertise” OR “Motor task” OR “skill
acquisition” OR “Motor cortex”) AND (“older adult” OR “young adult” OR
“aging”).
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BOX 2 Search strategy for SCOPUS.

TITLE-ABS-KEY ((“EEG” OR “Electroencephalography”)) AND TITLE-
ABS-KEY ((“alpha” OR “alpha wave “ OR “alpha frequency” OR “alpha band
activity” OR “alpha power” OR “alpha coherence” OR “alpha oscillations”
OR “beta” OR “beta wave” OR “beta frequency” OR “beta band activity”
OR “beta power” OR “beta coherence” OR “beta oscillations” OR “gamma”
OR “gamma wave” OR “gamma frequency” OR “gamma band activity” OR
“gamma power” OR “gamma coherence” OR “gamma oscillations” OR “delta”
OR “delta wave” OR “ delta wave “ OR “delta frequency” OR “delta band
activity” OR “delta power” OR “delta coherence” OR “delta oscillations” OR
“theta” OR “theta wave” OR “theta wave “ OR “theta frequency” OR “theta
band activity” OR “theta power” OR “theta coherence” OR “theta oscillations”
OR “mu” OR “mu wave” OR “mu frequency” OR “mu band activity” OR
“mu power” OR “mu coherence” OR “mu oscillations” OR “power spectrum”
OR “power spectra density” OR “Brain oscillations” OR “brain networks” OR
“coherence” OR “rest state” OR “rest-state” OR “resting-state” OR “resting-
state EEG” OR “resting-state functional connectivity” OR “resting state
power” OR “resting-state power” OR “task-based” OR “task-based EEG” OR
“task related” OR “task-related” OR “task related power” OR “task-related
power” OR “synchronization” OR “task related synchronization” OR “task-
related synchronization” OR “task related desynchronization” OR “task-
related desynchronization”)) AND TITLE-ABS-KEY ((“Motor learning” OR
“Motor control” OR “Motor sequence learning” OR “Motor sequential
learning” OR “Sensorimotor learning” OR “Motor imagery” OR “ Kinematics”
OR “Motor training” OR “Motor practice” OR “Motor exercise” OR “ Motor
expertise” OR “Motor task” OR “skill acquisition” OR “Motor cortex”))
AND TITLE-ABS-KEY ((“older adult” OR “young adult” OR “aging”)) AND
PUBYEAR > 2007 AND PUBYEAR > 2007 AND PUBYEAR < 2025.

BOX 3 Search strategy for WEB of SCIENCE.

TS=(“EEG” OR “Electroencephalography”) AND TS=(“alpha” OR “alpha
wave “ OR “alpha frequency” OR “alpha band activity” OR “alpha power” OR
“alpha coherence” OR “alpha oscillations” OR “beta” OR “beta wave” OR “beta
frequency” OR “beta band activity” OR “beta power” OR “beta coherence” OR
“beta oscillations” OR “gamma” OR “gamma wave” OR “gamma frequency”
OR “gamma band activity” OR “gamma power” OR “gamma coherence”
OR “gamma oscillations” OR “delta” OR “delta wave” OR “ delta wave “
OR “delta frequency” OR “delta band activity” OR “delta power” OR “delta
coherence” OR “delta oscillations” OR “theta” OR “theta wave” OR “theta
wave “ OR “theta frequency” OR “theta band activity” OR “theta power”
OR “theta coherence” OR “theta oscillations” OR “mu” OR “mu wave” OR
“mu frequency” OR “mu band activity” OR “mu power” OR “mu coherence”
OR “mu oscillations” OR “power spectrum” OR “power spectra density” OR
“Brain oscillations” OR “brain networks” OR “coherence” OR “rest state”
OR “rest-state” OR “resting-state” OR “resting-state EEG” OR “resting-state
functional connectivity” OR “resting state power” OR “resting-state power”
OR “task-based” OR “task-based EEG” OR “task related” OR “task-related”
OR “task related power” OR “task-related power” OR “synchronization”
OR “task related synchronization” OR “task-related synchronization” OR
“task related desynchronization” OR “task-related desynchronization”) AND
TS=(“Motor learning” OR “Motor control” OR “Motor sequence learning”
OR “Motor sequential learning” OR “Sensorimotor learning” OR “Motor
imagery” OR “ Kinematics” OR “Motor training” OR “Motor practice”
OR “Motor exercise” OR “ Motor expertise” OR “Motor task” OR “skill
acquisition” OR “Motor cortex”) AND TS=(“older adult” OR “young adult”
OR “aging”).

Full text assessment
1. Accessibility confirmation: Following the title and abstract

screening, accessibility to the full text of all 122 initially included
articles was confirmed.

2. Comprehensive full text review: The full text of the remaining
122 was thoroughly reviewed. Adhering to the established
inclusion and exclusion criteria, 42 were excluded, and 80
articles were selected for comprehensive review.

3.2 Data extraction

In the end, authors independently extracted relevant data
from the studies included for this systematic review. This data
encompassed various methodological and technical considerations,
such as trial design, participant characteristics, experimental
conditions, outcome measures, EEG parameters (e.g., frequency
band, region of interest, EEG analysis method), and time point of
measurement. Authors agreed about the extracted data based on
the following PRISMA Flow Chart (cf., Figure 1).

3.3 Quality assessment

Authors independently assessed the methodological quality of
selected studies using the ROB2 tool (Higgins et al., 2016; Sterne
et al., 2019). Titles of these studies, and potential abstracts, were
screened independently by both authors. Titles that contained
any of the exclusion criteria were excluded based on the title
only. Relevant full-text articles and full texts of abstracts that
were inconclusive regarding their relevance were assessed, and
studies that did not correspond with the inclusion criteria were
excluded. Fitting articles were also extracted from reviews relevant
to the topic and full-text article references. Data regarding
the studies’ designs were extracted. All study designs of any
methodological quality were included. Due to our objective to
perform a comprehensive data collection of the various parameters
and measures, we did not factor in the strength of experimental
evidence provided by the studies. In addition to studies that
examined the efficacy of an intervention, we included studies that
explored the feasibility of tools, hypotheses regarding mechanisms
of learning, recovery, and the implementation of mathematical
models. In such studies, assessment of the methodological quality
would yield no benefit, due to their different objectives. A narrative
synthesis of the literature was performed. Figure 2 illustrates the
risk of bias assessment in all categories.

3.4 Results

3.4.1 Evidence from prior research reviewed
studies

Previous research has demonstrated that brain oscillations,
functional connectivity patterns involved in motor control,
and EEG power spectral density serve as important biomarkers
associated with motor learning outcomes. These neural indicators
reflect the activity and efficiency of motor neural circuits
during both task-related and resting-state conditions. As such,
they offer promising tools for diagnosing pathologies within
motor-related brain areas, and guiding neuro-enhancement and
rehabilitation strategies aimed at enhancing the acquisition
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FIGURE 1

The PRISMA flow chart 2020 statement (Page et al., 2021a,b).

of new motor skills. However, there remains ongoing
debate regarding the utility of brain oscillations as reliable
biomarkers, particularly in the context of age-dependent
mechanisms and their application in designing targeted
rehabilitation techniques.

In the current systematic review, a total of 80 studies were
included. Of these, 67 were experimental studies, and 9 were
randomized controlled trials (RCTs) (Allaman et al., 2020; Beik
et al., 2020; Bootsma et al., 2020; Herozi et al., 2024; Schättin
et al., 2016; Studer et al., 2010; Veldman et al., 2017, 2021;
Zhang and Fong, 2019) and one semirandomized (Larsen et al.,
2016). Additionally, three pilot studies were included (Baumeister
et al., 2013; Penalver-Andres et al., 2022; Yang et al., 2017). The
earliest included study dates back to 2010. Notably, interest in the
relationship between brain oscillations and motor learning surged
after 2018. A temporary decline in publications was observed
between 2021 and 2022, likely due to disruptions caused by the
COVID-19 pandemic. A detailed overview of all included studies
is presented in Table 2.

Across the reviewed literature, neural oscillations across several
frequency bands, including alpha, beta, theta, mu, and gamma were
found to correlate with improvements in motor learning. Many
studies reported significant associations between EEG activity
and behavioral performance during motor training, which are
examined in more detail within the respective frequency-specific
subsections of this review.

To better synthesize findings across diverse studies, we
categorized all included studies by dominant EEG frequency band,
even if the study’s primary focus was on other factors such as age
or recording condition (e.g., resting state vs. task-based EEG). This
classification approach helps clarify how each band contributes
to motor learning across various experimental conditions. A key

theme emerging from several studies is the role of age as a
potential modulator of motor learning success, with implications
for e.g., peak performance, neurorehabilitation and AI assistive
technologies. Our review highlights findings that explore whether
age should be considered a crucial variable when developing
interventions or when evaluating the robustness of motor learning
across different life stages throughout basic or clinical research.
For example, Christov and Dushanova (2016) investigated how
aging affects brain performance by examining beta and gamma
components of event-related potentials (ERPs) during an auditory
discrimination task. They concluded that aging disproportionately
impacts cognitive functions compared to sensory processing, with
notable reductions in higher-frequency brain activity.

Deiber et al. (2014) examined mu and beta band activities
during motor preparation and execution. Their findings emphasize
age-related functional reorganization, with older adults displaying
a shift in responsiveness from mu to beta frequencies. This
supports the dedifferentiation hypothesis, which suggests that aging
leads to less efficient use of neural resources and compensatory
recruitment of additional circuits. Their results revealed increased
beta-range activity and greater cortical activation during motor
tasks, indicative of compensatory or reorganizational processes in
older adults.

Further evidence from Yordanova et al. (2020, 2024) revealed
that theta oscillations were phase-locked to motor response onset
in both young and older adults. However, aging was associated with
reduced midline frontal-central theta power, diminished functional
asymmetry in theta synchronization, and slower reaction times,
particularly during complex motor tasks (e.g., choice reaction
tasks). These findings suggested a reorganization of motor theta
networks in aging, characterized by increased intra-hemispheric
and decreased inter-hemispheric connectivity.
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FIGURE 2

Risk of bias assessment (Higgins et al., 2016; Sterne et al., 2019).

In support of the alpha inhibition theory, Bönstrup et al.
(2015a) found that elderly participants (aged 65+) exhibited no
significant post-learning increase in alpha power in the primary
motor cortices, unlike their younger counterparts. This points
to a reduced capacity for inhibitory control in older adults,
likely due to altered connectivity between frontal executive and
sensorimotor networks. Notably, alpha-related inhibitory rhythms
were enhanced following overnight consolidation in young
adults but remained attenuated in older participants, suggesting
diminished motor memory trace consolidation in aging.

Structural and functional brain connectivity also plays a
critical role. For instance, Babaeeghazvini et al. (2018) examined
how age-related differences in motor network connectivity
(via resting-state and task-related EEG) relate to bimanual
motor performance. Their study found that weaker structural
connectivity between the dorsal premotor cortex (PMd) and
primary motor cortex (M1) in the left hemisphere was associated
with stronger—but less efficient—functional connectivity,
ultimately correlating with poorer motor performance in older
adults. These findings highlighted the importance of both
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TABLE 2 Systematic review result table.

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

1 Aliakbaryhosseinabadi
et al. (2021)

• TN = 18
• 10 in the complex training group;

N = 10; F = 5; M = 5; AR = 29.2
± 5.1 yrs

• 8 in simple training group; N = 8;
F = 4; M = 4

• AR = 28.5 ± 2.6 yrs

• Simple ankle dorsiflexion and
complex motor tracking tasks

• The complex training group (CTG)
performed a trace tracking task using
their dominant foot and the simple
training group (STG) executed
repetitive ankle dorsiflexion in the
training phase.

• Beta (13–31 Hz), and Gamma (32–8.0 Hz) bands.
• Frontal, central, and parietal lobes
• Task- related EEG EEG before and after the training

block (pre-task, during the task, and post-task)

• Beta power decreased, and gamma power increased
significantly in the frontal and central channels for the
complex training group.

• Theta power increased in the fronto-central channels
after training.

• Coherence analysis showed increased connectivity
in the beta and gamma bands for complex tasks,
particularly between frontal and central regions.

• Indicated that brain oscillations are linked to motor
skill acquisition and performance improvements.

• Gamma power increased in the central and
parietal lobe.

2 Allaman et al. (2020)
(experiment 2)

• TN = 20 M = 7 F = 13 AR =
(28.7 ± 5.6) 23–34 yrs

• Sequential finger tapping task
• One session experiment and

completed test blocks before and after
the EEG block.

• On four horizontally arranged
buttons numbered left to right on a
Chronos box, subjects were to repeat
a given five-item sequence with their
left hand (little finger to index)

• Alpha band & also Gamma band
• M1 & dorsal premotor area
• Resting- state & Task- related EEG
• Eyes-closed resting state, during 10 min before the

first test block
• Task induced EEG during the EEG block

• Task induced alternations can be considered as
the primary neural mechanism underlying behavior
& performance.

• Particularly spontaneous neural coupling at rest in the
alpha frequency band, can be an important predictor
of task performance.

• Besides the primary interest band (alpha), phase
coupling in Gamma frequencies influences ERD in
visual areas.

3 Amo et al. (2015) • TN = 25; M = 16; F = 9; AR =
18–47 yrs

• Rapid wrist bent upwards and relaxed
after receiving an on-screen cue.

• Gamma band
• The primary motor cortex (M1) and supplementary

motor areas (SMA)
• Resting- state & Task-related GBA during motor task

Spontaneous gamma activity is recorded at rest

• Quantifies the variations in GBA induced by the
motor task (motor GBA) in relation to basal cortical
activity (basal GBA).

• The mean gamma index (Iγ) was approximately
1.27, indicating a 27% increase in motor GBA over
basal GBA.

• No significant differences were found in EMG
parameters or ERP amplitude between right and left-
hand movements.

• Significant correlations were observed between the
EMG latency and amplitude of right and left-hand
movements, as well as between the ERP amplitudes
of both hands.

• The gamma index (Iγ) can potentially assist in
the diagnosis and rehabilitation of cortical motor
area pathologies.

• Increased gamma-band oscillations are associated
with the planning & execution of voluntary
movements, indicating a potential marker for
assessing motor function in clinical populations,
such as those with motor disorders.

4 Amo et al. (2017) • TN = 16; M = 6; F = 10; AR =
20–47 yrs

• Quick extension of the wrist followed
by the light relaxation

• Gamma band
• Resting- state & Task- related EEG
• Base line at rest during motor task

• Increase of the gamma band activity of both hands in
movement with respect to the gamma band activity
at rest.

• Increased of the final gamma band activity-motor
compared to the initial activity for the motor task.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

5 Anwar et al. (2016) • TN = 9; M = 4; F = 5; AR =
21–38 yrs

• Rhythmic & sequential finger
movements of the right hand finger
tapping (FT)

• Simple finger sequence (SFS)
• Complex finger sequence (CFS)

• The EEG-EMG coherence was used to select the peak
frequency band (2–5 Hz) for subsequent source and
effective connectivity analyses

• Contralateral sensorimotor cortex (SMC), the
contralateral premotor cortex (PMC) and the
contralateral dorsolateral prefrontal cortex (DLPFC)

• Resting- state & Task- related EEG

• Bi-directional effective connectivity exists between
the between the PMC, and DLPFC during finger
movement tasks.

