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Background: Early detection of mild cognitive impairment (MCI), defined as the 

prodromal stage of dementia, is key to delaying the progression to dementia 

through lifestyle interventions and/or pharmacological treatments. This study 

aimed to develop and test new identification models for MCI in community 

settings based on multiple sources of clinical features, including neuroimaging 

biomarkers. 

Methods: This cross-sectional study analyzed cognitive testing and MRI 

examination data from 148 community-dwelling older adults in Nobeoka City. 

MCI was assessed using the Memory Performance Index from the MCI Screen. 

The variables used for model development were multisource features, including 

MRI-derived biomarkers and cognitive test scores. Finally, MCI identification 

models were developed using a penalized logistic regression model with an 

elastic net algorithm. 

Results: Among the 148 participants (mean age, 78.6 ± 5.2 years), 44.6% were 

identified as having MCI. The area under the curve for the elastic net model using 

baseline variables (i.e., age, sex, and education) and the multisource model were 

0.74 (95% confidence interval, 0.59 to 0.89) and 0.81 (0.67 to 0.94) in the test 

datasets, respectively. The addition of neuroimaging biomarkers and cognitive 

test scores significantly improved the performance of the model identifying MCI 

(p = 0.012 by DeLong’s test). The structural, perfusion, and diffusion MRI-derived 

biomarkers remained in the identification model with variable selection with the 

elastic net algorithm, and were thus considered important variables. 

Conclusion: Our multisource elastic net model demonstrated high performance 

at detecting MCI, suggesting that the combination of multimodal neuroimaging 

biomarkers contributes to MCI discrimination. 
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1 Introduction 

Early detection of mild cognitive impairment (MCI), a 
transitional state between normal aging and dementia, is key to 
delaying progression to dementia through multi-domain lifestyle 
interventions and/or pharmacological treatments (Wallin et al., 
2016). In particular, the development and approval of disease-
modifying therapies (DMTs) has led to a paradigm shift in 
Alzheimer’s disease (AD) therapy strategies in recent years 
(Cummings et al., 2024a). These advancements have increased 
the demand for simple and timesaving screening tests to detect 
cognitive impairment in community settings, and to facilitate 
subsequent referrals to AD specialists for a formal diagnosis and 
assessment of treatment eligibility. In general, MCI embraces a 
heterogeneous condition with complex neuropathological profiles, 
including neurodegenerative disease, cerebrovascular disease, or 
a mixture of dierent pathologies (Petersen et al., 2018). Until 
recently, most MCI studies focused on MCI due to AD. However, 
growing recognition of mixed-pathology cases among elderly 
dementia patients has expanded selection criteria in new data 
platforms, incorporating AD and related disorders (ADRD) 
(Mormino et al., 2025). 

Despite the importance of early detection of cognitive 
impairment (i.e., MCI and dementia), a systematic review found 
that as high as 61.7% (95% confidence interval [CI]: 55.0% to 
68.0%) of dementia cases in communities remain undetected (Lang 
et al., 2017). This suggests that there is no definitive screening 
system for people with cognitive impairment, and further suggests 
a lack of awareness of and access to cognitive screening. In 
Japan, the overall prevalence of MCI among individuals aged 
65 and older was estimated at 15.5% (95% CI: 10.6% to 20.4%) 
in 2022, which translates to 5.59 million individuals (95% CI: 
3.82 to 7.35 million) (Ninomiya, 2023). In the case of the 
AD continuum, initiating DMTs at an early AD stage (MCI 
to mild dementia) is hypothesized to provide greater clinical 
benefits than initiation after the onset of moderate dementia 
(Cummings et al., 2024b). Further, recent studies have highlighted 
the significant role of lifestyle interventions in preventing dementia 
(Kivipelto et al., 2020; Vidyanti et al., 2025). Given that most 
individuals with MCI reside in community settings, there is a 
pressing need for large-scale and rapid screening tools tailored to 
community dwellers. 

Few studies have developed identification models using 
multimodal MRI features, including features from structural, 
diusion, and perfusion MRI, for the detection of MCI or 
attempted to understand the cumulative eect of these features 
(Dang et al., 2023). Neuroimaging biomarkers are considered 
promising because they are non-invasive and objectively 
measurable. Previous studies have reported reductions in 
hippocampal and entorhinal cortex volumes in the brains of 
subjects with amnestic MCI compared to controls (Pennanen 
et al., 2004). More advanced MR techniques, such as diusion 
tensor imaging (DTI) and arterial spin labeling (ASL), have 
provided insights into the integrity of white matter tracts and 
cerebral perfusion. Although these techniques have not yet 
been established in routine clinical use, they have been reported 
to have potential as biomarkers for detecting early cognitive 
decline or biomarkers for monitoring dementia progression 

(Dang et al., 2023). DTI is a promising biomarker because it 
can reveal changes in the microstructure of the white matter 
tracts selectively impaired in the early stage of ADRD (Lo Buono 
et al., 2020). Growing evidence further supports the utility 
of ASL in dierentiating patients with AD from cognitively 
normal individuals (Kapasouri et al., 2022). A combination of 
multimodal MRI features would benefit complementarily from 
the structural, diusion and perfusion viewpoints. This approach 
thus could provide a comprehensive identification system for 
MCI, to deepen our understanding of its onset and progression, 
and support clinicians in the timely detection and treatments 
of MCI. 