• Source-level EEG showed the largest GC values and
significantly greater forward than backward signal
flow between the ROIs

• The mean Euclidean distance between the EEG and
fMRI coordinates in the ROIs was within 3 mm
(about 0.12 in), indicating high

6 Babaeeghazvini et al.
(2018)

• TN = 48; TN (YA) = 21; M = 10;
F = 14; AR = 21–32 yrs; TN (OA)
= 17; M = 17; F = 7; AR= 60–74
yrs; (Final TN = 38) (final gender
distribution not defined)

• A bimanual visuomotor task where
participants rotated two shafts with
their hands, mounted on rotating
their hands while the forearms rested
over ramps, which were placed on a
desk.

• Beta band
• Intra-hemispheric functional connectivity between

dorsal premotor area (PMd) and primary motor
cortex (M1)

• Inter-hemispheric connections between left and right
M1

• Resting- state & Task- related The results reported in
the current article pertain to the behavior, obtained
during the test, and resting-state EEG recordings
obtained prior to the retention test, in which both
young and older adults had reached a stable level of
performance.

• In older adults, weaker structural connectivity
between PMd and M1 in the left hemisphere was
associated with stronger FC, which in turn was linked
to poorer bimanual motor performance.

• In younger adults, weaker structural connectivity
between PMd and M1 in the right right hemisphere
was associated with better performance in the
simplest bimanual task.

• In older adults, stronger FC between bilateral M1
regions was associated with better performance in
the more complex

7 Baumeister et al.
(2013)

• TN = 10 healthy athletes, M = 7; F
= 3; AR = 19.5–22.7 yrs

•
• Drop landing (DL) from a 30

cm platform
• After resting, 10 athletes performed a

series of DLs asked to concentrate on
the landing preparation for 10 s
before an auditory signal required
them to drop land from a 30
cm platform.

• Theta band (4.75–6.75 Hz)
• Alpha-1 band (7.0–9.5 Hz)
• Alpha-2 band (9.75–12.5 Hz)
• Frontal brain areas (especially mid-frontal electrodes

F3, Fz, F4)
• Central areas (C3, Cz, C4)
• Parietal areas (P3, Pz, P4)
• Resting- state EEG (during the 10-s preparation

period before the drop landing, and after the fatigue
fatigue protocol)

• Increased frontal Theta power during the preparation
period compared to rest, indicating higher
attentional control

• Increased Parietal Alpha-2 powers after the
fatigue protocol, suggesting a deactivation in the
somatosensory cortex

• No significant changes were observed in Theta and
Alpha-1 power values after the fatigue protocol

• Predictive sensorimotor control during landing
preparation involves increased frontal Theta power
for attentional control and that fatigue induces
increased parietal Alpha-2 power, possibly reflecting
somatosensory cortical inhibition, with stable motor
execution patterns

8 Bayram et al. (2015) • TN (OA) = 28; F = 20; M = 8; AR
= 74.96 ± 1.32 yrs

• TN (YA) = 20; F = 10; M = 10;
AR = 22.60 ± 0.90 years; Overall
AR = 21.7–76.3 yrs

21.7–76.3 yrs • Maximal Voluntary Contraction (MVC)
• Submaximal Elbow Flexion (EF) at 20%, 50%, and

80% MVC

• Beta band (15–35 Hz)
• EEG Electrode Clusters: Right sensorimotor area (C4)

and central area (Cz)
• Right frontal-parietal areas in young subjects and

parietal region in older subjects
• Task- related EEG
• Lower Corticomuscular coherence (CMC) in older

adults compared to younger adults at all force levels.
• A proportional relationship between CMC & force in

both groups, with a strong positive correlation
between CMC and MVC force.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

• A significant weakening of CMC during voluntary
motor actions in older adults compared to
younger individuals.

• Higher CMC for the BB and BR muscles compared to
the TB muscle, which acted as an antagonist

• Decline in CMC with aging may be a critical factor in
the observed decrease in motor performance &
muscle strength among older adults.

9 Bayram et al. (2023) • TN (YA) = 20; F = 10; M = 10;
AR = 21.73–23.47 yrs

• TN (OA) = 28; F = 20; M = 8; AR
= 73.42–76.16 yrs

• Voluntary movement task
• voluntary elbow flexion (EF)

• Beta band
• Primary motor cortex, primary sensorimotor area,

contralateral to the left elbow flexors.
• Task-related EEG

• Beta-band relative ESP in elderly did not significantly
decrease with increasing EF force values

• The elderly group exhibited significantly lower EF
strength compared to the young group, likely due to
reduced neural drive to the muscle group

• The total ESP did not significantly differ between the
mal voluntary contraction (MVC), groups except at
80% maxi where it was

• The absolute ESP in the beta and low-gamma bands
was significantly lower in the elderly at 80% MVC

• The relative ESP in the beta band was significantly
higher in the elderly at 20% and 50% MVC showed a
different relationship between absolute ESP and force
across all EEG bands, and a different relationship
between relative ESP and EF force except in the
theta band

10 Beck et al. (2021) • 114 individuals, with data from
109 EEG-EMG files for the
dominant hand & 111 for the
non-dominant hand analyzed

• Children aged 8–10 years,
adolescents aged 12–14 years, &
adults aged 20–30 years

• Tonic force-tracing task using a
precision grip

• Beta band (15–30 Hz)
• Cortical Sources: Coherent activity was localized in

the pre-central & post-central gyrus of the
contralateral sensorimotor cortex, extending into the
superior parietal lobule and the middle frontal gyrus

•
•
• Greater levels of beta-band corticomuscular

coherence were observed in adults compared to
children

• Adults showed greater motor precision, and less
variability compared to younger age groups

• Higher coherence levels were found in the
non-dominant hand compared to the dominant
hand, although the effect size was small

11 Beik et al. (2020) • TN = 60 OA
• M = 60
• AR = 65–75 yrs

• Novel hand actions pressing keys
• The task was sequentially depressing

the 2, 5, 6, 9 keys with the dominant
(right) hand in Absolute Timing
Goals (ATGs).

• Alpha (8–12 Hz) & Beta band (14–30 Hz)
• Sensorimotor & central electrodes frontal (Fp1, Fp2,

F3, F4), central (C3, C4), & parietal (P3, P4) cortices
• Percentage change in power for each condition

relative to the pre-/post-resting EEG
• Task-related EEG
• EEG signals were continuously collected during the

acquisition phase & delayed retention

• Greater alpha & beta desynchronization during hand
hand action observation compared to static hand
observation

• Greater power over the occipital electrodes compared
to the central electrodes

• Execution training group exhibiting significantly
greater alpha power overall than the observation
training group

• Alpha power activity to the hand action significantly
increased from pre- to post-training in the execution
training group, but did not change in the observation
training group

• No significant difference in pre- to post-training for
Beta power

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

12 Bönstrup et al. (2015a) • TN = 30 YA/OA
• M = 13
• F = 17
• YA. AR = 25 ± 2.6 years
• OA. AR = 70 ± 3.2 years per

group one participant had to be
excluded from data analysis due to
technical problem but final gender
distribution not defined

• a complex finger-tapping sequence • Upper Alpha band (12–14 Hz)
• Resting- state & Task- related
• EEG Pre task
• Prefrontal cortex & parietal areas

• Young participants showed a significant increase
in alpha power at sensorimotor cortices during
inhibition of the learned motor sequence, reflecting
active motor inhibition.

• Elderly participants showed significantly less or
absent alpha power increase during inhibition,
indicating impaired cortical inhibitory control.

• Both groups showed alpha power decrease during
execution of the motor sequence, but elderly showed
a smaller inhibitory alpha power increase during
withholding the movement.

• Overnight consolidation (24 h after learning)
enhanced alpha power increase during inhibition in
young participants but not significantly in elderly,
suggesting reduced neuroplasticity or delayed
inhibitory control strengthening with age.

13 Bönstrup et al. (2015b) • TN = 14
• M = 7
• F = 7
• AR = 27.7 ± 2.8 yrs

• Repetitive simple, near-isometric
whole-hand grips

• Visually instructed isometric
hand grips

• Alpha (9–13 Hz), Beta (14–30 Hz) bands
• M1, ventral premotor cortex (PMv) and SMA

bilaterally
• EEG recorded during motor task with rest period

• A dominant coupling within the β-band (13–30 Hz)
between contralateral M1 & SMA during isometric
contraction of the forearm

• Task-related spectral dynamics in the alpha-to-beta
frequency range, with bilateral M1 showing task-
related power changes

• Grip-related increases in facilitatory coupling
between SMA & M1 in the contralateral hemisphere

14 Bootsma et al. (2020) • TN (OA) = 36
• M = 20
• F = 16
• AR = 70.4 ± 4.1 yrs (65–86 yrs)

• Continuous tracing task
• Mirror star-tracing

• Alpha & beta bands
• Frontal cortex, motor cortex, parietal cortex
• Resting- state & Task- related EEG

• Due to frontal channels improvement in cup stacking
performance are related to α & β power reductions

• Due to Central channels improvement in cup stacking
performance is related to α & β power reductions

• Due to Parietal channels improvement in cup
stacking performance is related to β power
reductions

15 Bootsma et al. (2021) • TN (YA) = 36
• M = 16
• F = 20
• AR = 19–24 yrs
• TN (OA) = 36
• M = 20
• F = 16
• AR = 65–86 yrs

• Mirror star tracing task at one of
three difficulty levels. Unimanual
reaching movements toward the
appearing visual targets

• On day 1, participants practiced the
visuomotor task at one of three
difficulty levels. Before (baseline),
immediately after (Post) & 24 h after
(Retention) practice, motor
performance, & EEG data
were acquired.

• Alpha & beta band
• Resting- state & task- related
• Frontal cortex, motor cortex, parietal cortex

• Hand selection & reach reaction times strongly
depend upon the instantaneous phase of delta at the
moment of target onset.

• This effect was maximal over contralateral motor
regions & occurred in the absence of pre-stimulus
alpha & beta-band amplitude modulations.

• The excitability of motor regions acts as a
modulatory factor for hand choice during reaching.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

• The mirror star-tracing task.
Participants were asked to trace the
outline of a symmetrical five-point
star as quickly and accurately as
possible, only being allowed to look at
the star and their moving hand
through a mirror.

• The combinations of electrodes used
for the regions of interest in the
EEG analysis

16 Brunsdon et al. (2019) Initial TN: 67
• Execution training group
• TN = 60
• M = 38
• F = 22
• AR = 18–30 yrs
• Observation: training group
• TN = 60
• M = 40
• F = 20
• AR = 18–39 yrs

• Observing and performing unfamiliar
hand actions AND half completed
completed observation-only training

• Execution training group:
Participants physically executed hand
actions while watching videos.

• Observation training group:
Participants only watched videos of
hand of hand actions
being performed.

• Pre- and post-training EEG tasks
involved observing short video clips
showing unfamiliar hand actions or a
static hand image.

• Alpha (8–13 Hz) & beta band (13–35 Hz)
• EEG recorded during pre- & post-training tasks only
• Central electrodes over sensorimotor cortex (C3, Cz,

C4) Occipital electrodes (O1, Oz, O2)
• Task-related & Resting state EEG (used to calculate

desynchronization/synchronization relative to
resting power)

• Both alpha and beta desynchronization in the
sensorimotor cortex were significantly greater
during hand action observation than during static
hand observation.

• After training, only the execution training group
showed increased alpha desynchronization during
hand action observation; the observation group
showed no change.

• Short-term physical rehearsal enhances sensorimotor
cortex activation in alpha and beta bands during
action observation, based on changes from resting
state EEG recorded before and after training.

17 Chettouf et al. (2022) • TN = 20 YA
• F = 13
• M = 7
• AR = 20–25
• TN = 20 OA
• F = 14
• M = 6
• AR = 59–70 Final TN = 27 (13

younger, 14 older) gender not
mentioned

• Unimanual motor task: Squeeze in an
air-filled rubber bulb with their right
hand in a 4:3 frequency ratio to an
external cue to match the visual
feedback where two discs appear to
rotate in sync at a 1:1 frequency ratio.

• Beta Band (15–30) Hz providing supplementary
results for the alpha band (8–14 Hz)

• Primary motor cortex (M1), especially the
contralateral (left) M1, Bilateral premotor cortex
(PM1)

• Task-related & Resting state EEG

• Motor-event related β-band power was lateralized
contralaterally in both groups, with stronger
lateralization in younger adults. Older adults showed
a significantly lower mean β-power during motor
execution in bilateral premotor areas.

• Combined EEG-fMRI displayed Positive correlations
between β-amplitude and BOLD in primary
motor cortex and negative premotor cortex were
observed in both groups. Older adults showed
a negative correlation in a small left M1 region.
No significant group differences in combined
EEG-fMRI correlations.

• Decreased β-power in premotor areas in older adults,
suggesting diminished intra-hemispheric inhibition
may lead to more interhemispheric crosstalk and
poorer motor performance with age.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

18 Christov and
Dushanova (2016)

• TN = 48
• TN YA = 24
• F = 11
• M = 13
• AR = 25–31 yrs
• TN OA = 24
• F = 11
• M = 13
• AR = 55–60 yrs

• Auditory discrimination task
• The effect of aging on beta (β1: beta

(β1: 12.5–20; β2: 20.5–30 Hz) &
gamma (γ1: 30.5–49; γ2: 52–69 Hz)
band components of ERP was studied
in an auditory discrimination task
(low-frequency & high-frequency
tone) at frontal, central, parietal and
occipital cortical locations at short
latency (post-stimulus interval
0–250 ms; putative sensory
processing) & long latency
(250–600 ms; putative
cognitive) periods.

• Beta and gamma bands beta (β1: 12.5–20; β2:
20.5–30 Hz) and gamma (γ1: 30.5–49;

• Frontal, central, parietal and occipital cortical
locations at short latency (post-stimulus interval
0–250 ms; putative sensory processing) and long
latency (250–600 ms; putative cognitive) periods.

• Task-related EEG

• Beta1 component of the short latency period of
ERBRs was less affected by age. The beta1 activity
of the long latency period was reduced by age and
more widespread than in the short latency The
aged difference in beta1 component spread into
fronto-parietal regions and was more expressed after
high-frequency after high-frequency than after low
tone stimulation.

• Beta2 and gamma amplitudes were higher with
processing. Reducing regional-process specificity
with progressing age characterized tone-dependent

• Beta2 changes during short latency (sensory), but not
during long latency (cognitive) processing.

• Late latency (cognitive) beta2 and gamma activity
diminished with age, except for the frontal high
tone responses.

• With increasing age, gamma2 activity was more
expressed over the frontal brain areas in high
tone discrimination.

19 Darch et al. (2020) • TN = 11 adult
• F = 4
• M =7
• AR = 21–31 yrs

• Human task: joystick visuomotor
adaptation task Cats task: prism
visuomotor adaptation task

• Beta band
• Task-related EEG
• Primary motor cortex and the sensorimotor cortex
• In animal studies, specific sites within the motor

cortex are targeted for local field potential (LFP)
(LFP) recordings

• Pre-movement beta frequency oscillations in the
motor cortex predict motor adaptation drive.

• Beta (15–25 Hz) power recorded over the motor
cortex was significantly reduced in amplitude during
early adaptation trials compared to baseline, late
adaptation, or aftereffect trials. across humans and
cats, indicating a generalizable phenomenon related
to motor cortical activity during early stages
of adaptation.

20 Deiber et al. (2014) • TN = 62
• TN (YA) = 30
• F = 19
• M = 11
• AR = 24.4 ± 2.5 years
• TN (OA) = 32
• F = 18
• M = 14
• AR = 68.7 ± 5.7 years

• Three delayed motor tasks
• Participants performed unilateral key

presses with the left or right index
finger under three different
pre-cued conditions: (1) Full, where
S1 provided complete
advance information about response
side; (2) Free, where S1 invited the
participant to choose the side of
response and (3) None, where S1 was
uninformative on the response side.

• Mu (9–12 Hz) & low beta (15–20 Hz)
• Task-related EEG
• Focused on the responsiveness of the sensorimotor

region in preparatory processes for internally vs.
externally guided responses, as indexed by the
MRAA.

• Focused on the lateral premotor network and the
mediofrontal network in

• Older adults showed reduced mu lateralization and
increased beta lateralization compared to younger
adults, especially internally guided movements,
which is associated with slower reaction times in
older adults.

• Older adults exhibited slower reaction times
compared to younger adults across all conditions
(Full, Free, None)

• The interaction between age group & condition was
significant, with older adults showing longer RTs in
the Free condition compared to the Full condition, a
pattern not observed in younger adults

• Both age groups maintained high accuracy levels
(>98%) across conditions. Older adults performed
worse than younger adults in the Full condition but
better in the None condition

• Older adults showed significant beta MRAA in both
Full and Free conditions, with larger & longer-lasting
beta MRAA in the Full condition compared to
younger adults

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

21 Ding et al. (2023) • TN = 30
• M= 8
• F = 22
• AR = 21.6 + 1.5 years

• The Stop Signal Reaction time Task
(SSRT) used to assess the ability of
motor inhibitory control

• On “Go” trials, a black arrow was
presented on the screen, &
participants were instructed to press
the left-arrow key for a leftward
pointing arrow with the left index
finger, and to press the right-arrow
key for a rightward pointing arrow
with the right index finger.

• On “Nogo” trials, a red arrow was
presented on the screen, and
participants were instructed not to
press any key. On “Stop” trials, a
“Stop” signal (red arrow) would occur
after the “Go” signal (i.e., the black
arrow turned red after a delay).
Participants were asked to stop their
initial response when the “Stop”
signal occurred. Participants were
instructed to respond as quickly &
accurately as possible to black arrows,
and not to delay their response to wait
in case the “Stop” signal occurred

• Beta
• left and right motor cortex (MC), right

somatosensory cortex (SC), and right inferior frontal
cortex (IFC)

• Task-related & Resting state cortical beta oscillations
• EEG was performed after the completion of SST. The

participants were seated comfortably in a
sound-shielded, dimly lit room for resting-state EEG
recording (13 min): eyes closed (6 min), followed by
1 min with eyes open, and 6 min with eyes closed
(6 min).

• Significant positive correlations were found between
SSRT and beta band power in the left and right
motor cortex (MC), right somatosensory cortex (SC),
and right inferior frontal cortex (IFC). This indicates
that individuals with poorer response inhibition had
greater beta power in these regions

• Positive correlations were observed between SSRT &
beta band coherence between pairs of electrodes in
bilateral MC, SC, and IFC. This suggests that higher
functional connectivity in these regions is associated
with poorer response inhibition.

22 Dyck and Klaes (2024) • TN = 25
• M = 7
• AR = 18–26 yrs (final TN = 19

gender distribution not defined)

• A modified version of the Serial
Reaction Time Task (SRTT)

• Instead of providing spatial cues,
color stimuli have been employed to
guide the motor responses in an
adapted SRTT

• Beta band
• Task-related EEG
• Central regions
• Throughout the task, including the planning &

execution phases of each stimulus presentation.

• Stronger beta suppression was observed early in
explicit learning, followed by an increase in beta
power over time, indicating cognitive involvement in
motor sequence learning

• Faster RTs and higher accuracy rates are rates are
associated with explicit learning conditions compared
to implicit and random conditions

• Changes in beta ERSPs correlate with behavioral
performance, suggesting beta ERD as a potential
biomarker for motor sequence learning

23 Espenhahn et al.
(2019)

• TN (OA) = 20 (final TN =38
gender distribution not defined)

• M = 7
• F = 12
• AR = 62–77
• TN (YA) = 20
• M = 8
• F = 11
• AR = 18–30

• a novel wrist flexion/extension
tracking task & subsequently retested
at two different time points
(45–60 min and 24 h after initial
training). Scalp EEG was recorded
during a separate simple motor task
before each training & retest session

• Beta (15–30 Hz)
• Sensorimotor cortex, left superior parietal lobe,

inferior parietal lobe & left precentral gyrus
• Task-related EEG

• Motor performance during training was a robust
predictor of subsequent performance, but movement-
related beta activity explained more variance in
individual motor performance 45–60 min after
training, but not 24 h later.

• Cortical beta oscillations in the sensorimotor cortex
are associated with short-term motor performance
following visuomotor learning and may serve as
biomarkers for individual differences in motor
learning capacity.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

24 Frolov et al. (2020) • TN (OA) = 10
• M = 4
• F = 6
• AR = 55–72
• TN (YA) = 10
• M = 7
• F = 3
• AR = 19–33

• A fine motor task involves squeezing
one of their hands into a fist after an
audio signal and holding it until a
second signal. They performed this
task 30 times with each hand, for a
total of 60 repetitions

• Mu, Beta & Theta bands
• Task-related EEG

• Older adults showed significantly slower motor brain
response time (MBRT) compared to young adults,
particularly in mu (8–14 Hz) and beta (15–30 Hz)
frequency bands.

• In young adults, motor cortex activation was faster
during dominant hand movements, while in elderly
adults, motor activation was equally slow for both
hands, indicating a loss of dominant hand advantage
(approach

• Elderly adults exhibited increased theta-band (4–
8 Hz) activation broadly in frontal, central, and
parietal EEG sensors during the motor initiation
period, unlike young adults who showed less
pronounced theta activity.

• Functional connectivity analysis revealed stronger
midline theta connectivity in young adults,
associated with motor working memory and
perceptual-motor facility.

• In contrast, elderly adults had increased theta-band
connectivity involving central, temporal, and frontal
regions, suggesting reliance on more sensorimotor
integration mechanisms.

25 Ghasemian et al.
(2017)

• TN = 17
• M = all male
• AR = 18–22 yrs

• pursuit tracking motor skill task • Theta. alpha & beta band
• Frontal, central, parietal electrodes (contralateral

motor cortex)
• Task- related EEG
• On the first day, participants initially performed the

task as a pretest. Then, they practiced the task within
three blocks of five trials. Each trial lasted 60 seconds;
at the end of the day, they participated in a posttest
like the pretest (n¼3 trials). Participants then
practiced motor skills every other day for 5 days.

• Theta (θ) power increased at frontal site Fz on the last
training day compared to the first day.

• Alpha (α) power increased at central site Cz on the
last day compared to the first.

• Alpha coherence between Fz-T3 and Fz-Cz decreased
over the course of training.

• Beta (β) coherence between Fz-Cz was significantly
reduced from pre- to post-training.

26 Haar and Faisal
(2020a)

• TN = 30
• M = 18
• F = 12
• AR = 24 ± 3 yrs

• A real-world pool table billiards task
• Brain activity was recorded using

wireless EEG, & ball movements were
tracked with a high-speed camera

• Participants repeated trials of a pool
shot task, divided into 6 sets of 50
trials each, with short breaks
in between

• Beta band
• Left motor cortex., right motor cortex
• Task- related EEG

• Two distinct groups were identified based on PMBR
dynamics: PMBR Increasers & PMBR decreases

• PMBR Increasers showed an increase in PMBR over
learning, while PMBR Decreases showed a decrease

• PMBR increasers likely used error-based adaptation,
while PMBR Decreases likely used reward-based
reinforcement learning

• PMBR decreases exhibited higher initial variability &
a steeper decrease in variability over trials, indicating
more exploration early in learning

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

27 Haar and Faisal
(2020b)

• TN = 30
• M = 18
• F = 12
• AR = 24 ± 3 ys

• Shooting a target ball toward a pocket
on a billiards table

• Beta band
• Subcortical regions, cerebellum, basal ganglia
• Task- related EEG
• EEG was recorded during the task, specifically

throughout the entire learning process as subjects
performed repeated trials of a billiards task

• Two groups of subjects were identified based
on PMBR dynamics: dynamics: Increasers &
PMBR decreases

• PMBR increasers showed an increase in PMBR
over learning, negatively correlated with decreasing
directional errors, suggesting error-based adaptation

• PMBR Decreases showed a decrease in PMBR
over learning, positively correlated with decreasing
directional errors, suggesting reward-based learning

• PMBR decreases showing more exploration & a
steeper decrease in

28 Hamada et al. (2023) • TN = 15
• M = 10
• F = 5
• AR = 22.8 ± 3.0 yrs

• Ball rotation task clockwise (CW) &
counterclockwise (CCW) rotations

• alpha (8–13 Hz), beta (13–30 Hz), Low gamma
(30–50 Hz), High gamma (50–80 Hz) bands

• Task-related EEG
• Regions were identified based on significant

differences in EEG power spectra
• Right temporal region (fusiform gyrus) left parietal

area (CP3 and P3): corresponding to the superior
parietal lobule frontal region (right premotor area &
supplemental motor area), right temporal region:
right frontal region.

• Left lateral parietal region

• The number of rotations in the CW task increased
significantly from 11.6 ± 1.9 in the pre-test to 25.5
± 2.6 in the post-test. No significant changes were
observed in the CCW task

• Excess of low & high gamma band were observed
in the right frontal, left parietal, & right temporal
regions during the post-test.

• Positive correlations between the number of rotations
& EEG power values in the right frontal & right
temporal regions

• No significant increase in EMG activity was observed,
suggesting that changes in motor patterns were more
important than increases in muscle activity

• Neuromodulation interventions targeting gamma
band oscillations in specific brain regions could
enhance motor learning efficiency

29 Hamel-Thibault et al.
(2016)

• TN = 19
• M = 11
• F = 8
• AR = 21–34 yrs

• Simple motor task to make a
transition between two force levels

• Delta (2–4 Hz), alpha (8–12 Hz), beta bands
(15–30 Hz)

• Task-related EEG
• Contralateral motor regions

• Hand selection and reach reaction times (RTs)
were strongly dependent strongly dependent on
the instantaneous phase of delta oscillations at
target onset.

• This dependency was maximal over contralateral
motor cortical regions.

• Delta phase in the motor cortex contralateral to the
selected hand was related both to which hand was
chosen and how fast the reach was executed.

• There were no significant prestimulus modulations
in alpha (8–12 Hz) or beta (15–30 Hz) band
amplitudes related to

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

30 Hansen et al. (2022) • Total TN = 22
• Training group
• TN = 12
• M = 9
• F = 3
• Control group
• TN = 10
• M = 8
• F = 2
• Overall AR = 20.81–24.91 yrs

• The study on motor learning
improvement focused on a cup
stacking task, which is a highly
complex bimanual task that relies
heavily on visuo-motor coordination
and motor planning

• The task type involved participants
performing a series of cup stacking
trials, where they had to “up-stack“ &
“down-stack“ cups as quickly
as possible

• alpha (8–13 Hz), beta (13–30 Hz), and gamma bands
(31–50 Hz)

• EEG recordings were conducted during the cup
stacking task, where participants performed five
attempts to complete the task while surface EEG was
recorded throughout the entire attempt

• Additionally, a 30-s resting-state EEG recording was
conducted prior to the cup stacking protocols on
each test day

• The resting-state EEG data was used to normalize the
cup-stacking data across different participants & test
days

• High- & low-motor learning groups exhibited
different EEG activities when learning a new motor
skill

• Not only during action execution but also during the
observation of & preparation for

• Participants in the training group showed significant
improvements in their cup stacking performance,
with a considerable reduction in the time to
complete the task from Pre-test to Post-test. This
improvement was retained up to seven days after the
training session

• Training-related changes were observed in brain
areas associated with motor control, somatosensory
integration, & motor planning. Specifically, there
were reductions in alpha & beta power in the central,
parietal, and frontal EEG channels immediately after
the training session

• Retention of Motor Patterns: The training group
retained their new motor patterns, group continued
to improve with each trial

• EEG Power Changes: The reductions in alpha &
beta power in the frontal, central, and parietal areas
suggest that these regions are involved in the early
stages of motor learning & that their activity decreases
as the task becomes more automated

• Task Complexity and Cognitive Engagement: The
cognitive complexity of the cup stacking task likely
required engagement of additional neuronal circuits,
as indicated by the reduced alpha power in the
frontal area

31 Herozi et al. (2024) • TN = 26
• M = 26
• F = 0
• TN (OA) = 12
• AR = 55–70 yrs
• TN (YA) = 14
• AR = 20–30 yrs

• Digital mirror-tracing task • Alpha band
• Resting state & Task-related EEG
• Frontocentral and bilateral inferior frontal cortical

areas
• Impact of binaural acoustic beat (BAB) training on

motor learning in young and older adult individuals

• Alpha band activity may improve neural dynamics in
young & older adults, potentially enhancing motor
planning & aptitude.

• Further research is needed on imaging &
neuromodulation modalities evaluation of
concurrent BAB and minimally invasive
brain stimulation.

• Theta absolute power was observed in young groups
• Alpha: the use of alpha binaural beats (BAB) to

enhance motor learning & performance
• Involvement of Low Beta (12–16 Hz) in motor

performance and learning involvement of high beta
oscillations in older adults

• Gamma (25–45 Hz) in the left frontocentral cortical
zone in

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

32
Herz et al. (2011)

• TN = 13
• M = 7
• F = 6
• AR = 18–26 yrs

• Two unimanual motor tasks: fast
self-paced extension-flexion
movements with the right index
finger (referred to as FAST), an
isometric contraction of the right
forearm (referred to as ISO).

• θ-band (4–7 Hz), β-band (13–30 Hz), γ-band
(31–48 Hz)

• Alpha, Beta, Gamma bands
• Task-related EEG
• left primary motor cortex (M1), the lateral premotor

cortex (lPM), & the supplementary motor area
(SMA) in the left hemisphere.

• The Bayesian model selection favored a model
that accounted for both within- & cross-frequency
coupling in both extrinsic & intrinsic connections.

• Strong coupling within the γ-band and between
the θ- and γ-bands was observed during the FAST
condition, primarily in connections from lPM to
SMA and M1.

• ISO condition was characterized by significant
coupling coupling within the β-band, mainly in the
connection between M1 & SMA.

• The study revealed task-specific modulation of
inter-regional oscillatory coupling within the core
motor network, suggesting that the frequency of
oscillations may determine which connections of a
network are activated.

33 Hordacre et al. (2021) • TN = 18
• M = 8
• F = 10
• AR = 18–43 yrs

• The motor task involved recording
motor evoked potentials (MEPs) from
the right first dorsal interosseous
(FDI) muscle following TMS applied
to the left M1

• High beta band 20–30 Hz) & Low beta band
(14–19 Hz)

• Frontocentral region, contralateral parietal region, &
contralateral occipital region

• Rest EEG, prior to any brain stimulation

• Resting-state functional connectivity in the high beta
frequency band (approximately 20–30 Hz) was the
strongest predictor of response to cTBS.

• Resting-state EEG connectivity may thus serve as a
biomarker for responsiveness to brain
stimulation interventions.

34 Hübner et al. (2018) • TN = 38 OA
• M = 16
• F = 22
• AR = 65–74 yrs

• A precision grip force modulation
(FM) task

• Beta frequency band (13–30 Hz)
• Frontal cortex (specifically, contralateral to the

performing hand)
• Sensorimotor cortical areas (M1, S1), bilaterally The

study particularly analyzed electrodes over the
frontal, central, and centro-parietal region

• Resting state, task related EEG During the FM task
and at rest before and after the sessions.