Although neuropsychological testing is the standard 
diagnostic method for MCI, a previous study showed that a 
dementia prediction model combining multisource features (i.e., 
neuroimaging features, cognitive test scores and genetic factors), 
which provide complementary information, had the highest 
predictive ability (Payton et al., 2018). 

Accordingly, the present study aimed to build a model 
for identifying MCI patients using multiple variables, including 
neuroimaging biomarkers and cognitive test markers, evaluate its 
performance, and assess the contribution of each biomarker in the 
best model to identify useful MCI biomarkers. 

2 Materials and methods 

2.1 Study population 

This study utilized data from a cross-sectional telephone 
survey and a cross-sectional brain health check-up as a 
secondary analysis. The survey and check-up targeted older 
adults aged 71 to 95 years living in Nobeoka City, Miyazaki 
Prefecture, Japan. The survey was conducted between July 
2021 and March 2023 as part of a public health service by 
Nobeoka City. Invitation letters were distributed to all eligible 
residents who met all of the following four criteria: (1) no 
moderate to severe cognitive impairment (corresponding 
to level II-A or higher on Independence in Daily Living 
of Elderly People with Dementia in the public long-term 
care insurance program), (2) no speech impairment, hearing 
impairment, or dysphonia, (3) no diagnosis of dementia, and 
(4) residing in their own homes (excluding those in long-term 
hospitalization or institutional care) within Nobeoka City. 
A total of 1,763 community-dwelling older adults participated 
in the telephone survey, of whom 151 applied for brain 
health check-ups. 

The present study was conducted in accordance with the 
Declaration of Helsinki and Ethical Guidelines for Medical and 
Biological Research Involving Human Subjects. The research 
protocol was approved by the Ethics Committee of the National 
Cerebral and Cardiovascular Center (#R21064-3). Written 
informed consent of participants was not required because the data 
used in this study were de-identified prior to provision for analysis 
and remained anonymous at all stages, including data cleaning and 
statistical analysis. 
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FIGURE 1 

Representative MRI images. MRI images in the upper row are unprocessed images, while those in the lower row are processed images. The DTI 
color map shows the direction of the projection fibers (z-axis, blue), the association fibers (y-axis, green), and the subcortical fibers (x-axis, red). 
FLAIR, fluid-attenuated inversion recovery; DTI, diffusion tensor imaging; pASL, pulsed arterial spin labeling. 

2.2 MCI assessment 

To assess cognitive function, the Japanese version of the MCI 
Screen (Cho et al., 2008), which is based on the 10-word immediate 
and delayed recall test of the Consortium to Establish a Registry 
for Alzheimer’s Disease (CERAD) battery (Morris et al., 1989), was 
administered. In this 10-min, computer-scored, sta-administered, 
cognitive test to screen for MCI and dementia stages of ADRD, 
a sophisticated scoring algorithm that analyzes the pattern of 
words recalled by each subject is used to calculate the Memory 
Performance Index (MPI) score according to the subject’s test 
results, age, education, and race. The validity and specificity of 
this test for dierentiating between cognitively normal status (CN) 
and MCI have been described elsewhere (Cho et al., 2008), and 
accuracy, sensitivity, and specificity in discriminating MCI from 
CN have been reported to be 97% (95% CI, 97% to 98%), 94% 
(95% CI, 93% to 95%), and 89% (95% CI, 88% to 91%), respectively 
(Shankle et al., 2005). MPI scores of 49.8 and lower are classified as 
MCI and those greater than 49.8 as CN (Nogi et al., 2021). 

2.3 Other cognitive tests and 
demographic data 

Participants underwent cognitive tests at the hospital on the 
same day as the MRI scan. The tests included the Trail Making 
Test-B (TMT-B) (Reitan, 1958), the Logical memory II (LM) test 
of Wechsler Memory Scale-Revised (Wechsler, 1981) (Delayed 
paragraph recall, paragraph A only), and Verbal fluency test 
(VFT) (category “animal”) (Rosen, 1980). The LM test is widely 
used to assess verbal memory and considered a sensitive test 
for AD. Using a questionnaire, the following information was 
collected: age, sex, years of education, and past and current medical 

histories (hypertension, diabetes mellitus, hyperlipidemia, stroke, 
myocardial infarction, cancer, and chronic kidney disease). 