• The acute exercise group showed greater immediate
improvement in fine motor performance after
exercise compared to the resting control group, with
a marginal significance.

• Exercise enhanced consolidation of short-term and
long-term motor memory. EEG beta activity (task
related power decreases) was stronger immediately
after exercise over contralateral frontal cortical areas,
possibly indicating enhanced cortical activation and
compensatory processes.

• No significant long-term effects on EEG beta power
at rest or on motor memory consolidation were
confirmed, though some tendencies suggested
benefits might depend on exercise load.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

35 Jahani et al. (2020) • TN = 24
• M = 16
• F = 8
• AR = 20–32 yrs (final TN = 23

gender distribution not defined)

• Ballistic movements with no
online corrections.

• A motor adaptation task in which a
visual rotation was introduced in
short series of trials separated by
unperturbed trials.

• Participants were instructed to
“shoot,” without stopping, one of
three possible visual targets

• Beta band
• Task-related EEG
• Sensorimotor regions, medial motor areas

• Beta-band activity in lateral central regions was
significantly modulated during the four period of
tasks, which correlates with implicit adaptive
triggered by movement-execution errors.

36 Jahanian Najafabadi
et al. (2023)

• TN (OA) = 41,
• Final = 31
• M = 22
• F = 19
• AR = 68.92, SD: 4.49
• TN (YA) = 37, final 26
• M= 15
• F = 19
• AR = 23.64, SD: 7.07

• A virtual tool-use training in AR,
visual feedback with/ without
vibro-tactile feedback

• Beta band,
• Resting state, task related EEG
• Sensorimotor, frontal, central, parietal, & occipital

areas

• Greater beta relative power predicts stronger Practice
effect in younger adults

• Lower Beta relative power predicts stronger practice
effect in older adults

37
Khanjari et al. (2023)

• 14 non-athlete students
• M = all male
• 7 participants with right-hand

dominance
• 7 participants with left-hand

(non-dominant hand)
• AR = 21–25 yrs

• Dart skill learning
• Dart throwing using both dominant

and non-dominant hands.

• Beta band (13–30 Hz)
• Frontal region (AF3, AF4) Central region (CP5, CP6)

Parietal-occipital region (PO3, PO4)
• Task-related EEG
• EEG signals were recorded during the dart throwing

skill in three phases: pre-test (before training),
during acquisition, and retention (after training).

• During dart skill learning, EEG Beta activity showed
significant changes in frontal, central, and parietal-
occipital regions.

• Increased activity (energy) was observed in frontal
(AF3, AF4) and parietal-occipital (PO3, PO4)
regions, reflecting cortical engagement in learning.

• There was a decrease in activity in some central
regions (CP5, CP6) over time. Both dominant and
non-dominant hand groups showed learning-related
changes, but the EEG patterns differed between
these groups.

• Despite improvements in dart accuracy, cortical
activity remained relatively stable, supporting the idea
that neural reorganization underpins motor learning

• The cortical maps suggest that separate motor
programs likely control dominant and
non-dominant hands, aligning with the
proficiency model.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

38 Larsen et al. (2016) • TN = 16
• F = all female
• AR = 21–29 yrs

• Precision pinch movement
tablet-based motor practice game

• Beta band (15–30 Hz)
• Right primary motor cortex (electrode C4)
• Task-related EEG

• Tablet-based motor practice involving fast and
precise pinch movements with thumb and index
fingers of the non-dominant hand improved motor
performance—the number of pinched crabs increased
over three 10-min blocks of practice.

• Tablet practice improved manual dexterity; increased
corticomuscular and intermuscular coherence in the
beta band, indicating increased corticospinal drive

• Corticomuscular coherence (CM coherence) between
EEG from primary motor cortex and EMG from
finger muscles (abductor pollicis brevis [APB] and
first dorsal interosseous [FDI]) increased significantly
after tablet-based practice in the beta frequency band,
indicating enhanced corticospinal drive to the spinal
motoneurons controlling finger muscles.

• Intermuscular coherence (IM coherence) between
EMG of APB and FDI also increased in the beta band
after practice.

39 Liu et al. (2017) • TN (OA) = 24
• TN (YA) = 18
• AR (OA) = 60–78 yrs

• Finger tapping task • Beta, alpha bands
• Task-related EEG

• Phase locking in the δ-θ frequency band, which is
band, which is associated with movement execution,
is not affected by age.

• Post-movement beta amplitude is diminished in
older subjects & is related to age-related deficits in
motor accuracy.

• The post-movement beta amplitude in the medial
prefrontal cortex (mPFC) positively correlates with
the accuracy of motor performance in older subjects.

40 Lum et al. (2023a) • TN = 50
• M = 17
• F = 33
• AR = 19–37 yrs

• Serial reaction time task;
unknowingly repeat a sequence of
finger movements in response to a
visual stimulus

• Theta, beta, & alpha bands
• Task related EEG
• The primary motor cortex, the supplementary motor

area, & the prefrontal cortex

• Changes in theta power are significantly associated
with the learning of implicit motor sequences.

• Increased theta power correlates with improved
performance on the SRT task, suggesting that theta
oscillations play a critical role a critical role neural
processes involved in implicit learning.

• Older adults may exhibit deficits in implicit motor
sequence learning compared to younger individuals.

• Relationship between increased theta power and
enhanced performance in the SRT task, reinforcing
the notion that brain oscillations are integral to

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

41 Lum et al. (2023b) • TN = 85
• M = 33
• F = 52
• AR = 18.3 & 59.2 years

• Serial reaction time task;
unknowingly repeat a sequence of
finger movements in response to a
visual stimulus

• Theta, alpha & beta bands
• Resting-state EEG data were acquired recorded

before the task to examine correlations between EEG
spectral spectral power and implicit learning

• Lower levels of theta power during the SRT task may
promote implicit sequence learning by disengaging
explicit learning and memory mechanisms

• Lower levels of theta was associated with implicit
sequence learning on the SRT task implicit sequence
learning would be negatively correlated with resting
state beta and theta power and positively correlated
with resting state alpha power.

42 Manuel et al. (2018) • Exp Group TN = 12
• M = 7
• F = 5
• AR = aged 22 ± 4
• Ctrl Group TN = 12
• M = 7
• F = 5
• AR = aged 23 ± 5

• Mirror drawing task
• Exp group performed a computerized

classic mirror-drawing task
• Control group performed a similar

task but with concordant direction of
cursor movement as a measure of
motor execution.

• Alpha, beta bands
• Frontal and central electrodes
• ERD, ERS
• Resting state/Task-related EEG

• No association between parietal or motor functional
connectivity networks during the first 20 min
after training and offline consolidation. These
results indicate that the left parietal resting-state
network engaged before training plays a specific
role in preparing the brain for the upcoming tasks
rather than contributing to the consolidation of
training gains

• Alpha-band wholebrain FC is primarily implicated in
providing optimal neural resources before a task.
This clarifies previous evidence for between
alpha-band FC and behavioral performance

43 Mak et al. (2013) • TN = 10 M = 7 F = 3 AR = 26 ±
3 yrs

• Computerized visual-motor task
similar to mirror drawing

• Trace a heptagon on a computer
screen with a mouse, while the
screen/mouse movement was
reversed left-right, mimicking the
classic mirror-drawing paradigm

• Delta (1–4 Hz)
• Gamma (36–44 Hz)
• Only the frontal region (forehead) was examined,

given the single-channel headset design
• EEG was recorded during the motor task

• As participants became more familiar with the task
with the task through repetition:

• EEG power in all bands generally decreased,
especially in delta and gamma bands.

• Delta band power (frontal EEG) was significantly
negatively correlated with both task accuracy and the
normalized familiarity index for the entire trial.

• Gamma band power (frontal EEG) was significantly
and negatively correlated with task familiarity,
suggesting its potential as a marker for early
learning progress.

• The study demonstrates the possibility of monitoring
motor learning progress using

• consumer-grade, single-channel frontal EEG devices
• Decreases in Delta and Gamma power indices

correlated with increased task familiarity
and performance.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

44 Meadows et al. (2016) • TN = 20 M = 15 F = 5 AR = 22.3
± 3.6 yrs

• 4 blocks of 42 trials of a reaction time
task by squeezing a hand
dynamometer in dynamometer in
response to an auditory “go” signal
and offering a particular monetary
incentive.

• Frontal, central, parietal
• Task-related EEG

• Examined motor cortical beta suppression and
motivation effects on effects on motor performance.

• Beta-suppression was measured over motor cortical
regions using 32-channel EEG during task-related
motor preparation.

• Motivation was manipulated with monetary
incentives on each trial.

• Both motivation and motor cortex beta-suppression
independently influenced premotor reaction time.
recorded during active task performance (motor
preparation), not rest.

45 Mehrkanoon et al.
(2016)

• TN = 20
• M = 10
• F = 10
• AR = 21.3 ± 1.8 years

• A dynamic force task required to
make a transition 146 between two
force levels as fast and accurately as
possible

• Mu & beta bands
• 112 anatomically defined regions of interest (ROIs)

according to the macroscopic anatomical
parcellation of the MNI template using the
automated anatomic labeling (AAL) map

• Resting state & Task-related EEG

• Motor skill acquisition involves critical interactions
between the cerebellum and primary motor cortex.

• Following a single session of motor training with
a dynamic force task, resting-state functional
connectivity was significantly upregulated mainly
within the cerebellum and between the cerebellum
and motor cortex.

• These connectivity changes were specifically observed
in the mu- and beta-frequency bands of brain activity.

• An increased phase lag cerebellar activity after motor
practice, indicating a reorganization of intrinsic
cortico-cerebellar connectivity associated with
motor adaptation.

• The potential of EEG source connectivity analysis to
reveal neural plasticity processes related to
motor learning.

46 Mottaz et al. (2024) • TN = 20
• M = 7
• F = 13
• AR = 28.7 ± 5.6 yrs

• Finger tapping task (FTT) • Alpha (13–30 Hz)
• Right primary motor & dorsolateral premotor cortex

Right striatum (putamen and caudate nucleus, right
Medial Temporal Lobe (MTL, including
Hippocampus and Para hippocampus)

• Resting state (pre & post-test), task-related EEG

• Sequence learning and consolidation were successful,
shown by improved sequences per minute from pre-
test to re-test.

• Higher resting-state alpha-band functional
connectivity (FC) in motor areas and medial
temporal lobe (MTL) FC during training predicted
better learning.

• A decrease in beta-band FC in the MTL from before
to after training also predicted learning.

• Long-term expertise was linked to alpha-band FC
in motor areas and striatum, beta-band FC during
training, and years of piano playing.

• Changes in striatum FC predicted consolidation.
rather than local oscillations predicted learning,
consolidation, and expertise, highlighting the
importance of communication between
brain regions.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

47 Muthuraman et al.
(2012)

• TN = 18
• M = 10
• F = 8 AR (20–52 yrs) = (mean: 29

± 5)

• Finger movements, bilateral rhythmic
hand movements, and isometric
contractions

• Corticomuscular coherence in the 15–30 Hz band
• Task-related EEG-EMG
• Primary sensorimotor cortex (lateral areas).

Premotor areas (particularly for higher-order
coordination). Frontal midline region

• Significant corticomuscular coherence was found
at the voluntary movement frequency or its first
harmonic in all subjects

• The 15–30-Hz coherence during isometric
contractions was restricted to the contralateral cortex

• Bilateral voluntary rhythmic movements were
represented in a bilateral cortical network, including
both sensorimotor cortices and occasionally
premotor area

• The strength of interactions between both hands’
networks correlated with peripheral coupling

48 Nakano et al. (2013) • TN = 20
• M = 16
• F = 4
• AR = 21.3 ± 2.3 yrs

• Ball rotation task in which two balls
were rotated clockwise with the right
hand

• Alpha −2 & Beta−2 bands
• Parietal cortex (parietal lobe) & Frontal cortex
• Task-related EEG

• The study results indicated that in addition to
EEG activity during action execution, EEG activities
during action observation and preparation were
associated with motor skill improvement.

• Specific decreases in alpha-2 and beta-2 EEG rhythms
in parietal and frontal cortical areas during the
observation, preparation, and execution of a motor
task. This suggest the involvement of these brain
rhythms in sensorimotor integration and motor
control processes associated with action observation
and execution.

• Similar neural mechanisms are engaged during both
watching and performing movements, highlighting
the role of these EEG rhythms in motor learning
and execution.

• The functional significance of alpha and beta rhythm
modulations in motor-related cortical areas for both
observing and preparing/executing movements.

49 Nakayashiki et al.
(2014)

• TN = 11
• AR = 19–23 yrs
• Gender not defined

• Spatial correspondence between the
stimulus & response locations

• Close/open their right hand
repetitively at three different speeds
(Hold, 1/3 Hz, and 1 Hz) and four
distinct motor loads (0, 2, 10, and 15
kgf). In each condition, participants
repeated 20 experimental trials, each
of which consisted of rest (8–10 s),
preparation (1 s) and task (6 s)
periods. Under the Hold condition,
participants were instructed to keep
clenching their hand (i.e., isometric
contraction) during the task period.

• Mu & beta bands
• Task- related EEG
• Primary motor area C3/C4

• Repetitive hand grasping movements resulted in
salient mu-ERD (8–13 Hz), & slightly weak slightly
weak beta-ERD (14–30 Hz) in both hemispheres.

• The strength of mu & beta-ERD was significantly
weakened under the “Hold“ condition (isometric
contraction), compared to the other speed and
load conditions.

• The strength of ERD may reflect the time
differentiation of hand postures in motor planning or
the variation of rather than the motor
command itself.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

50 Ozdenizci et al. (2016) • TN = 21
• M = 14
• F = 7
• AR = 23.8 + 3.1 yr

• A force-field adaptation task
involving 2D center-out reaching
movements using a robotic handle.

• Beta band (15–30 Hz) the primary frequency band
predictive of motor adaptation learning

• Other bands studied (theta 4–7 Hz, alpha 8–14 Hz,
gamma 55–85 Hz) but were not significantly
predictive.

• Resting-state EEG & Task-related
• Sensorimotor cortical areas (two independent

components, IC 5 and IC 6)
• Fronto-parietal attention network (IC 1 and IC 4)
• Parieto-occipital cortical region (IC 3, strongly

predictive)
• A subcortical source (IC 2) also contributed

• a distributed network of beta-frequency brain regions
active both at rest and during task preparation
preparation that predict and relate to motor
adaptation learning in a force-field reaching task

• Subjects with higher adaptation rates showed a
significant decrease in pre-trial beta power in
sensorimotor and while those with lower adaptation
rates showed increases, indicating distinct EEG
modulation patterns linked to modulation patterns
linked to learning performance.

• Resting-state beta power increased significantly after
the motor learning task over the course of adaptation.

• Motor learning relates to distributed cortical
reorganization, not limited to primary motor areas.

51 Pangelinan et al.
(2011)

• Total TN = 45 healthy
right-handed females 3 groups (n
= 15 each):

• Young children mean ages 6–7 yrs
• Older children 9–11 yrs
• Adults 22.1 yrs

• A computerized, center-out visually
guided aiming line drawing task

• Participants made line-drawing
movements from a central “home”
position to one of two targets on the
monitor with movement planned and
executed as precisely and quickly as
possible. Sixty discrete aiming trials
were performed per participant

• Alpha (8–12 Hz) and Beta (13–30 Hz) bands
• Frontal (F3, Fz, F4)
• Central (C3, Cz, C4)
• Parietal (P3, Pz, P4)
• Occipital (O1, O2, though excluded from final

analysis due to technical issues)

• Young children (6–7 y) showed: Less movement-
related negativity (weaker MRCPs) in
frontal/sensorimotor regions during planning
and execution.

• Greater task-related alpha desynchronization
in frontal areas, less in parietal; reliance on
frontal planning.

• Slower, jerkier, and less consistent
movement kinematics.

• EEG and kinematics correlation: worse kinematics
(slower/jerkier) were associated with higher frontal
activation and lower sensorimotor area priming.

• Older children and adults:
• More efficient activation of sensorimotor areas

(stronger MRCPs/C3 negativity).
• Less frontal reliance, more distributed and parietal

engagement.
• Smoother, faster, and more consistent movements.
• Functional EEG-behavior relationships show that

age-related improvements in motor
learning/kinematics are paralleled by more efficient,
localized neural activation patterns

52 Penalver-Andres et al.
(2022)

• TN = 36
• M = 22
• F = 14
• AR = 20–59 yrs

• Virtual surfing, requiring participants
to steer a virtual boat using a joystick
to surf waves as quickly as possible to
a finish line following a resting-state
EEG recording alternating between
EO & EC conditions

• Alpha band
• Resting-state EEG
• Sensory-motor regions
• Functional connectivity Somatosensory evoked

potential (SEP) & vent-related desynchronization
(ERD),

• Effective connectivity by the phase slope index (PSI)

• Higher contribution of Microstate 3/C (posterior
DMN) during resting-state was associated with
poorer motor performance, indicated by longer
completion times in the motor task

• The presence of Microstate 4/D (AN) did not show a
significant association with any behavioral metrics

• Age & gaming/sailing experience were not significant
confounding factors in the main findings

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

53 Perfetti et al. (2011) • TN = 17
• M = 14
• F = 3
• AR = 21.2 ±1.4 yrs

• Participants were instructed to match
the preprogrammed template while
visual feedback was available

• Theta band (4–8 Hz); alpha band (8–12 Hz); low beta
13–18 Hz; high beta 18–30 Hz

• Task-related EEG
• Frontal midline regions (theta activity)
• Central contralateral motor cortex areas (alpha and

beta activity)
• Frontal and electrodes show learning effects (theta

changes)
Central contralateral electrodes (alpha and beta
desynchronization linked to success)

• Initial learning is associated with enhancement of
gamma power in a right parietal region during
movement execution as well as gamma/theta phase
coherence during movement planning.

• Stages of learning are instead accompanied by
an increase of theta power over that same right
parietal region during movement planning, which is
correlated with the degree of learning and retention.

• Gamma/theta phase coupling plays a pivotal role
in the integration of a new representation into
motor memories

• Theta enhancement during planning and, adaptation
and retention indices suggest that theta oscillations
are involved in the sustained representation and
retrieval of new internal models.

• Theta band in reaching and motor learning and in
memory acquisition, retention, and retrieval in
verbal and spatial working memory tasks

54 Pitto et al. (2011) • TN = 7
• M = 5
• F = 2
• AR = 24 ± 1 yrs

• 2D ball putting task
• Participants grasped the handle of

manipulandum & had to hit a virtual
ball in order to put it into a target
region (hole).

• The robot was used to render the
contact force with the ball during
impact. At every trial, with respect to
the initial ball position, the hole
appeared in one of three different
directions & two distances,
selected randomly.

• Alpha, beta, theta bands
• Resting state & task related EEG
• EEG signals were recorded before and during each

movement
• Frontal midline regions (theta activity)
• Central contralateral motor cortex areas (alpha and

beta activity)
• Frontal and fronto-central electrodes show learning

effects (theta changes)
• Central contralateral electrodes (alpha and beta

desynchronization linked to success)

• EEG results showed increased frontal theta
synchronization with practice.

• .Successful trials were preceded by higher
theta synchronization and alpha and
beta desynchronization.

• EEG patterns suggest they can monitor motor
learning progress and predict trial success or failure

55 Pollok et al. (2014) • TN = 15
• M = 7
• F = 8
• AR = 28.0 ± 2.3 years

• Serial reaction time task
• Oscillatory activity as a function of

time was analyzed by calculating
event-related desynchronization
(ERD) individually for each condition

• Alpha (8–12 Hz) & beta band (13–30 Hz)
• Primary sensorimotor cortex (S1/M1)
• Resting-state MEG data Neuromagnetic activity was

non-invasively recorded with a 306-channel
whole-head MEG system

• Since a pure resting baseline was not given, we
defined the entire interval (−2, −3 s) as baseline.

• The correlation between beta suppression &
improvement in reaction times

• Subjects showing faster reaction times associated with
stronger beta power suppression implicit learning
might subjects using an explicit learning strategy
rather prefrontal & premotor areas than M1 might be
involved in motor learning and consolidation.

• Involvement of the dorsal premotor cortex (dPMC)
during early learning was shown

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

56 Quandt et al. (2016) • Total TN = 66
• TN = 32 OA; M = 13; F = 19; AR

= 61–81 yrs
• TN = 34 YA; M = 20; F = 14;

AR+ 19–34 yrs

• Finger sequence task (learning and
executing a digit sequence).

• Pinch grip and whole hand grip task
(repetitive gripping).

• Alpha (8–13 Hz) and beta (13–25 Hz) bands
• Sensorimotor cortex (contralateral and ipsilateral)
• Premotor cortex
• Supplementary motor areas
• Frontal areas
• Task-related EEG
• EEG was recorded during the motor tasks (e.g., finger

movement, pinch, hand grip). Baseline recordings
were performed pre- and post-experiment at rest.

• Elderly participants showed more widespread
and broadband power desynchronization during
movement, with higher spectral entropy indicating
less predictable

• Young participants exhibited more distinct, peaked
desynchronization in Alpha and upper Beta bands
related to specific motor activities.

• The increased spectral entropy in elderly
suggests either less specialized neural coding
or a compensatory, noise-like activity in their
motor networks.

• Elderly participants recruited a more extensive
cortical motor network, involving bilateral
primary motor areas, premotor, and supplementary
motor areas.

• The spectral distribution of motor oscillations differs
with age, with broader, frequency-unspecific
responses in older adults.

57 Ricci et al. (2019) • TN = 26
• TN = 13 O A; M = 7; F = 6; AR =

57.5 ±8.2 yrs
• TN = 13 YA; M = 3; F = 10; AR =

24.2 ± 4.5 yrs

• 30-min center-out reaching task
(MOT): move a cursor with right
hand to targets appearing randomly
on screen using a digitizing tablet.
Eight hundred and forty target
presentations total (15 sets of 56 each)

• Beta band (15–30 Hz)
• Left sensorimotor cortex (centered around C3

electrode) Frontal region (centered between Fz and
F3 electrodes)

• Task-related EEG EEG During the execution of the
task, synchronized with behavioral events

• Investigates how Beta oscillatory activity (ERD/ERS
and modulation depth) changes with task practice
and reflects motor skill acquisition/plasticity in both
younger and older adults.

• Both younger and older adults showed a practice-
related increase in beta modulation depth
(larger difference between ERS and ERD) in
left sensorimotor and frontal regions during the
reaching task.

• Older adults had slower and less accurate movements
but exhibited similar beta modulation increases
during practice as younger adults, suggesting
plasticity-related beta changes are preserved with age.

• ERS peak latency was delayed in older adults,
correlating with total movement time, but overall
magnitude of beta modulation did not differ.

• No direct correlation was found between beta
modulation magnitude and motor performance
parameters, indicating beta oscillations reflect
sensorimotor integration/plasticity rather than
simple performance features.

58 Rogala et al. (2020) • TN = 36
• M = 36 all male
• 33 participants’ data used for the

visual search task
• 23 participants’ data for the

shooting task after exclusions
• AR = 21.97 ± 1.88 years

• Visual search task & shooting task • Alpha & beta bands
• Frontal, frontocentral, central, centroparietal,

parietal, parietooccipital, & occipital regions
• Resting-state & Task-related EEG

• The beta-2 band (22–29 Hz) activity was correlated
with behavioral performance in both visual search &
shooting tasks

• Higher resting-state beta-2 power (gB2rest) is
associated with longer reaction times & lower
shooting scores

• Weaker intrinsic frontoparietal & fronto-occipital
connections are linked to better behavioral
performance & greater capacity for
network reconfiguration

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

59 Rosjat et al. (2024) • TN = 27
• M = 16
• F = 11
• AR = 22–34 yrs

• Finger-tapping task • Alpha band
• Connectivity was analyzed across 150 parcels defined

by the Destrieux atlas, focusing on regions relevant
to motor and attention networks

• Resting-state & Task-related EEG

• Four microstates were identified, showing no
significant changes significant changes between
pre-task (RS1) & post-task (RS2) resting states

• Four connectivity states were identified, with CS, D
serving as a transition state. The coverage of CS, C
increased significantly

60 Rueda-Delgado et al.
(2019)

• TN (YA) = 24
• M = 11
• F = 13
• AR = 21–32 yrs
• TN (OA) = 24
• M = 14
• F = 10
• AR = 60–74 yrs (4 older adults

excluded final gender distribution
not defined)

• A bimanual coordination task • Alpha & Beta bands
• ROIs: were selected from the thresholded F-maps

based on the local maxima (VMPFC: ventro-medial
prefrontal cortex; PMV: premotor ventral; LTL:
lateral temporal lobe; AMPFC: antero-medial
prefrontal cortex; M1/S1: sensorimotor cortices;
MTL: medial temporal lobe)

• Resting state, task- related EEG

• Investigated how aging affects the neural mechanisms
underlying the learning of a complex bimanual
coordination task, as measured by changes in alpha
& beta power in the brain.

• Coordination level showed that age- related
differences associated with learning occur across
the spectrum of frequency bands.

• Older adults showed lower task performance & less
improvement in practice compared to younger adults.

• Heterogeneous changes were observed in EEG
spectral power with practice, with both increases
and decreases observed in different brain regions &
frequency bands, and these changes differed between
the age groups.

• Older adults started with higher levels of neural
activity (lower spectral power) compared to younger
adults, but ended up at similar levels after practice,
likely due to greater decreases in spectral power in
the younger group. This difference in neural activity
patterns may explain the learning deficit in
older adults.

61 Ryu et al. (2016) • TN = 16
• M = 10
• F = 6
• AR = 24–31 yrs

• Cognitive task is a computer version
of the Omok game

• Motor task is a computer version of
Alkkagi game (also a board game)

• Alpha, beta bands
• Fz (frontal lobe), F3 (left frontal), F4 (right frontal

lobe), Cz (central sulcus), C3 (center left), C4 (center
right), P3 (left parietal lobe), and P4 (right parietal
lobe)

• Task-related EEG

• Greater frontal theta activity when subjects perform a
cognitive task than in performing a motor task

• No differences in alpha power and beta power
between the two tasks.

(Continued)

Fro
n

tie
rs

in
A

g
in

g
N

e
u

ro
scie

n
ce

3
2

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnagi.2025.1646172
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jah
an

ian
-N

ajafab
ad

ian
d

D
avo

o
d

i
1

0
.3

3
8

9
/fn

ag
i.2

0
2

5
.1

6
4

6
1

7
2

TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

62 Sallard et al. (2014) • TN(YA) = 29
• M = 14
• F = 15
• AR = 19–29 yrs
• TN (OA) = 27
• M = 12
• F = 15
• AR = 60–83 yrs

• Unimanual Tapping (UM) &
Bimanual Tapping (BM)

• Low beta (14–20 Hz), & high beta (20–30 Hz) bands
• Right premotor cortex (BA 6)
• Right cingulate cortex (BA 24)
• Left superior parietal lobule (BA 5)
• Left occipital lobe
• Task-related EEG

• Significant interaction between tapping condition &
age group, with lower variability in BM than UM in
young participants but not in the elderly

• The elderly showed a decline in kinesthetic
processing, leading to increased variability in tapping

• Lower beta power was observed in the left superior
parietal lobule during UM & in the left occipital lobe
during BM in the elderly

• Beta power was generally lower in BM than UM
across both age groups

63 Schättin et al. (2016) • TN = 30 but final = (27)
• AR = 79.2 ± 7.3 yrs Exergame

group:
• TN = 13
• M = 8
• F = 5
• AR = 79.2 ± 7.3 yrs Balance group:
• TN = 14
• M = 7
• F = 7
• AR = 79.2 ± 7.3 yrs

• Video game-based physical exercise:
exergame tasks: included “Balloon,”
“Step,” “Space,” & “Season“ games,
which required participants to
perform specific whole-body
whole-body movements on a
pressure-sensitive plate

• Balance training tasks: included static
& dynamic exercises on stable &
unstable surfaces, performed in either
bipedal or monopedal
stance positions

• Total band width (1–30 Hz), delta (1–3.5 Hz), lower
theta (3.5–5.5 Hz), upper theta (5.5–7.5 Hz), lower
alpha (7.5–10 Hz), upper alpha (10–12.5 Hz), and
beta (12.5–30 Hz).

• Prefrontal cortex: the study focused on prefrontal
brain activity, particularly in the Fp1 and Fp2 regions
according to the 10–20 EEG system

• Task-related EEG

• Theta relative power significantly decreased in the
exergame group, which contrasts with the expected
increase due to aging

• The exergame group showed significant working
memory, divided attention, go/no-go, and
set-shifting, while the balance group only improved
in set-shifting exergame group showed significant
improvements in gait speed, cadence, & stride length
during dual-task walking, while the balance group
showed improvements primarily in
single-task conditions

64 Studer et al. (2010) • TN = 30 (after final exclusion 16
remains in total)

• F = all female
• AR = mean Age = 25.3 years, SD

= 4.4 years

• continuous visuomotor tracking task • Theta (4–8 Hz), Lower alpha (8–10 Hz), Upper alpha
(10–12 Hz), Lower beta (12–20 Hz), and upper beta
(20–30 Hz)

• Task-related EEG with rest intervals
• Sensorimotor cortex

• Frontal EEG activities in delta and theta bands of the
whole trial Gamma band in the middle of the trial
are having a significant negative relationship with the
overall familiarity level of the task.

• Performance Improvement: Both groups showed
significant improvements in task performance over
the course of practice

• Task-Related Power Decrease: A reduction in Task-
Related Power Decrease in the lower beta band
was observed, indicating reduced motor-related
cortical activation

• Differences: The massed practice group showed a
higher task-related theta power in later training
blocks, indicating higher cognitive load & attentional
demands compared to the distributed practice group

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

65 Sugata et al. (2020) • TN = 53
• M = 31
• F = 22
• AR = 32.9 ± 6.7 yrs

• Sequential motor learning task
(SRTT) & random button-press

• Alpha & beta bands
• Primary motor area (M1), sensorimotor cortex:

Superior temporal gyrus, opercular inferior frontal
gyrus, parietal areas

• Resting state & task-related EEG

• Negative correlations were found between beta-band
rs-FC & motor learning index, particularly in the left
superior temporal gyrus, bilateral sensorimotor areas,
opercular frontal gyri & parietal areas

• No significant correlations were observed between
alpha-band rs-FC and motor learning index

• Good & poor learners could be distinguished based
on the strength of rs-FC between M1 & specific brain
regions, with classification accuracy ranging from
70.1% to 76.0%

66 Titone et al. (2022) • TN = 27
• M = 14
• F = 13
• AR = 23.6 +- 3.3 yrs Behavioral

analyses: Task training n = 24 task
retest n = 20 EEG analyses:
pre-post n = 21 Correlation with
online gains n = 18 Correlations
with offline gains n = 15

• Digital version of the classic pursuit
motor task motor learning paradigm

• An explicit bimanual finger-tapping
task implemented in MATLAB with
Psychophysics Toolbox version 3

• Alpha, beta, gamma & bands
• The 21 chosen ROI were defined in the Montreal

National Institute (MNI) space & then projected to
individual space.