2.4 MRI data acquisition 

MRI scans were conducted on a 3T MAGMETOM Spectra 
MRI system (Siemens Healthineers, Erlangen, Germany) with the 
following sequences (Figure 1): (1) T1-weighted 3-dimensional 
(3D) imaging using a magnetization prepared rapid gradient 
echo sequence with repetition time (TR)/inversion time (TI)/echo 
time (TE) = 2,300/900/3.31 milliseconds (ms), field of view 
(FOV) = 240 mm × 256 mm, parallel imaging factor = 2, 
voxel size = 1 mm3 

× 1 mm3 
× 1 mm3 , and flip angle = 8◦; 

(2) T2-weighted 3D fluid-attenuated inversion recovery (T2-
FLAIR) sequence with TR/TI/TE = 4,800/1,650/441 ms, 
FOV = 256 mm × 256 mm, parallel imaging factor = 2, 
voxel size = 1 mm3 

× 1 mm3 
× 1.2 mm3 , 192 slices; 

(3) DTI using monopolar diusion-weighted echo-planar 
imaging with 2 b values (0, 1,000 s/mm2) along 30 diusion 
encoding directions, voxel size = 2 mm3 

× 2 mm3 
× 2 mm3 , 

TR/TE = 11,500/101 ms, FOV = 232 mm × 232 mm; and (4) 
pulsed arterial spin labeling (pASL) using FAIR II labeling scheme, 
TR/TI/TE = 5,000/2,000/24.14 ms, FOV: 192 mm × 192 mm, voxel 
size: 3 mm3 

× 3 mm3 
× 4 mm3 , bolus duration: 800 ms, flip angle: 

180◦ , 8 dynamic scans, echo spacing = 0.84, turbo factor = 12, EPI 
factor = 21. 

2.5 Image processing 

FreeSurfer (Fischl, 2012) version 7.3.2 was used to obtain 
cortical thickness and volumetric measures from T1-weighted 
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images. Briefly, this processing includes motion correction, 
removal of non-brain tissue, automated Talairach transformation, 
and intensity normalization for surface and intensity-based 
segmentation of the cortex, subcortical white matter, and 
deep gray matter volumetric structures (Fischl et al., 2002). 
Quality control (QC) on T1-weighted images and FreeSurfer 
segmentation through visual inspection were conducted, 
while the fsqc toolbox (Bedford et al., 2023) was applied to 
evaluate the signal-to-noise (SNR) values. The subjects were 
excluded if their SNR values were below the mean minus three 
standard deviations. Poor-quality images and images with 
identified brain tumors were also excluded. The “asegstats2table” 
and “aparcstats2table” commands were used to obtain the 
hippocampal volume, total intracranial volume (TIV) and 
cortical thickness values from each hemisphere. The mean 
hippocampal volume and cortical thickness of the entire cortex 
were calculated by averaging bilateral hippocampal volumes and 
cortical thicknesses. 

ASL image processing was performed with ExploreASL 
(Mutsaerts et al., 2020), which is developed in MATLAB and 
includes the Computational Anatomy Toolbox (CAT12) (Gaser 
and Dahnke, 2024) for SPM 12 Statistical Parametric Mapping 
(SPM12) (Wellcome Centre for Human Neuroimaging, 2025) 
and the lesion segmentation toolbox (LST) (Schmidt, 2025) 
with the lesion prediction algorithm (LPA). ExploreASL included 
motion correction, quantification according to the ASL consensus 
paper (Alsop et al., 2015), rigid-body registration of the cerebral 
blood flow (CBF) map to a gray matter (GM) map from a 
segmented T1-weighted image, and spatial normalization to MNI 
space via the segmented T1-weighted image (Mutsaerts et al., 
2020). As a parameter from CBF maps, GM-CBF was obtained. 
CBF reflects perfusion in mL blood/100 g tissue/min and was 
calculated in total GM regions of interest. Quantitative MRI 
analyses for WMH volume and GM-ICV ratio were also performed 
with ExploreASL. 