• Parietal regions
• Resting-state EEG

• The strength of the gamma-band connectivity at rest
would also be related to motor performance.

• Brain-behavior correlation analyses revealed
that baseline beta, delta, and theta rsFC were
related to subsequent motor learning and memory
consolidation such that lower connectivity within the
motor network and between the motor and several
distinct resting-state networks was correlated with
better learning and overnight consolidation.

• Training-related increases in beta-band connectivity
between the motor and the visual networks were
related to greater consolidation.

67 Tzvi et al. (2016) • TN = 73
• M = 36
• F = 37
• AR = 18–31 yrs

• Serial reaction time task (SRTT) • Theta (4–8 Hz), Alpha (8–13 Hz), and low Gamma
(30–48 Hz)

• Central electrodes, sensorimotor event-related
desynchronization (ERD)

• Resting-state & Task-related EEG

• Larger alpha power was observed over posterior
parietal areas during the first learning session (SES1),
which decreased in later sessions (SES3)

• Theta power was during early learning over parietal
areas and decreased in later sessions

• Increased gamma power was found over right parietal
areas during initial learning stages

• Reduced alpha/low-gamma PAC was observed over
right parietal and bilateral frontal cortex
during learning

(Continued)

Fro
n

tie
rs

in
A

g
in

g
N

e
u

ro
scie

n
ce

3
4

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnagi.2025.1646172
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jah
an

ian
-N

ajafab
ad

ian
d

D
avo

o
d

i
1

0
.3

3
8

9
/fn

ag
i.2

0
2

5
.1

6
4

6
1

7
2

TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

68 Usanos et al. (2020) • TN = 12
• M = 3
• F = 9
• AR = 21–47 yrs

• Pursuit tracking task basal recording:
a total of 18 min of basal activity are
recorded, divided into 3 parts (each
6 min long) with a rest of
approximately 1 min between each.

• Imaginary motor task: the imaginary
task consists of simulating, without
muscle activation, rapid extension of
the wrist followed by brief relaxation.
This phase lasts approximately 40 min

• Actual motor task: the same
characteristics and duration of
imaginary motor task.

• Gamma band activity (GBA)
• Cerebral motor areas
• Task-related EEG

• ERS could provide a useful way of indirectly checking
the function of neuronal motor circuits activated by
voluntary movement, both imaginary and actual.
These results, as a proof of concept, could be applied
to physiology studies, brain–computer interfaces,
and diagnosis of cognitive or motor pathologies.

69 Van Der Cruijsen et al.
(2021)

• TN = 20
• M = 7
• F = 13
• AR = 18–30 yrs

• Sequential visual isometric pinch
tasks in a counterbalanced order: a
complex motor task (CMT) that has
been shown to induce learning over
many repetitions and a simple motor
task (SMT) which required little to no
learning over repetitions.

• Theta (5–8 Hz) and alpha band (8–12 Hz)
• Task-related EEG
• M1, CC regions, aMCC, anterior mid-cingulate

cortex; cM1, contralateral primary motor cortex;
iM1, ipsilateral primary motor cortex; pMCC,
posterior mid-cingulate cortex; PCC: posterior
cingulate cortex.

• Contralateral primary motor cortex (cM1) theta &
alpha power, but not beta power, are positively
associated with motor learning

• Theta & alpha power in the posterior mid-cingulate
cortex (pMCC) & posterior cingulate cortex (PCC)
are also positively associated with motor learning.

• No association between M1 beta power and learning,
but the CMT produced stronger bilateral beta
suppression compared to the SMT.

• Positive association between contralateral M1 theta
(5–8 Hz) & alpha (8–12 Hz) power & motor learning,
& theta & alpha power in the posterior mid-CC and
posterior CC were positively associated with greater
motor learning.

• M1 beta power is associated with the capability of
performing a motor task, but not with learning
the task.

70 Veldman et al. (2017) • TN = 24
• M = 10
• F = 14
• AR = 21.0 ± 1.7

• visuomotor task
• After randomization, participants

performed a motor practice (MP)
intervention in a visuomotor skill for
15 min with the right-dominant hand
(n = 12) or rested for 15 min
(Control, n = 12).

• On Day 1 of two visits on consecutive
days, participants performed baseline
measurements while EEG was
recorded including resting-state EEG,
ERD, and N30 SEPs, became
familiarized, & were tested for the
visuomotor task with each hand.

• Immediately (Day 1) and 24 h (Day 2)
after MP or Control, we repeated
baseline measurements to determine
the immediate & delayed effects of
visuomotor practice on motor
performance and EEG measures.

• Alpha & beta bands
• Resting state & task-related EEG

• The algorithm practice, due to optimal activity in
the frontal lobe (medium alpha & beta activation
at prefrontal), resulted in increased activity of
sensorimotor areas (high alpha activation at C3 and
P4) in older adults.

• Similar conditions could affect the intertrial interval
period (medium alpha and beta activation in frontal)
while the dissimilar conditions could affect the motor
period (medium alpha and beta activation)

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

71 Veldman et al. (2021) • TN (YA) = 24
• M = 10
• F = 14
• AR = 18–24 yrs
• TN (OA) = 24
• M = 11
• F = 13
• AR = 65–87 yrs

• The visuomotor task consisted of
following a template using right- &
left wrist flexion & extension
movements

• Alpha & beta band
• Resting state & task- related EEG
• Sensorimotor regions, left M1 & right M1

• Both younger and older adults showed similar
right-hand skill acquisition and consolidation, no
significant age differences for the trained hand
interlimb transfer to the left (untrained) hand was
reduced in older adults compared to younger adults.

• EEG connectivity focused on the beta band (13–
30 Hz) involving the primary motor cortex.

• Older adults showed age-dependent modulation in
bilateral motor network connectivity

72 Vieluf et al. (2018) • TN of young novices = 14
• M = 5
• F = 9
• AR = 20–26 yrs
• TN of late middle-aged novices =

12 M = 5
• F = 7
• AR = 57–67 yrs
• TN of late middle-aged experts =

14
• M = 6
• F = 8
• AR = 57–67 yrs

• Force maintenance task: Precision
grip task

• Alpha band (8–13 Hz) and also low beta (13–20 Hz),
high beta (20–30 Hz), and theta (4–8 Hz) bands

• Resting-state & task-related EEG
• Sensorimotor regions, the frontal & occipital regions

• Late middle-aged novices showed more variable and
less complex force control performance than young
novices and experts.

• A decrease in overall network activity was observed in
the alpha band (8–13 Hz).

• Aging leads to deterioration in force control reflected
in behavioral variability and neural network activity.

• Deliberate practice can age-related declines by
modifying sensorimotor and attentional
brain networks.

73 Wang et al. (2022) • TN = 21
• M = 11
• F = 10
• AR = aged 23.29 ± 3.47 yrs

remained and defined: 15
participants (8 females; age 22.73
± 2.69 years old

• Functional motor task focused on
reaching & fine motor control

• Participants use their non-dominant
hand to transfer beans from a central
“home” cup to three target cups,
completing 15 reaches completing 15
reaches per trial.

• Performance is measured by elapsed
time, with only five training

• Alpha & Beta bands
• Contra- and ipsilateral frontal cortex, motor cortex &

parietal cortex
• Resting state 2-min eyes closed, then

Visuospatial/Constructional Index (RBANS) the
Assessment of Neuropsychological Status (RBANS)
then motor task in 5 trials

• Age-related deterioration in motor performance was
more pronounced with increasing task difficulty &
was accompanied by a more bilateral activity pattern
for older vs. younger adults.

• Task difficulty affected motor skill retention & neural
plasticity specifically in older adults.

• Older adults that practiced at the low or medium, but
not the high, difficulty levels were able to maintain
improvements in accuracy at retention & showed
modulation of alpha after practice.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

74 Wong et al. (2013) • TN = 38
• M = 21
• F = 17
• AR = 22.1 ± 2 yrs

• Performed 8 trials of a computerized
visual–motor task similar to
mirror drawing

• Trace within the boundary of the
tetradecagon (within the boundary)
with a with a computer mouse.

• Participants were given no longer
than 301 s to complete the tracing.

• Delta, theta, alpha, gamma & beta bands
• Theta (4–8 Hz), Lower Alpha (8–10 Hz), Upper alpha

(10–12 Hz), Lower Beta (12–20 Hz), and Upper Beta
(20–30 Hz)

• Task-related EEG
• Prefrontal cortex & primary motor cortex

• EEG power spectra decreased with an increase in
motor task familiarity.

• Frontal EEG activities in delta & theta bands of the
whole trial & in gamma band in the middle of the trial
are having a significant negative relationship with the
overall familiarity level of

• Frontal EEG spectra are significantly modulated
during motor skill acquisition.

• Possibility of simultaneous monitoring of brain
activity during an unconstrained natural task with a
single dry sensor mobile EEG in an
everyday environment

75 Wu et al. (2014) • TN = 17
• M = 9
• F = 8
• AR = 22.1 ± 3.0 years (18–30 yrs)

• digital version of pursuit rotor task • Beta band
• Resting-state & task-related EEG
• Primary motor cortex, parietal cortex, &

frontal-premotor areas

• Practice was associated with task performance
• Partial least squares regression (PLS) model,

coherence with the region of the left primary motor
area (M1) in resting EEG data associated to a strong
predictor of motor skill acquisition

• EEG coherence can predict individual motor skill
acquisition with a level of accuracy that is
remarkably high

76 Wu et al. (2017) • TN = 32
• M = 14
• F = 18 AR = 19.4 ± 1.6 yrs, 18–30

yrs

• Serial reaction time task
• Performed the task using the

dominant, right hand.
• Wrist flexion resulted in the cursor

moving left on the screen & wrist
extension resulted in the cursor
moving right on the screen.

• To maximize consistency of
movements across two soft straps
were to the participants’ right forearm
to limit elbow movement.

• To standardize task difficulty, cursor
movements were normalized to each
participant’s active range of motion at
the wrist.

• High Beta (20–30 Hz)
• left M1 & left dorsal prefrontal cortex (dPF), left

lateral parietal cortex (latPAR) & left sensory cortex
(S1).

• Resting-state & task-related EEG

• Individual differences in brain connectivity,
particularly in the premotor and motor cortices,
significantly correlate with training-induced
improvements in performance on the motor
sequencing task.

• Higher coherence in specific frequency bands,
especially in the beta range, is associated with better
learning outcomes.

(Continued)
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TABLE 2 (Continued)

No. References Participants & age range Task type Frequency band of interest/ROI
/task-based or Resting state

Results

77 Yang et al. (2017) • TN = 1
• M = One healthy adult male
• AR = aged 20

• Continuous tracking task
• One participant performed 16 trials

of the continuous tracking task with
different constant patterns on Day-1
& Day2 with a three-day interval.

• Alpha band: Individual Alpha Band (IAB),
subdivided into Low IAB (LIAB) and High IAB
(HIAB), analyzed due to individual variation. Beta1
(16–20 Hz) Beta2 (20–28 Hz). Other analyzed bands:
Delta (0.5–4 Hz), Theta (4–8 Hz), Sigma (12–16 Hz).

• Resting- state & task-related EEG
• Left primary motor cortex (C3 electrode) bilateral

parietal areas (P3, P4) and frontal areas (F3, F4).
occipital (O1, Oz, O2), central (Cz, C4)

• The EEG signals from 16 channels in both the resting
and active states were recorded, & the relative EEG
amplitudes & the EEG coherence between the left
primary motor cortex & other brain regions in eight
frequency frequency bands were analyzed

• Motor tracking performance improved significantly
from Day 1 to Day 2, indicating motor learning
and consolidation. EEG relative amplitudes in several
frequency bands differed resting and active states.
High-frequency bands (sigma, beta1, beta2;
12–28 Hz) showed increased amplitude in the active
motor state, linked to motor cortex excitability.
Alpha band (individual alpha band, IAB, and its
sub-bands LIAB and HIAB) amplitudes decreased
locally over the left primary motor cortex during the
active state but increased in other brain areas.

78 Yordanova et al. (2020) • TN = 21
• TN (YA) = 10
• F = 5
• M = 5
• AR = mean age 22.5 ±1.5 years
• TN (OA) = 11
• F = 6
• M = 5
• AR = mean age 58.3 ± 2.1 years)

• Four-choice reaction task (CRT)
(auditory and visual)

• Theta band (3.5–7 Hz)
• Task-related EEG
• Frontal cortex & sensorimotor cortex regions of

interest including bi-lateral electrodes were used
–fronto-central, central & centro-parietal (FC5/6,
FC3/4, C5/6, C3/4, CP5/6, CP3/4).

• Midline electrodes (Fz, FCz, Cz, CPz and Pz) were
included in separate analyses

• Aging was associated with a significant reduction
in midline frontal-central theta power & a reduced
functional asymmetry in theta synchronization for
left-hand responses

• Theta oscillations were phase-locked to the response
onset at motor cortical regions contra-lateral to the
responding hand in both age groups

• Older adults showed a suppression of medial frontal
theta power during correct response generation

79 Yordanova et al. (2024) • TN = 27
• TN (YA) = 14
• F = 5
• M = 9
• AR = mean age 22.5 years
• TN (OA) = 13
• F = 6
• M = 7
• AR = 59–70 mean age 58.3 years

• Simple Reaction Task (SRT)
• Go-NoGo task Four-Choice Reaction

Task (CRT) in two modalities,
auditory & visual

• Theta band
• Task-related EEG
• Response-related theta oscillations were computed.
• The phase-locking value (PLV) was used to analyze

the spatial synchronization of primary motor &
motor motor control theta networks.

• In older adults, synchronization was limited to intra-
hemispheric regions only, indicating a functional
decoupling between the motor cortex and higher
motor control regions in the regions in the theta band.

• Specifically, in younger adults, the contralateral
primary motor cortex was synchronized with motor
control regions (intra-hemispheric premotor/frontal
and medial frontal areas).

• Reaction times were slower in older adults, especially
in the CRT task

80 Zhang and Fong
(2019)

• TN = 18
• F = 9
• M = 9 (Final TN is 16) (Final

gender distribution not defined)
(Group 1 = 5, Group 2 = 6, Group
3 = 5)

• AR= 18–30

• Effects of intermittent theta burst
stimulation (iTBS) with mirror
training (MT) on mirror visual
feedback (MVF)-induced
sensorimotor brain activity and
motor performance assessed with

• Nine-hole peg test (NHPT)
• The Minnesota dexterity test (MDT)
• The Purdue Pegboard Test (PPT)
• The two-ball rotation task

• Mu & beta band
• Mu-1 (8–10 Hz)
• Mu-2 (10–12 Hz)
• Beta-1 (12–16 Hz)
• Task-related EEG

(Group 1: iTBS + MT, Group 2: iTBS + sham MT,
Group 3: sham iTBS + MT).

• Combined effects of Intermittent theta burst
stimulation (iTBS) & mirror training (MT) enhanced
the brain’s responsiveness in MVF and MVF induced
a shift of sensorimotor ERD toward the contralateral
hemisphere in mu-1, mu-2, and beta-1 bands

• Visual feedback MVF is likely to activate the
contralateral sensorimotor cortex, however it can’t
translate into significant improvements in
motor performance.
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anatomical and functional network integrity for effective motor
learning across the lifespan.