Diusion-weighted imaging was preprocessed using FMRIB 
Software Library (FSL) 6.0.4. First, eddy current distortion 
correction was performed using eddy_correct, followed by 
generation of fractional anisotropy (FA) images using dtifit. Tract-
based Spatial Statistics (TBSS) was used to obtain a projection of all 
FA data onto a mean FA skeleton (Smith et al., 2006). Specifically, 
all FA images were first registered to the standard template 
(FMRIB58_FA_1 mm) using non-linear registration. Then, the 
mean FA image was created and thresholded (FA > 0.2) to create a 
mean FA skeleton. Finally, aligned FA of each subject was projected 
onto this skeleton, and the resulting data were fed into voxel-
based cross-subject statistics. The same pipeline was used for 
mean diusivity (MD) images, and registration warps produced 
for the subject FA image to FMRIB58_FA_1 mm were used to 
align these images to the same template. To avoid contamination 
of the skeleton by CSF partial volume eects, MD skeletons were 
masked using a standard FA skeleton thresholded at an FA value 
of 0.3. Finally, a histogram analysis was performed on the resulting 
MD skeletons, and the peak width of skeletonized mean diusivity 
(PSMD) was calculated as the dierence between the 95th and 5th 
percentiles of voxel-based MD values within the skeleton (Baykara 
et al., 2016). We also used histogram metrics of DTI-derived 
indices, specifically the median values of MD and FA. 

2.6 Statistical analyses 

Baseline characteristics are presented as median (interquartile 
range [IQR]) for continuous variables and number (%) for 
categorical variables. To develop identification models, the dataset 
was randomly split into a training dataset (70%) for developing 
identification models and a test dataset (30%) for assessing 
the prediction performance of the developed models. When 
developing identification models, continuous predictor variables 
were converted to z-scores by subtracting the mean values from 
the value of each variable and dividing by the standard deviation. 
Mean and standard deviation values were obtained from the 
training dataset. 

First, to establish the predictive ability of the neuroimaging 
biomarkers (i.e., GM-ICV ratio, hippocampal volume, cortical 
thickness, TIV, WMH volume, gray matter CBF, FA median, MD 
median, and PSMD) for classifying cognitive status (MCI/CN), we 
assessed the area under the receiver operating characteristic (ROC) 
curve (AUC) of preliminary models in the training dataset. 

Next, we developed three identification models to identify 
the cognitive status class (i.e., MCI or CN) in the training 
dataset. The baseline model included age, sex, and education. 
These variables were used because a previous study has developed 
a dementia prediction model using the same variables (C-
statistic = 0.78; 95% CI: 0.76 to 0.81) (Machado-Fragua et al., 
2021). In this study, the predictive model using age, sex, and 
education showed superior predictive performance compared with 
other models incorporating cognitive test scores. The structural 
imaging model included structural neuroimaging biomarkers (i.e., 
GM-ICV ratio, hippocampal volume, cortical thickness, and TIV) 
in addition to the variables included in the baseline model. 
The multisource model included neuroimaging biomarkers (i.e., 
structural, perfusion, and diusion MRI-derived biomarkers) 
and cognitive test scores (TMT-B, LM test and VFT), in 
addition to variables included in the baseline model. The three 
identification models were developed by applying a penalized 
logistic regression model via an elastic net algorithm in the 
training dataset with 5-fold cross-validation to adjust parameters 
α and λ based on comparisons of model performance. This 
approach simplifies the selection of the most meaningful set of 
variables for predicting MCI status while minimizing dependency 
and redundancy by steering their coeÿcients toward zero. To 
account for multicollinearity, MD median values with a variable 
inclusion frequency (VIF) of 10 or more were excluded, because 
PSMD and MD median values are derived from the same 
MD variable. 

Finally, two models (baseline model and multisource elastic 
net model with the most meaningful set of variables) were applied 
to the test dataset to evaluate their performance by the AUC. In 
addition, the accuracy, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) were evaluated. 
AUCs of the baseline and multisource elastic net models were 
compared by DeLong’s tests. 

We also examined the feature importance and calibration 
results in the multisource elastic net model. The feature importance 
of each variable was investigated to identify explainable features. 
Calibration plots were analyzed by dividing participants into 
quintiles to show the agreement between the predicted probability 
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from the multisource elastic net model and the observed proportion 
of MCI, as recommended in the Transparent Reporting of 
a multivariable prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) reporting guideline (Moons et al., 2015). The 
predicted probabilities and the observed proportions of MCI in 
each quartile were compared using the Hosmer–Lemeshow test 
(Hosmer et al., 1997) to test for the equality across all quartiles. 

All statistical analyses were performed using the statistical 
software R (version 4.4.1) (R Core Team, 2024). All statistical 
significance tests were two-sided, using p < 0.05 as the level 
of statistical significance. Identification model development and 
model performance comparison were performed with the R 
“pROC” package (Robin et al., 2011) and the “caret” package 
(Kuhn, 2008). 

3 Results 

3.1 Clinical and radiological 
characteristics 

In total, 148 of the 151 participants were included in the analysis 
after excluding 1 participant with large artifacts and 2 participants 
with a brain tumor. The median MPI score (IQR) was 52.6 (41.1, 
64.8). We identified 66 (44.6%) participants as having MCI based 
on MPI scores ≤ 49.8. Median age of the entire study population 
was 78 (IQR, 74, 84) years, and there were 75 (50.7%) males. 
Demographic variables, cognitive test scores, and neuroimaging 
biomarkers in the training and test datasets are shown 
in Table 1. 

ROC curve analysis revealed AUCs in the range of 0.55–0.68 
for neuroimaging biomarkers when each of them was used as an 
independent variable of a univariable model (Table 2). In particular, 
WMH volume (AUC, 0.68; 95% CI, 0.57 to 0.79) and PSMD (AUC, 
0.69; 95% CI, 0.59 to 0.80) were suggested to be potentially useful 
(Table 2). However, no single neuroimaging biomarker achieved 
good model accuracy of AUCs > 0.7. 

3.2 Development of the three elastic net 
models to identify MCI in the training 
dataset 

A penalized logistic regression model selected all three 
demographic variables (age, sex, and education) for the baseline 
model. Six of the seven features (age, sex, education, cortical 
thickness, GM-ICV ratio and TIV) were selected in the structural 
imaging model; hippocampal volume was removed from the model 
because the coeÿcient was zero. Similarly, the final optimized 
multisource elastic net model used nine features: age, VFT, LM 
test, education, PSMD, sex, TIV, cortical thickness, and gray matter 
CBF, with coeÿcients of 0.93, 0.42, 0.30, 0.13, 0.10, 0.09, 0.08, 0.05, 
and 0.04, respectively. The coeÿcients of the hippocampal volume, 
GM-ICV ratio, WMH volume, FA median, and TMT-B were zero, 
and these were therefore removed from the multisource model 
(Figure 2). 

TABLE 1 Clinical and radiological characteristics in training 
and test datasets. 

Training 
dataset 

(n = 103) 

Test dataset 
(n = 45) 

Demographic variables 

Age, years (median [IQR]) 78 [75, 81] 78 [74, 84] 

Male, n (%) 46 (45) 29 (64) 

Education, years (median [IQR]) 12 [9, 12] 12 [10, 13] 

MCI, n (%) 43 (42) 23 (51) 

Comorbidity, n (%) 

Hypertension 59 (59) 24 (56) 

Diabetes mellitus 12 (12) 10 (24) 

Hyperlipidemia 35 (36) 14 (33) 

Stroke 9 (9) 4 (9) 

Myocardial infarction 11 (11) 7 (17) 

Cancer 19 (19) 7 (16) 

Chronic kidney disease 1 (1) 2 (5) 

Neuroimaging biomarkers (median [IQR]) 

GM-ICV ratio 0.39 [0.37, 0.41] 0.37 [0.35, 0.39] 

Hippocampal volume, mm3 7,166 [6,709, 7,682] 7,024 [6,720, 7,696] 

Cortical thickness, mm 2.60 [2.54, 2.66] 2.59 [2.52, 2.62] 

WMH volume, mm3 10 [5, 20] 13 [6, 22] 

Gray matter CBF, ml/100 g/min 54 [40, 68] 53 [37, 68] 

FA median 0.46 [0.44, 0.47] 0.45 [0.44, 0.47] 

MD median, 10−4 mm 2/s 7.48 [7.30, 7.66] 7.45 [7.33, 7.71] 

PSMD, 10−4 mm 2/s 3.62 [3.21, 4.04] 3.67 [3.42, 4.23] 

TIV, cm3 1,494 [1,396, 1,612] 1,447 [1,369, 1,604] 

Cognitive test scores (median [IQR]) 

TMT-B 148 [98, 213] 145 [118, 209] 

Verbal fluency test 15 [12, 17] 13 [11, 16] 

Logical memory test 8 [5, 11] 7 [4, 11] 

IQR, interquartile range; MCI, mild cognitive impairment; MRI, magnetic resonance 
imaging; GM, gray matter; ICV, intracranial volume; WMH, white matter hyperintensity; 
CBF, cerebral blood flow; FA, fractional anisotropy; MD, mean diusivity; PSMD, peak 
width of skeletonized mean diusivity; TIV, total intracranial volume; TMT-B, Trail Making 
Test-B. FA is a dimensionless index. 

3.3 Performance of elastic net models in 
the training and test datasets 

ROC curves of the baseline and multisource elastic net models 
in the training and test datasets are shown in Figure 3, and the 
performance of these models and the structural imaging model 
is shown in Table 3. In the training dataset, the AUC of the 
baseline model was 0.87 (95% CI: 0.80 to 0.94), the AUC of 
the structural imaging model was 0.90 (95% CI: 0.84 to 0.96), 
and the AUC of the multisource model was 0.92 (95% CI: 0.87 
to 0.98). In the test dataset, the AUC of the baseline model 
was 0.74 (95% CI: 0.59 to 0.89), the AUC of the structural 
imaging model was 0.74 (95% CI: 0.60 to 0.89) and the AUC 
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TABLE 2 Identification performance of neuroimaging biomarkers for 
MCI in the training dataset. 