3.4.2 Age, expertise, and neural dynamics in
motor learning

Age-related changes in motor control have been extensively
documented in the literature. Vieluf et al. (2018) specifically
highlighted that aging is associated with a decline in the efficiency of
neural control mechanisms, which often manifests as reduced force
control capabilities. These findings are consistent with prior studies
(Spedden et al., 2019; Roski et al., 2013), which showed age-related
reorganization of sensorimotor networks. In particular, older adults
frequently demonstrated greater cortical activation during simple
motor tasks, suggesting compensatory recruitment of additional
neural resources to offset declining motor efficiency.

Moreover, older adults tend to rely more heavily on cognitive
resources during motor execution, leading to increased variability
and greater task difficulty (Vieluf et al., 2018). Frolov et al.
(2020) reported that elderly participants show significant delays in
motor initiation, attributed to altered cortical activity patterns and
increased sensorimotor coupling during the pre-movement phase.
These findings underscore a shift from efficient motor planning to
compensatory sensorimotor integration strategies with age.

3.4.3 The role of expertise in sensorimotor
efficiency

Beyond age, motor expertise also plays a critical role in shaping
neural control mechanisms. Vieluf et al. (2018) reported that
individuals with expertise in fine motor tasks (e.g., precision
mechanics) display enhanced force control and sensorimotor
modulation compared to novices. These enhancements are likely
underpinned by greater connectivity and coordination among
motor-related brain regions, as observed in individuals with
extensive training and task-specific experience.

Utilizing a dynamical systems approach, Morrison and Newell
(2012) analyzed the variability in force control, identifying
both deterministic and stochastic components contributing to
performance differences across age and expertise. These insights
emphasize the necessity of considering both age and experience
when evaluating neural strategies in motor tasks.

3.4.4 Neural correlates of motor learning: EEG
frequency bands

Studies utilizing EEG have consistently highlighted the
importance of brain oscillations in motor learning, particularly in
the beta frequency band (13–30 Hz). Beta activity is implicated
in multiple facets of motor function, including preparation,
execution, and post-movement states. For instance, event-related
desynchronization (ERD) in the beta band precedes movement
and reflects motor readiness, while post-movement beta rebound
(PMBR) indicates the brain’s return to a resting state (Abbasi
and Gross, 2019; Haar and Faisal, 2020a,b). Research also links
beta oscillations with feedback integration and error correction,
especially in tasks requiring visual feedback (Barone and Rossiter,
2021; Davis et al., 2012). Meadows et al. (2016) demonstrated
that beta suppression in the contralateral motor cortex correlates

with faster reaction times, reinforcing its role in preparatory
neural states.

Beta-band coherence has further been associated with
functional connectivity and motor inhibition control. Wu et al.
(2014) identified beta oscillations (20–30 Hz) as strong predictors
of motor skill acquisition, outperforming other bands such as
theta, alpha, and gamma. Moreover, Ding et al. (2023) suggested
that elevated beta power correlates with diminished motor
inhibitory control.

In the context of resting-state functional connectivity, Sugata
et al. (2020) found significant correlations between beta-band rs-
FC and motor learning capabilities, particularly involving the M1
seed region and other motor-relevant brain areas. By contrast,
alpha-band rs-FC did not show such associations.

3.4.5 Beyond beta: other relevant frequency
bands

Although beta rhythms dominate the motor learning literature,
other frequency bands also contribute to motor learning:

• Delta Band (0.5–4 Hz), though less studied, delta oscillations
are implicated in motor planning and directional
control, possibly modulating higher-frequency activity
(Hamel-Thibault et al., 2016).

• Theta Band (4–8 Hz) is particularly relevant for implicit
sequence learning and motor-cognitive integration (Schättin
et al., 2016; Van Der Cruijsen et al., 2021; Yordanova et al.,
2020, 2024). Theta activity at midline-frontal and parietal sites
has been linked to enhanced learning and cortical plasticity.

• Low Frequency Bands (2–5 Hz), Anwar et al. (2016) identified
this band using EEG-EMG coherence, linking it to activity
in the PPC, MFC, and PFC during finger movement
tasks. Moreover, prior research (Muthuraman et al.,
2012) has shown that corticomuscular coherence between
bilateral cortical areas is crucial for coordinating bimanual
movements. Different motor rhythms, particularly in the
beta frequency band, exhibit interhemispheric coherence
and generate synchronized motor activity that enables
effective communication between the two hemispheres. This
synchronization supports both the execution and learning
of bimanual movements by facilitating interhemispheric
communication necessary for smooth and coordinated
actions. Importantly, such coherence is dynamically
modulated during task execution, reflecting the changing
demands of coordination between the two hands. Alpha
Band (8–12 Hz), associated with attention and sensorimotor
integration, alpha activity has been shown to predict motor-
skill acquisition (Allaman et al., 2020; Rosjat et al., 2024).
Alpha modulation is often observed during both task-related
and resting-state conditions and is crucial for understanding
changes in connectivity during motor learning (Bootsma
et al., 2020; Mottaz et al., 2024).

• Mu Band (11–14 Hz) is closely related to beta, mu rhythms
are prominent in sensorimotor regions and show ERD/ERS
patterns during motor tasks (Nakayashiki et al., 2014; Deiber
et al., 2014). These bands are essential in motor preparation
and feedback processing.
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• Gamma Band (30–100 Hz): Despite limited findings, gamma
rhythms may play a role in fine motor control and
coordination (Amo et al., 2015, 2017; Hamada et al., 2023;
Usanos et al., 2020).

3.4.6 Oscillatory modulation through external
training

Recent studies explored methods to enhance motor learning
through external modulation:

• Visuo-Tactile Feedback: Jahanian Najafabadi et al. (2023)
found that multisensory integration improves motor learning,
with differential patterns of alpha, beta, and theta activity in
older vs. younger adults.

• Binaural Acoustic Beats (BAB): Herozi et al. (2024)
demonstrated that alpha BAB enhances motor performance
by increasing oscillatory activity across different bands in
young and older adults, albeit with distinct neural signatures.

From these studies, we learned that the extensive body of
research on brain oscillations reveals their critical relevance
as biomarkers for motor learning prediction, highlighting how
various EEG frequency bands especially beta, alpha, theta, mu,
and gamma reflect the neural dynamics underlying motor skill
acquisition and control. Beta oscillation (13–30 Hz), has received
most of its attention in the motor learning literature, being strongly
linked to motor readiness, execution, feedback integration, and
post-movement states, with changes in beta power correlating with
motor performance and plasticity. Age has a substantial impact on
motor learning-related neural circuits; older individuals typically
show less flexible reorganization (in alpha and beta bands), greater
levels of beta power during rest, changing connectivity in the
motor network, and reliance on compensatory recruitment of
neural circuits, resulting in poorer motor efficiency when learning
a new task, and generally slower learning. Theta oscillations
play a role in motor-cognitive integration and implicit learning,
while alpha rhythms are crucial for attention and sensorimotor
integration, with reductions in alpha power post-learning and
during consolidation noted in older adults, with moderate gains
also reported diminishing by experience. Other neuromodulation
approaches such as visuo-tactile feedback and alpha binaural
acoustic beats have shown promise in enhancing motor learning
by modulating these oscillatory activities, additionally such
interventions can yield different results across age groups. This
integrated evidence supports the utility of brain oscillations as
predictive markers of motor learning capability and provides
the necessary groundwork to support the development of age-
sensitive interventions for neurorehabilitation and the use of
neuro-enhancement strategies to support optimal motor skill
acquisition throughout our lifespan.

3.4.7 Conflicting and converging findings across
studies

The literature on oscillatory brain activity and motor learning
has been inconsistent with respect to its ability to enhance motor
learning through oscillatory brain activity. For example, one set of

studies noted that changes in local oscillatory power, specifically
in the theta and high-gamma phase-amplitude coupling, were
essential during motor skill acquisition, emphasizing task-specific
modulation within motor cortical areas. Others argued that local
oscillatory power changes are not adequate as predictors for
subsequent motor learning. Instead, those studies emphasized the
dynamic interconnectedness of large-scale functional connectivity
dynamics across alpha and beta bands spanning multiple brain
regions, including the motor cortex, striatum, and medial temporal
lobe (Mottaz et al., 2024). Furthermore, there is variability across
studies on the oscillatory frequency bands that are included. For
example, beta oscillations can be specific to the maintenance of
motor states and thus are always associated with motor learning
(e.g., Dyck and Klaes, 2024; Khanjari et al., 2023; Sallard et al.,
2014; Matta et al., 2025). Whereas, other studies suggested that
the motor learning process itself included either alpha or theta
bands only (Studer et al., 2010; Van Der Cruijsen et al., 2021).
The variances from prior studies might be due to differences
in the experimental paradigms, neural recording modalities, and
participant populations.

Although inconsistencies persist, there is some agreement
when the studies were put into the context of certain contextual
factors such as motor task type, or their research purpose.
Research that employs simple tasks like finger-tapping, or serial
response paradigms generally emphasize the role of cross-
frequency coupling (e.g., theta–high gamma) specifically focused
within the motor-related cortical areas during the preliminary
stages of learning (Dürschmid et al., 2014). More complex forms
of motor sequence learning tasks typically engage interactions
not only in local oscillatory activity, but also network-level
interactions, specifically functional connectivity in the alpha and
beta frequency bands. In addition, the researchers’ purpose of
research was to assess immediate motor performance, long-term
consolidation, or discovery of underlying neural mechanisms
shapes which oscillatory features are most notable. In some studies,
authors emphasized on using clinical populations, while applying
clinical interventions (inducing frequency band modulation) like
transcranial alternating current stimulation (tACS) or fMRI to
present changes in performance or symptoms. The results of these
studies may also vary due to clinical heterogeneity (Takeuchi and
Izumi, 2021).

3.4.8 EEG studies by age group and frequency
bands

In Table 1, we present a summary of studies categorized by the
frequency bands explored. Of the 80 studies reviewed, 45 focused
on participants in the young age group (18–35 years), 7 of those are
in the middle-aged group (35–55 years), and 3 from the older age
group (55–85 years). Additionally, 25 studies included participants
from both the young and older age groups. See Figures 3, 4 for
graphical information and Table 1 for detailed frequency bands per
age group reported by reviewed studies.

3.4.9 Age-related findings across studies
Table 1 summarizes studies that compared age-related

data across three groups: Young Adults (YA; 18–35
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FIGURE 3

Age group distribution in motor learning studies.

FIGURE 4

Frequency band distribution in motor learning studies.

years), Middle-aged Adults (MA; 35–55 years), and
Older Adults (OA; 55–85 years). Abbreviations: YA =
Young Adults; MA = Middle-aged Adults; OA = Older
Adults.

3.4.10 Reviewed studies across adulthood life
span

In the following table, we present participants’ demographic,
task type, frequency bands and other related parameters and results
reported by each study. Therefore, participants age and gender
demographics indicated as: TN = total number of participants, F
= female, M = male, AR = age range, yrs = years, YA =young
adults, OA = old adults.

4 Discussion

In this systematic review, we synthesized findings from 80
experimental studies examining the relationship between motor
learning and brain oscillatory activity, with a specific focus on
age-related differences across the adult lifespan. Our objective
was to clarify how resting-state and task-based neural oscillations
relate to motor skill acquisition, retention, and adaptation, and
whether these patterns vary meaningfully with age. Building
on the hypothesis that aging modulates the neural mechanisms
underlying motor learning, we aimed to identify oscillatory
markers that may predict individual learning outcomes and offer
insights into compensatory processes in older adults. Overall, the
evidence reviewed highlights several consistent patterns. First,
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motor learning is preserved in older adults, though modulated by
age-related changes in neural efficiency and connectivity. Second,
beta and alpha oscillations consistently emerge as critical predictors
of motor learning across age groups (Dyck and Klaes, 2024; Mottaz
et al., 2024). Third, the engagement of broader cortical networks
in older adults suggests compensatory recruitment rather than
fundamental deficits. These findings suggest that despite reduced
processing efficiency, the aging brain retains a remarkable capacity
for adaptation (Van Ruitenbeek et al., 2022).

A growing body of research has investigated how aging
alters cortical dynamics during motor learning. Declines in
motor performance with age are often attributed to less efficient
neural communication and changes in functional connectivity
within motor control networks. Notably, older adults tend to
experience greater performance drops as task demands increase
(Seidler et al., 2009; King et al., 2013, 2017; Bootsma et al.,
2021; Herozi et al., 2024; Rueda-Delgado et al., 2019). However,
despite these challenges, the ability to acquire new motor skills
is largely preserved in later life. This suggests that age-related
plasticity remains active and may be supported by alternative or
compensatory neural strategies. Factors such as task complexity,
feedback type, and learning conditions appear to influence how
motor learning unfolds in older adults (Veldman et al., 2021;
Sallard et al., 2014), underscoring the need to account for
these variables when interpreting age-related differences in motor
learning performance.

Brain oscillations measured through EEG are often associated
with learning and neuroplasticity. However, it is important to
recognize that these oscillations are correlated —not directly
measures— plastic changes. While oscillatory activity may reflect
processes involved in learning and adaptation, its precise role
remains an area of active investigation. Beta oscillations (13–
30 Hz) are especially important in motor learning. Typically
seen in sensorimotor and frontal areas during wakefulness, beta
rhythms are thought to support top-down processing, sensory
integration, and the maintenance of current brain states (Engel
and Fries, 2010; Spitzer and Haegens, 2017). They play a key
role in motor preparation and execution, as well as in integrating
sensory feedback. Multiple studies have identified beta oscillations
as central to motor learning, especially in the frontal, parietal, and
temporal lobes, as well as the basal ganglia and sensorimotor cortex
(Mottaz et al., 2024; Hamada et al., 2023; Espenhahn et al., 2019;
Barone and Rossiter, 2021).

The beta rebound—an increase in beta power following
movement completion—serves as a marker for movement
termination (Studer et al., 2010). During motor learning, baseline
beta activity tends to decrease, while modulation in response
to motor tasks becomes more dynamic (Boonstra et al., 2007;
Houweling et al., 2009). Baseline beta power has even been
proposed as a predictor of subsequent learning and consolidation
processes (Titone et al., 2022). Some studies have also observed
reduced beta coherence after training (Ghasemian et al., 2017).
While several investigations have noted increased beta power
at rest in older adults (Heinrichs-Graham et al., 2018), others
found no significant age-related differences (Babiloni et al.,
2006). These patterns may reflect age-related compensatory
mechanisms which have been attributed to the change in alpha

and beta patterns in aged participants, wherein this age groups
engage additional motor and prefrontal resources to maintain
performance, aligning with the Scaffolding Theory of Aging and
Cognition (STAC, Park and Reuter-Lorenz, 2009; Knights et al.,
2021; Derya and Wallraven, 2024). Advancing age has been
associated with changes in the default mode network (Duda
et al., 2019), characterized by increased activation in frontal
brain regions and reduced activation in posterior areas. This
shift is commonly interpreted as a compensatory mechanism to
counteract age-related decline in specific neural systems (Reuter-
Lorenz and Park, 2010). Such neural alterations significantly
influence functional reorganization in older adults compared to
younger individuals, resulting in modified patterns of cognitive,
sensory, and motor processing. These changes can impact
performance across a range of everyday activities, including tasks
that rely on motor learning (Bernard and Seidler, 2012; Reuter-
Lorenz and Park, 2010). These findings support the perspective
offered by the STAC, which suggests that older adults rely on
compensatory neural processes, both at the physiological and
functional levels, to sustain cognitive and motor abilities despite
age-related decline (Goh and Park, 2009; Reuter-Lorenz and Park,
2014).