Neuroimaging 
biomarkers 

AUC 95% confidence 
interval 

GM-ICV ratio 0.63 (0.53–0.74) 

Hippocampal volume 0.54 (0.43–0.66) 

Cortical thickness 0.53 (0.41–0.64) 

WMH volume 0.68 (0.57–0.79) 

Gray matter CBF 0.59 (0.48–0.70) 

FA median 0.62 (0.51–0.74) 

MD median 0.61 (0.50–0.73) 

PSMD 0.69 (0.59–0.80) 

TIV 0.57 (0.46–0.69) 

MCI, mild cognitive impairment; AUC, area under the curve; GM, gray matter; ICV, 
intracranial volume; WMH, white matter hyperintensity; CBF, cerebral blood flow; FA, 
fractional anisotropy; MD, mean diusivity; PSMD, peak width of skeletonized mean 
diusivity; TIV, total intracranial volume. 

of the multisource model was 0.81 (95% CI: 0.67 to 0.94). 
The multisource elastic net model demonstrated better predictive 
accuracy than the baseline model (DeLong’s test, p = 0.012) 
(Figure 3). 

Figure 4 shows calibration plots of observed proportion of 
MCI in each quartile of predicted probability using the multisource 
elastic net model. Both training and test models presented good 
calibration (Hosmer–Lemeshow test, p = 0.09 in the training 
dataset; p = 0.51 in the test dataset). 

4 Discussion 

In this community-based study of older adults, we developed 
a multisource elastic net model with high MCI discrimination 
accuracy combining demographic factors, cognitive test scores, and 
a various MRI-derived biomarkers. The addition of MRI-derived 
biomarkers and cognitive test scores to demographic variables (age, 
sex, and education) significantly improved MCI discrimination 
performance (AUC 0.81). While the strong contribution of 
demographic variables such as age, sex, and education in 
the multisource elastic net model is consistent with previous 
reports, this study newly shows that neuroimaging biomarkers 
are important variables, as they were retained in the model even 
after variable selection with the elastic net algorithm. In contrast, 
adding only structural MRI-derived biomarkers to the baseline 
model resulted in unchanged model performance (AUC 0.74). The 
observed contributions of variables from structural images, as well 
as those from diusion and perfusion images, provide insights 
into the importance of combining complementary MRI-derived 
neuroimaging biomarkers. 

4.1 High performance model for 
detecting MCI 

Our finding that neuroimaging biomarkers contributed to the 
improved performance of our multisource elastic net model is 
in line with previous studies. Systematic reviews have identified 
more than 100 dierent dementia prediction models. However, 
some showed poor generalizability, particularly on external 

FIGURE 2 

Nonzero coefficients for the multisource elastic net model. Bar plot shows the importance of features in the developed multisource elastic net 
model for MCI identification. PSMD, peak width of skeletonized mean diffusivity; TIV, total intracranial volume; CBF, cerebral blood flow. 
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FIGURE 3 

ROC curves and area under the curve (AUC) comparison of the baseline and multisource elastic net models for MCI identification in the training and 
test dataset. Statistical analysis was performed to compare AUCs of the baseline model and the multisource elastic net model (neuroimaging 
biomarkers and cognitive test scores as well as demographic variables). There were significant differences between the two models. The P-value is 
reported in each graph. AUC, area under the curve; ROC, receiver operating characteristic. 

TABLE 3 Identification performance of baseline, structural imaging and multisource elastic net models in training and test datasets. 

Dataset Training dataset Test dataset 

Model Baseline 
model 

Structural 
imaging model 

Multisource 
model 

Baseline 
model 

Structural 
imaging model 

Multisource 
model 

AUC 0.87 (0.80–0.94) 0.90 (0.84–0.96) 0.91 (0.85–0.96) 0.74 (0.59–0.89) 0.74 (0.60–0.89) 0.81 (0.67–0.94) 

Accuracy 0.82 (0.73–0.89) 0.83 (0.74–0.89) 0.84 (0.75–0.90) 0.62 (0.47–0.76) 0.64 (0.49–0.78) 0.76 (0.60–0.87) 

Sensitivity 0.65 (0.49–0.79) 0.72 (0.56–0.85) 0.74 (0.59–0.86) 0.52 (0.31–0.73) 0.61 (0.39–0.80) 0.74 (0.52–0.90) 

Specificity 0.93 (0.84–0.98) 0.90 (0.79–0.96) 0.90 (0.79–0.96) 0.73 (0.50–0.89) 0.68 (0.45–0.86) 0.77 (0.55–0.92) 

PPV 0.88 (0.71–0.96) 0.84 (0.68–0.94) 0.84 (0.69–0.94) 0.67 (0.41–0.87) 0.67 (0.43–0.85) 0.77 (0.55–0.92) 

NPV 0.79 (0.68–0.88) 0.82 (0.70–0.90) 0.83 (0.72–0.91) 0.59 (0.39–0.78) 0.63 (0.41–0.81) 0.74 (0.52–0.90) 

MCI, mild cognitive impairment; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value. The baseline model included age, sex, and education as 
demographic variables. The multisource elastic net model included neuroimaging biomarkers and cognitive test scores (i.e., PSMD, total intracranial volume, cortical thickness, gray matter 
CBF, VFT, and LM test). 

validation. Only six studies have developed dementia prediction 

models including MRI-derived variables, and their discriminative 

performance varied (AUC range: 0.55–0.92) (Brain et al., 2024). 
Furthermore, few studies have reported models which included 

MRI-derived biomarkers for MCI-specific outcomes. There are 

three possible reasons for this. First, MRI changes in people 

with MCI are subtle compared to those in dementia, making it 
diÿcult to achieve high identification accuracy. Second, MCI is not 
actively diagnosed because of the lack of therapies. Nevertheless, 
following the recent approval of DMTs for AD in 2023, the need to 

identify patients in the early stages of MCI has increased. Third, 
MRI scans for screening MCI are relatively expensive, requiring 

approximately 30 min. Nevertheless, Japan has a considerable 

number of MRI machines (approximately 7,500; 59.8 per 1 

million people) (Organisation for Economic Co-operation and 

Development, 2023) and a brain health check-up system called 

brain docks. Consequently, many healthy people in Japan undergo 

brain MRI screening. 
Models for detecting MCI are rare. Moreover, only one study 

has reported the use of MRI-derived biomarkers as variables. 
A previous study in a community-based setting reported an MRI-
based MCI identification model with an AUC of 0.61 (0.58– 

0.64) (Bouts et al., 2019). Herein, the inclusion of many variables 
including age, sex, education, and cognitive test scores, as well 
as MRI-derived biomarkers, likely improved the accuracy of 
our model. 

Frontiers in Aging Neuroscience 07 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1650629
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1650629 August 9, 2025 Time: 17:55 # 8

Nakaoku et al. 10.3389/fnagi.2025.1650629 

FIGURE 4 

Calibration plots and Hosmer–Lemeshow test values for the developed multisource models in the training and test datasets The 
Hosmer–Lemeshow test indicated a good fit for the multisource elastic net model (p>0.05), suggesting that the model adequately fits the data. 

4.2 Neuroimaging biomarkers relevant 
for detecting MCI 

After feature selection using the elastic net algorithm, four 
neuroimaging biomarkers (PSMD, TIV, cortical thickness, and gray 
matter CBF) were retained in the multisource elastic net model, 
indicating utility in detecting MCI. This aligns with previous 
research showing that structural MRI features are closely associated 
with MCI (Forouzannezhad et al., 2020). However, single modality 
biomarkers often lack suÿcient accuracy for early diagnosis. 
Therefore, biomarker combinations are recommended (Lombardi 
et al., 2020). However, which neuroimaging biomarkers should 
be used, in what combinations, and which brain functions they 
reflect currently remain unclear. The present study suggests that 
white matter biomarkers (DTI-derived biomarkers [e.g., PSMD 
and FA] and WMH) may be associated with both memory 
and executive function (Supplementary Table 1). Biomarkers of 
atrophy, such as hippocampal volume, may be associated with 
memory function (Supplementary Table 2). These findings provide 
an opportunity for future studies to elucidate the functional aspects 
of neuroimaging biomarkers. 

4.3 PSMD is a selected neuroimaging 
biomarker of MCI 

The present study showed that PSMD was the most important 
neuroimaging biomarker for identifying MCI in our multisource 
elastic net model. Notably, this is the first study to report the 
incorporation of PSMD from DTI into an MCI identification 
model. An increasing number of studies have demonstrated that 
progressive WM degeneration and demyelination are important 
pathological characteristics of ADRD (Nasrabady et al., 2018). 