These findings are further aligned with broader models
of cognitive aging, such as the Hemispheric Asymmetry
Reduction in Older Adults (HAROLD, Cabeza, 2002), which
emphasize compensatory recruitment and neuroplastic adaptation.
Incorporating EEG-based markers into these frameworks may
enhance their utility in predicting who benefits most from specific
interventions. As we move toward a precision rehabilitation
paradigm, integrating neural, cognitive, and behavioral data will
be key to designing scalable, evidence-based interventions for
aging populations.

Reductions in frontal delta (0.5–4 Hz) activity have been
observed following motor training in young adults (Mak et al.,
2013; Wong et al., 2013), and aging is associated with decreased
delta activity in occipital areas (Babiloni et al., 2006). Delta activity
is associated with internal cognitive processing and decision-
making. During externally focused tasks, delta power tends
to decrease (Giannitrapani, 1971; Babiloni et al., 2017). Other
frequency bands also play key roles. Theta oscillations (4–7 Hz),
especially in the frontal cortex, are linked to memory, cognitive
control, error monitoring, and conflict resolution (Cavanagh et al.,
2009; Cohen et al., 2008). In motor learning, theta power often
increases in later stages, especially in parietal and frontal regions
(Perfetti et al., 2011; Pitto et al., 2011). Alpha rhythms (8–
13 Hz), dominant during relaxed wakefulness, are involved in
sensorimotor integration and cognitive effort (Crone et al., 1998).
Alpha desynchronization is typically associated with improved
performance. While some studies suggest alpha power declines
with age (Markand, 1990; Klimesch, 1999), others find this decline
only in individuals with cognitive impairments (Jelic and Kowalski,
2009; Babiloni et al., 2006). During motor learning, alpha power
has been shown to increase in successful learners (Haufler et al.,
2000; Karabanov et al., 2012). Increased alpha desynchronization
and theta power in older adults may represent greater cognitive
effort during learning, consistent with the idea of neural inefficiency
or dedifferentiation in aging. These dynamics underscore the
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shift from automatic to more effortful motor control strategies in
older age.

Reduced alpha power over the sensorimotor cortex has been
linked to increased cognitive load, and heightened attentional
demands, particularly during intensive (massed) practice in
visuomotor learning tasks (Studer et al., 2010). This suggests that
when the brain is more actively engaged in processing motor tasks,
alpha activity diminishes in regions responsible for sensorimotor
integration. Additionally, research has shown that lower levels of
neural activity across several brain areas can be associated with
more rapid motor learning, implying that efficient learning may
involve more focused or economical neural processing (Gehringer
et al., 2019). In contrast, aging appears to affect brain oscillations
differently. An observed increase in beta band power among older
adults may be connected to elevated levels of gamma-aminobutyric
acid (GABA) transmission, which plays a key role in inhibitory
control within the motor system (Gehringer et al., 2019; Heinrichs-
Graham and Wilson, 2016). These patterns reflect age-related
neurophysiological changes that can influence motor learning
and performance.

The mu rhythm (10–13 Hz), overlaps with the alpha band but is
focused on sensorimotor areas and is modulated during movement
observation, execution, and imagery (Marshall and Meltzoff, 2011;
Pineda, 2005). Mu suppression is a reliable indicator of motor
system engagement and has been observed during motor learning
(Alhajri et al., 2018).

Effective connectivity, functional connectivity or dynamic
communication between brain regions, is crucial for understanding
motor learning. Studies have shown that strong connectivity,
particularly in alpha-band phase synchronization predicts the
response amplitude of the distant brain regions effectively
connected to M1 (McGregor and Gribble, 2017; Tomassini et al.,
2010; Zazio et al., 2021). Increased functional connectivity within
task-relevant networks is associated with more efficient motor
performance (Heitger et al., 2012). Resting-state connectivity in the
alpha and beta bands has been linked to offline learning and motor
adaptation (Manuel et al., 2018; Özdenizci et al., 2017). Moreover,
prior research reported gamma oscillations (>30 Hz) are linked to
higher-order cognitive processes such as attention, perception, and
motor control (Uhlhaas et al., 2010). Increases in gamma activity
have been observed during motor execution and imagery, and also
after training (Crone et al., 1998; Perfetti et al., 2011; Amo et al.,
2017). These increases are thought to reflect the engagement of
local cortical networks involved in fine-tuning motor commands
and integrating sensorimotor information. Furthermore, enhanced
gamma activity following motor training suggests a link between
motor learning and cortical plasticity. As individuals practice and
refine motor skills, the heightened gamma response may represent
more efficient neural synchronization and improved functional
connectivity in task-relevant areas. This supports the idea that
gamma oscillations not only accompany motor actions but may
also play an active role in the consolidation and optimization of
motor performance over time.

Together, these findings highlight the importance of brain
oscillations in motor learning, particularly as they relate to age-
related decline and rehabilitation. Incorporating these neural
markers into therapy and training programs could lead to more
personalized and effective interventions. Future research should

continue to explore how these oscillatory patterns interact with
motor learning processes, emphasizing individualized aged-related
approaches tailored to neural profiles and specific cognitive-
motor needs.

The accumulated evidence underscores the complexity and
variability of neural mechanisms involved in motor learning.
Studies like Wu et al. (2014) and Penalver-Andres et al. (2022)
further emphasize the value of examining connectivity patterns
and oscillatory traits at rest to predict motor performance
outcomes. The integration of EEG-based frequency analysis with
behavioral and task-based metrics provides a powerful framework
for understanding motor learning across the lifespan. Continued
exploration of frequency-specific dynamics especially beta and
its interaction with other bands may yield effective strategies
for enhancing neurorehabilitation and mitigating age-related
motor deficits.

From a clinical perspective, these findings underscore the
value of EEG-based assessment for tailoring motor rehabilitation
protocols in aging populations. For example, baseline beta power or
alpha connectivity could serve as biomarkers to identify individuals
who may benefit from slower-paced, distributed practice formats.
Furthermore, EEG-guided neurofeedback interventions could
enhance specific oscillatory patterns (e.g., increasing alpha or
suppressing excessive beta), thereby improving motor learning
efficiency. This neuroadaptive approach aligns well with principles
of personalized medicine and could be particularly beneficial for
older adults facing early-stage motor or cognitive decline.

4.1 Strengths and limitations

This systematic review is built on a comprehensive literature
search conducted across multiple databases, ensuring a broad and
inclusive capture of relevant studies. The predefined inclusion
and exclusion criteria were carefully established to enhance the
reliability and validity of the findings, allowing for a consistent
evaluation of the available evidence. Quality assessment of the
studies was rigorously conducted using the ROB2 (Risk of Bias
in Systematic Reviews) tool, adhering to established guidelines to
minimize bias and strengthen the conclusions drawn. Our review
includes a detailed examination of randomized controlled trials
and experimental studies that meet the inclusion criteria, ensuring
a high level of evidence. Furthermore, collaboration with field
experts has contributed additional insights and credibility to the
review, enriching the analysis and interpretation of the data. These
strengths collectively contribute to the robustness of the review,
providing valuable guidance for future basic research, clinical
practice in neurorehabilitation, and motor behavior studies.

Despite its strengths, this systematic review has several
limitations that should be acknowledged. One of the primary
concerns is the heterogeneity among the included studies, which
may affect the generalizability of our findings. Variations
in study design, sample sizes, assessment methods, and
intervention protocols can introduce inconsistencies, making
it challenging to draw definitive conclusions across diverse
research contexts. Additionally, some studies included in the
review had methodological flaws, such as small sample sizes,
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lack of proper control groups, or inadequate reporting of results,
which may impact the overall quality of the evidence. Our review
was also restricted to English-language publications from 2008
onwards, potentially excluding relevant studies published in other
languages or prior to this period. This language and timeframe
restriction may limit the comprehensiveness of our review and
overlook important findings from earlier or non-English research.
Moreover, while we made extensive efforts to minimize bias in
study selection through rigorous screening and predefined criteria,
some degree of subjectivity could still influence the interpretation
and synthesis of the data. These limitations underscore the need
for cautious interpretation of the results and highlight areas for
improvement in future research.

In addition, many studies included in this review had relatively
small sample sizes and were often underpowered to be able to
detect age-related interaction effects. Furthermore, even a selected
group of studies used a longitudinal design, making it difficult
to draw conclusions related to long-term motor learning or
retention. EEG data quality and preprocessing also varied widely,
contributing to variability in reported findings. The heterogeneity
of EEG feature extraction, from peak frequency to event-related
desynchronization and coherence, further complicates cross-study
comparison. While our selection process conformed to rigid
inclusion criteria, publication bias is always a risk with the use of
published data, given that studies with negative results will more
likely go unreported.

Moreover, it was very common for data to not be reported
or to be incomplete; for example, some studies failed to report
key participant demographic (e.g., gender) or it is not possible to
know how these missing key participant demographics impacted
the conclusion drawn (e.g., Zhang and Fong, 2019). There were also
concerns with selective reporting of outcomes (e.g., some studies
reported specific outcome measures and do not report on other
relevant outcomes, some outcomes that there were indications
of adverse outcomes but they were not reported, etc.). This bias
raises suspicion around study findings and limits robustness and
generalizability study findings. Ultimately, future study should
report all data so other researchers can replicate or use these
findings to inform practice or implementation. There are some
notable limitations in the research found during the course of this
extensive systematic literature review. A number of the reviewed
articles did not employ randomized controlled trial designs except
for the ten studies previously identified as randomized trials and
semi randomized and instead relied on experimental approaches
that lacked methodological transparency with short sample sizes
and short training intervention times even with representing
valuable insights (e.g., Yang et al., 2017; Baumeister et al., 2013;
Penalver-Andres et al., 2022).

4.1.1 Future directions
Relying on brain oscillations associated with various aspects

of motor learning and performance contributes to the application
of neuroscientific methods such as neurofeedback and its different
types in healthy populations (Onagawa et al., 2023), athletes and
highly specialized skills (Afrash et al., 2023; Xiang et al., 2018;
Mirifar et al., 2017). For example, sensorimotor neurofeedback

as a method used for regulating brain activities at Cz (central)
area was revealed to be effective in facilitating motor learning
in golfers. Moreover, it was found that neurofeedback training
improved the amplitude of sensorimotor at Cz, suppressed alpha
at Fz (Frontal), and is recommended to be applied in order to
facilitate longer-term motor learning in golfers (Afrash et al.,
2023). However, because individuals with extensive expertise often
exhibit distinct neural structures and greater neuroplastic potential
compared to non-experts (Furuya et al., 2014; Mizuguchi et al.,
2019; Nakagawa et al., 2019), it remains uncertain whether findings
observed in expert populations can be reliably applied to the general
healthy population. The specialized oscillation-based training and
experience of experts may lead to unique adaptations in brain
function and anatomy, which could influence how they respond
to experimental tasks or interventions. As a result, caution is
warranted when attempting to generalize results from expert
samples to broader, non-expert groups.

Future work should explore real-time EEG-based
neurofeedback protocols tailored to enhance the oscillatory
patterns most conducive to learning (e.g., boosting frontoparietal
alpha or suppressing beta during specific learning phases).
The development and validation of mobile, dry-sensor EEG
systems open avenues for monitoring brain activity in everyday
environments. This would allow for ecologically valid training
and assessment, especially important for older adults in home
or community settings. Additionally, machine learning models
leveraging EEG coherence and power spectra (e.g., via partial least
squares regression) could stratify individuals based on predicted
learning potential, guiding the selection of interventions that
are most likely to succeed. Longitudinal studies incorporating
EEG, behavioral, and structural imaging data are needed to track
how neural plasticity evolves with age and intervention. This
would help disentangle compensatory vs. restorative mechanisms
and inform maintenance strategies for cognitive-motor health.
Given the demonstrated benefits of dual-task training in older
adults, rehabilitation programs should incorporate cognitive
challenges alongside motor tasks to enhance generalization and
functional transfer, especially for populations at risk of falls or
cognitive decline. We further suggest future studies to consider
neurofeedback training for motor learning in healthy adults while
taking the duration, protocol, number of sessions, demographics,
psychological states, potential psychiatric and neurological
symptoms, motor performance, and motor functions (e.g., speed,
accuracy, power, and dexterity).

As also reviewed by Peng et al. (2024), a promising avenue for
upcoming research involves exploring corticomuscular coherence
as it relates to sensorimotor learning. In our systematic review,
we learned that several studies have pointed to the importance
of beta-band oscillations in executing movement, acquiring motor
skills, and in the interaction between brain and muscle activity.
Notably, beta corticomuscular coherence appears to play a key role
in stabilizing muscle force during static (isometric) contractions.
However, its relationship with variables such as movement speed
and precision remains less clearly defined and deserves closer
investigation. Progress in this area may come from analyzing
how different brain regions coordinate with muscle groups during
diverse motor tasks (Peng et al., 2024). By combining analyses
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of both corticomuscular and intermuscular coherence, future
researchers can better understand the broader neural systems that
support motor adaptation and control, such as tool use training,
which was measured in our prior research (Jahanian Najafabadi
et al., 2023a,b, 2025). Insights from this line of research may
contribute to the development of more precise and effective
therapeutic interventions for motor-related disorders, such as
stroke. In addition, we propose the use of augmented and extended
reality technologies as valuable tools to examine how brain activity
varies in response to different task demands and environmental
conditions that differ from real-world settings (Jahanian et al.,
2023c). For example, virtual objects may lack physical weight, or
their perceived weight can be manipulated using physical proxies,
offering novel ways to study motor control and sensorimotor
adaptation under controlled yet ecologically valid conditions.

5 Summary and conclusion

In summary, aging influences the neurophysiological patterns
of motor learning but does not eliminate the brain’s capacity for
functional reorganization and skill acquisition. EEG biomarkers
particularly in the alpha, theta, and beta bands along with
measures of brain connectivity, offer valuable insight into the
neural adaptations that occur with practice and aging. Optimizing
training approaches (e.g., exergaming, distributed practice, and task
difficulty calibration) can unlock latent plasticity in older adults,
enabling meaningful gains in both cognitive and motor domains.
These findings support a precision-based approach to rehabilitation
and lifelong learning, leveraging individualized neural profiles to
enhance outcomes across the lifespan.

Our findings indicate that task design is critical: interventions
that are multimodal (e.g., exergaming), adaptive, and cognitively
engaging produce more robust neural and behavioral changes
than static or less interactive approaches. Additionally, practice
structure (massed vs. distributed) and task difficulty play pivotal
roles in shaping neural efficiency and long-term retention. For
older adults, moderate challenge levels and spaced practice sessions
appear to offer the best balance between cognitive demand and
plastic potential. Moreover, task familiarity and skill consolidation
processes differ with age. Older adults show slower neural
adaptation and less efficient modulation of oscillatory activity, yet
benefit from overnight consolidation and show sustained gains
when conditions are optimal. These insights suggest that while
the rate and pattern of learning may differ across the lifespan, the
capacity for learning remains viable.

From a translational perspective, these findings advocate for
precision-based motor training that is informed by individual
neurophysiological profiles. By leveraging resting-state EEG and
tracking spectral power, coherence, and real-time connectivity
patterns over time, clinicians and researchers can better predict
which individuals are likely to benefit from specific types of
motor training and adjust protocols accordingly. In conclusion,
aging does not represent a fixed barrier to motor learning.
Rather, it invites a more refined, evidence-based approach that
aligns task demands with the learner’s cognitive and neural
profile. With the integration of EEG biomarkers and personalized
training frameworks, we can move toward a new era of adaptive

individualized neurorehabilitation, one that promotes resilience,
autonomy, and cognitive vitality well into later life.
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