PSMD is a novel imaging marker for small vessel disease (SVD) 
based on skeletonization and histogram analysis of diusion MRI 
data (Baykara et al., 2016), and is associated with processing 
speed, memory, and general cognitive ability (Deary et al., 2019). 
In the present study, PSMD was associated with all cognitive 
test scores (VFT, LM test, TMT-B, and MPI score) across 
various subdomains (memory, language, and executive function) 
(Supplementary Table 1). Moreover, a more recent study reported 
that PSMD is not only a marker of cerebral small vessel disease, as 
PSMD values are also significantly higher in patients with ADRD 
(Luo et al., 2023). This is potentially because WM plays a role 
in information transmission and communication within the brain 
network. Overall, these findings indicate that PSMD derived from 
DTI images may be a promising biomarker for early MCI detection. 

4.4 CBF is a selected neuroimaging 
biomarker of MCI 

In the present study, gray matter CBF was a good contributor 
to MCI detection in the multisource elastic net model. A previous 
systematic review and meta-analysis of 244 studies with 13,644 
participants further concluded that significant decreases in 
CBF from the precuneus to the posterior cingulate and from 
the temporal-parietal regions to broader areas accompany the 
progression from healthy controls to MCI and ADRD (Zhang et al., 
2021), thus supporting the inclusion of CBF in the AD research 
framework. Although ASL perfusion imaging is not routinely 
performed in clinical practice in ADRD, CBF has long been studied 
as a regional marker of brain function and is increasingly being 
studied in research (Alsop et al., 2010). One reason for this is 
that vascular dysregulation derived from ASL images is the earliest 
pathological event in the progression of the ADRD continuum 
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(Iturria-Medina et al., 2016). ASL MRI is a non-invasive technique 
for quantifying CBF without the use of exogenous tracers (Alsop 
et al., 2015) and can be repeated many times across progression 
through the ADRD continuum. 

4.5 Implementation of the developed 
model 

The multisource elastic net model developed in this study can 
be used in a brain dock, a preventive system to check brain health 
unique to Japan (Morita, 2019) which includes MRI and cognitive 
function tests. Although DTI and ASL images are not yet standard 
in brain docks, they can be readily added by setting up imaging 
sequences and extending the imaging time by several minutes. 
This would allow the assessment of white matter microstructural 
integrity and brain function, in addition to structure. Multicenter 
brain imaging databases in Europe now include DTI and ASL 
images as advanced MRI sequences. Given the limited availability 
of PET scans and genetic data, these were not included in the 
model developed in this study. Our model could help identify 
individuals at a high risk of MCI in the general population and 
provide an opportunity to recommend hospital visits, allowing for 
the possibility of early intervention and delayed dementia. 

4.6 Strengths and limitations 

The primary strength of this study is that the developed model 
can be applied to MCI screening in the community. By assessing 
multiple brain aspects, including sequences other than structural 
imaging, the model allows for the identification of patients with 
MCI who have not reached the hospital and/or are underdiagnosed. 
Recent studies have further reported that the early detection of 
cognitive decline (i.e., MCI) and implementation of multimodal 
lifestyle-based interventions could prevent progression to dementia 
(Kivipelto et al., 2020). Further, we identified MRI-derived 
biomarkers that could be used in MCI prediction models. It is now 
widely recognized that biomarker-based stratification is necessary 
to optimize the content of these interventions. Biomarkers derived 
from multiple brain MRI sequences can complement each other 
and could potentially aid in the categorization of MCI (Marquez 
and Yassa, 2019). Therefore, further randomized controlled trials 
(RCTs) are warranted. These could help categorize patients with 
MCI and hold promises for personalized medicine. 

This study has several limitations. First, the sample size was 
limited because MRI scans conducted by Nobeoka City as part of 
municipal projects were used as the dataset. Second, the subjects 
identified as having MCI in this study could not be categorized as 
having MCI due to AD because their amyloid pathology was not 
assessed. Third, because this study utilized survey data collected 
by Nobeoka City as a secondary analysis, information on MCI 
subtypes was not included and was therefore unknown. However, 
the model developed in this study was aimed to detect those at 
a high risk of cognitive decline, as it is intended to serve as a 
screening tool in the community. Further studies using a cohort 
of patients with a confirmed diagnosis, including those diagnosed 
with MCI subtypes, are required. We believe that neuroimaging 

biomarkers, which reflect dierent brain functions depending on 
the brain region, can be utilized to develop prediction models for 
MCI subtypes and prognosis. 

5 Conclusion 

We developed a multisource elastic net model to detect 
MCI within a community-dwelling cohort using demographic 
variables, cognitive test scores, and multimodal neuroimaging 
biomarkers, and validated its performance (AUC = 0.81). Our 
findings suggest that biomarkers derived from MRI, including 
diusion and perfusion images, may contribute to the diagnosis of 
MCI. Multimodal MRI may play an important role in objectively 
assessing mild signs of cognitive decline, paving the way for 
the more accurate and eÿcient detection of individuals in the 
early ADRD continuum. 
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